

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Development of Shoe Dryer Using Microcontroller with GSM Module

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

NAVINE ARUMUGAM B071410060 920225-02-5869

FACULTY OF ENGINEERING TECHNOLOGY 2017

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of Shoe Dryer Using Microcontroller with GSM

Module

SESI PENGAJIAN: 2017/18 Semester 7

Saya NAVINE ARUMUGAM

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERH	AD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK	TERHAD
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
31 Lorong 6,Tama	n Nuri Jaya,08000,
Sungai Petani, Keo	dah
Tarikh:	Tarikh:
** Jika Laporan PSM ini berkenaan dengan men SULIT atau TERHAD.	SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi yatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

FAKULTI TEKNOLOGI KEJURUTERAAN

Tel : +606 234 6623 | Faks : +606 23406526

KOMPETENSI TERAS KEGEMILANGAN Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia. www.utem.edu.my O Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Development of Shoe Dryer Using Microcontroller with GSM Module" is the results of my own research except as cited in references.

Signature	:	
Author"s Name		NAVINE ARUMUGAM
Date	:	13 JAN 2018

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

(NURLIYANA BINTI ABD MUTALIB)

ABSTRAK

Motivasi di sebalik projek ini adalah untuk menjelaskan tugas pada semester 7, semester terakhir sebelum latihan industri. sesi 2017/18 adalah pembangunan pengering kasut dengan mikropengawal menggunakan modul gsm. Usaha ini telah dipilih ke arah inovasi semasa terhadap item yang boleh dikawal oleh telefon bimbit gsm. rangka kerja ini dibuat dari pengaturcaraan dan bahan peralatan. tugas ini boleh digunakan untuk membantu individu mengeringkan kasut dalam jangka masa yang singkat. Matlamat dalam usaha ini adalah untuk membuat strategi mudah untuk mengeringkan kasut dalam jangka masa yang ringkas dan dapat digunakan sebagai sebahagian daripada banyak keadaan. Usaha ini termasuk cara untuk menggariskan pengering kasut terus dengan memikirkan tentang kegunaan, bentuk, syarat pemasangan, komponen pemanasan, dan kos pemasangan bagi individu untuk menggunakannya. Bahan pelan ini menggunakan kotak kayu lapis dan plastic untuk meletakkan litar. Dengan matlamat strategi yang menyertai itu boleh menjadi sempurna dalam mengumpul pengering kasut terus ini. Usaha ini juga mengharapkan pemeriksaan untuk memastikan komponen pemanasan pengeringan kasut untuk menjamin keselamatan pengguna.

ABSTRACT

The motivation behind this project is to clarify the task amid semester 7, last semester before industrial training. The task 2017/18 session was development of shoe dryer with microcontroller utilizing GSM module. This venture was chosen towards current innovation incline toward an item that can be controlled by GSM hand phone. This framework was made from programming language and equipment materials. This task is about can be utilized to helps individuals drying shoes in a brief timeframe. The goals in this venture are to make a simple strategy to dry a shoe in a brief timeframe and it can be utilized as a part of numerous circumstances. This undertaking includes the way toward outlining the straightforward shoe dryer by thinking about the usefulness, shape, condition fitting, warming component, and the assembling cost for individuals to utilize it. The material of this plan is utilizing plywood and plastics box for putting the circuit. With the goal that the strategy joining that can be perfect in collected this straightforward shoe dryer. This venture additionally expected examination to ensure the warming component for drying of the shoe to guarantee the security for the users.

DEDICATION

There are a number of people without whom this thesis might not have been written, and to whom I am greatly indebted. I owe my gratitude to all those people who have made this project possible and because of whom my graduate experience has been one that I will cherish forever. I dedicate my dissertation work to my friends, well-wishers and family. A special feeling of gratitude to my loving batch mates friends, whom have been my constant source of inspiration. They have given me the drive and discipline to tackle any task with enthusiasm and determination. Without their love and support this project would not have been made possible. My senior have never left my side and are very special. My deepest gratitude is to my advisor, Pn Nurliyana binti Abd Mutalib. I have been amazingly fortunate to have an advisor who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. She taught me how to question thoughts and express ideas. Her patience and support helped me overcome many crisis situations and finish this project. I hope that one day I would become as good an advisor to my students as she has been to me. Many friends have helped me through these difficult years. Their support and care helped me overcome setbacks and stay focused on my graduate study. I greatly value their friendship and I deeply appreciate their belief in me. Besides, I am also thankful to lecturers for numerous discussions on related topics that helped me improve my knowledge in the research area better. All of them have been my best cheerleaders.

ACKNOWLEDGEMENT

I take this opportunity to express my profound gratitude and deep regards to my supervisor Pn Nurliyana binti Abd Mutalib for his exemplary guidance, monitoring and constant encouragement throughout the course of this thesis. The blessing, help and guidance given by her time to time shall carry me a long way in the journey of life on which I am about to embark. I also take this opportunity to express a deep sense of gratitude to my academic advisor, Mr. Zulhasnizam his cordial support, valuable information and guidance, which helped me in completing this task through various stages. I am obliged to staff members of the Library in Universiti Teknikal Malaysia Melaka (UTeM), for the valuable information provided by them in their respective fields. I am grateful for their cooperation during the period of my assignment. Their excitement and willingness to provide feedback made the completion of this research an enjoyable experience. Lastly, I thank almighty, my parents, brother, sisters and friends for their constant encouragement without which this assignment would not be possible.

TABLE OF CONTENT

Abst	rak		i
Abst	ract		ii
Dedi	cation		iii
Ackr	nowledge	ement	iv
Tabl	e of Cont	tent	v
List	of Tables	3	vi
List	of Figure	s	vii
List .	Abbrevia	tions, Symbols and Nomenclatures	viii
CHA	PTER 1	: INTRODUCTION	1
1.0	Introd	uction	1
1.1	Problem	m Statement	2
1.2	Object	ive	2
1.3	Scope		2
CHA	APTER 2	2: LITERATU REVIEW	3
2.0	Introd	uction	3
2.1	Basic	Principle	4
2.2	List of	f Components	6
2.3	Curren	nt Existed Shoe Dryer in Market	7
	2.3.1	Portable Shoe Dryers at Hammacher Schlemmer	7
	2.3.2	Shoe and Glove Dryer	8
	2.3.3	Pro-We United Kingdom-UV Shoe Dryer	9
	2.3.4	Dry Guy Dry Fast – Portable Footwear Dryer (AC,DC or 12V)	10
2.4	Part of	n Dryer Equipment	11
	2.4.1	Body	11
	2.4.2	Joining Method	11
2.5	Comp	arison with other similar researcher	12

CHA	PTER 3: METHODOLOGY	14
3.0	Introduction	14
3.1	Flowchart and Project Implementation	15
3.2	Block Diagram	16
3.3	Software Development	17
3.4	Hardware Development	20
3.5	Hardware Testing Performance	20
3.6	Flowchart for the Shoe Dryer	21
3.7	Design Specification for Shoe Dryer	22
	3.7.1 Technical Drawing	22
3.8	Steps to build Shoe Dryer Prototype	23
	3.8.1 Problem Analysis	24
	3.8.2 Logical Design	24
	3.8.3 Programming	24
	3.8.4 Testing, Debugging and Downloading	25
	3.8.5 Documentation	26
3.9	Steps to produce circuit	26
	3.9.1 Breadboard circuit steps	26
	3.9.2 Steps to convert from Breadboard to PCB	27
	3.9.3 Testing Components	29
	3.9.4 PCB Etching Process	30
	3.9.5 Tools used for Drilling on PCB	32
	3.9.6 Component construct process	33
	3.9.7 Soldering process	34
	3.9.8 Designation of a model circuit	35
	3.9.9 Primary Materials	37
	3.9.10 Size of the model	38
3.10	Conclusion	40
CHA	PTER 4: RESULT AND DISCUSSION	41
4.0	Introduction	41
4.1	Specification of Shoe Dryer	41
4.2	Performance of Analysis of the Shoe Dryer	43

4.3	Codin	g used for Shoe Dryer	45
4.4	Micro	controller Circuit	46
4.5	LM35	Sensor Circuit	46
4.6	Circui	t Analysis	47
	4.6.1	Introduction	47
	4.6.2	Recovery and Maintenance	47
	4.6.3	Conclusion	47
	4.6.4	Result of Analysis	47
	4.6.5	Sensor Circuit Process	48
	4.6.6	Motor and Relay Circuit Process	50
	4.6.7	Microcontroller Circuit	51
4.7	Discus	ssion	52
	4.7.1	Introduction	52
	4.7.2	Problem Issue and Solution	52
	4.7.3	Problem when Testing PCB	53
	4.7.4	Problems in Circuit	53
	4.7.5	Other Problem	54
CHAI	PTER 5	5: CONCLUSION AND FUTURE WORK	55
5.0	Introd	uction	55
5.1	Future	e Work and Suggestions	56
REFE	CRENC	ES	57

APPENDICES

A Coding used

LIST OF TABLES

2.1	List of Components use for PIC 16F877A and LM35	7
2.2	List of Comparison made from researcher	13
0 1		20
3.1	List of Components used for PIC 16F8//A	29
3.2	List of Components used for LM35 sensor	30
4.1	Specification of Shoe Dryer	41
4.2	Analysis result for several situation	43

LIST OF FIGURES

2.1	Portable shoe dryers at Hammacher Schlemmer	8
2.2	Shoe and Glove Dryer	8
2.3	Pro-Jdee United Kingdom – UV Shoe Dryer	9
2.4	Dry-Giy Dry-Fast-Portable Footwear Dryer (AC, DC or 12V)	10
3.1	Flowchart of Implementation Project	15
3.2	Block Diagram of Shoe Dryer	16
3.3	Software used to design Shoe Dryer	18
3.4	PCB Layout design in Proteus for PIC16F877A	19
3.5	PCB Layout design in Proteus for Relay Circuit	19
3.6	PCB Layout design in Proteus for LM35 sensor circuit	20
3.7	Flowchart Design of Shoe Dryer operates	21
3.8	3D Drawing with dimension	22
3.9	Top and Side view of Shoe Dryer	23
3.10	Draw the circuit designed using Proteus software	28
3.11	Iron the sketched circuit onto the PCB	28
3.12	Pour the necessary amount of acid	31
3.13	Pour the amount of hot water needed	31
3.14	Keep shaking the tray till the acid dissolve on PCB	32
3.15	Drilling the holes according to the structure	33
3.16	Top view	36
3.17	Side view	36
3.18	Plywood used	37
3.19	Cutting the boxes as measured	39
4.1	Top view of complete prototype	42
4.2	Interior view of complete prototype	42
4.3	Side view of complete prototype	42
4.4	PIC 18F 877A, LCD display and Relay	46

4.5	LM35 sensor	46
4.6	LM35 sensor schematic	49
4.7	Relay circuit	50
4.8	Schematic diagram microcontroller	51

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

GSM	-	Global System for Mobile Communications
W	-	Watts
LED	-	Light Emitting Diode
SW	-	Switch
CAP	-	Capacitor
REG	-	Regulator
LCD	-	Liquid Crystal Display
DC	-	Direct Current
AC	-	Alternating Current
VDC	-	Voltage Direct Current
IC	-	Integrated Circuit
PCB	-	Printed Circuit Board
UV	-	Ultra Violet
cm	-	Centimetre
m	-	Metre
Kg	-	Kilogram
LM35	-	Linear Monolithic
SMS	-	Short Message Service
3D	-	3 Dimension
RM	-	Malaysian Ringgit
k	-	Kilo
u	-	Micro
n	-	Nano
М	-	Mega
F	-	Farad
°C	-	Degree Celsius

CHAPTER 1 INTRODUCTION

1.0 Introduction

The project involves development of shoe dryer with microcontroller (PIC16F877A) using GSM module. This project can be use by people that need to dry their shoe in very short time anywhere. This shoe dryer is very simple but develop by attaching GSM module. It is because once the shoe dryer is activate via GSM module according to situation needed just place it inside the shoe space and wait till it dry in very short time. The shoe dryer will be silent, efficient and safe method to dry shoes overnight. This mobile shoe dryer uses thermal convection drying from light bulb that which means would warm the air naturally rises and the shoe dry within 3 to 4 hours safely. The shoe dryer also being controlled by microcontroller whereby it control the activity and understand the relationship between shoe condition and the shoe dryer to act. The light bulb is select from their high power watts to give heat and dry the shoes. Furthermore the shoe dryer is not large but it can only store one pair of shoes at a time. This projects involves the process of designing by considering the functionality, shape, environment friendly, heating element and the manufacturing cost for people to use it. This project also required analysis to make sure the heating element for drying of the product to ensure the safety for the user indeed of commercialize.

1.1 Problem Statement

Most of the travellers, backpackers, students and workers facing a problem where their shoe get wet while travelling or wash and doesn"t have enough time to dry the shoe well for next day activity. So with this development, users able to use clean and fast. For this development, shoe dryer that exist is not safe because the risk to get short circuit is high and expensive. For future development it requires only one pair shoe and it is shaped as box and would be attractive.

1.2 Objectives

Basically this project is based on these objectives

- 1. To study characteristics current shoe dryer
- 2. To design a programmable logic control microcontroller (PIC 16F877A)
- 3. To design and develop a prototype mobile shoe dryer

1.3 Scope

These project is all about developing a shoe dryer with GSM module. This is because this tools in market currently are not attractive, not safety and its not moving equipment. This project had to made by bulb and a exhaust fan. Bulbs need to be used because its gives heat more, compared to the other material. Moreover it is easy to be installed. This project would be activate via GSM module with several extra features as needed.

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction

Those days, people were tend to having problems to dry the shoes in a short of time. So, using a mobile shoe dryer, maybe it may use short time period to dry those wet shoes. It mean, with this equipment shoes can be dry in a shorter time and safely as well. The function of this equipment create is to store and dry the shoes in easy place to persons during in many situations. It is because this shoe dryer can be place anywhere that receive power supply in order to operate it. From above statement can be conclude that the simple shoe dryer equipment is a major role as an items transferring mechanism for people without having a problem of doing that easier. Moreover, the shoe dryer are also thermal action, circulates warm air throughout shoes removing odor and wetness without damaging the shoes. The Shoe Dryer is ideal for all types of shoes including leather, canvas, vinyl, rubber and plastic. This Shoe Dryer available in electric models for home or outdoor use to remove wetness, perspiration and odor. safely. Besides that, it also improves foot comfort, safety and healthy.

2.1 Basic Principles

The heating process of the shoe dryer is subjected fall into a few categories :

- 1. One exhaust fan on equipment
- 2. Flow of air around the shoe dryer
- 3. From four bulb-light (each 5W)
- a) The dry element :
- Use four units of bulb-light that large than usual Watts (power) to give the high of heat on the shoe during dry process.
- The exhaust fan is also supply on the equipment. The function of the exhaust fan is an extra element of drying to the shoe. It will supply the heat in the equipment.
- b) The time of shoes to dry :
 - On market product, the shoe dryer is use the high of air pressure as an element of the dry. The product is looking simple but follows the function. So, on the simple shoe dryer that want to create, it maybe take a short of time compares as usual. For this equipment, it takes around 3 to 4 hours to dry the shoe in time.
- c) How many shoes that can state on the equipment in one time:
- Only one pair because it suitable on the objective based.
- d) Functions of this Shoe Dryer :
 - Remove wetness, circulates warm air and odour.
 - Maintain foot comfort and safe.
- Protects Shoes.
- Dry and store shoes with GSM.

- e) Advantages :
- Able to place anywhere with power supply.
- Model looks simple.
- The cost of the development is not expensive and suitable for every community.
- Use more than one dry element to the equipment.
- Takes short time period to dry the shoe.
- Activates and receives notification by GSM via hand phone.
- f) Disadvantages:
 - Use a high power supply.
- Only one pair of shoe space allowed to dry in one time.

The light bulb is a method that is used to dry shoes. It is ideal compared to the heating element because the bulbs do not require high electrical currents. The advantages of this project is to be controlled automatically by temperature sensors. The results of this study microcontroller circuit suitable in use for this project. PIC 16F877A suitable for easy use in the find and have to walk analog input signal.

NO	COMPONENTS	UNIT
1	IC BASE 40PIN	x1
2	LED 3mm	x2
3	RESISTOR 1K	x1
4	RESISTOR 470R	x1
5	RESISTOR 10K	x1
6	RESISTOR 4.7K	x2
7	RESISTOR 10R	x1
8	IN4007	x1
9	CAP 100n	x2
10	CAP100uF	x1
11	PRESET 5K	x1
12	RESONATOR 4M	x1
13	SW ON /OFF 6 PIN	x1
14	REG 7805	x1
14	LCD CONECTOR	x1
16	BOX HELDER 10PIN	x1
17	DC CONECTOR	x1
18	RESET SW	x1
19	PIN HALDER 3PIN	x5
20	PIN HALDER 7PIN	x1
21	PIN CONECTOR 4PIN	x1
22	PIN HALDER 2 LINE 10PIN	x2
23	PIN 2 WAY BATERY	x1
24	JUMPER PIN	x1
25	РСВ	x1
26	Resistor 100k	x1
27	Pre-set 5k	x1
28	Sensor LM35	x1

29	IC LM741	x1
30	Pin Header	x1
31	PCB 3.5cm x 3.5cm	x1

Table 2.1 List of components use for PIC 16F 877A and LM35

2.3 Current existed Shoe Dryer in Market

2.3.1 Portable Shoe Dryers at Hammacher Schlemmer

This is the shoe dryer favored when travel since they can be put away in your footwear, and when connected to an outlet at your goal they delicately, securely, quietly, and altogether dry your footwear overnight. Dryer fits inside a shoe to well ordered remove moistness, taking out odor create without damaging the footwear. A 20-watt warm convection warming procedure quietly flows air into the dryer, and all through the shoe. It is in like manner easy to-transport while the dryers are ideal for pursuing treks, shoreline escape, ski or climbing ventures, or away marathons. The dryers made by PEET, designer of the first electric shoe dryer in 1968. This gear can be utilized for men footwear which is scrutinized 7 and for ladies'' examined 5 and. This shoe dryer is expensive whereby it cost RM150 and the time take to dry the shoes is approximate 3 to 5 hours

Figure 2.1: Portable shoe dryers at Hammacher Schlemmer

2.3.2 Shoe and Glove Dryer

A fan flows air through the shoes and gloves. In the unit here, the dryer able to warm the shoe. This boot dryer will similarly dry one arrangements of shoes or boots notwithstanding several gloves. For this specific model of shoe dryer, some idea should be put into supporting the unit. Other, more costly models have their own stands, where this unit cost more than RM200 in market and the approximate time taken for a shoe dry is within 2 to 4 hours

Figure 2.2: Shoe and glove dryer