DESIGN AND DEVELOPMENT OF WIRELESS BRAKING SYSTEM FOR MOTORCYCLE HELMET.

IHSAN BIN ISMAIL

A report submitted in fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering (Automotive)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "Design and Development of Wireless Braking System for Motorcycle Helmet." is the result of my own work excepts as cited in the references.

Signature	:	
Name	:	IHSAN BIN ISMAIL
Date	:	

i

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive).

Signature	:	
Supervisor's Name	:	MOHD ZAKARIA B. MOHAMMAD NASIR
Date	:	

DEDICATION

To my beloved mother and father

ABSTRACT

Road accident is one major factor death causes in Malaysia. There are many factors that cause the accident such as driver attitude, weather, and road condition. One of the most victims in the fatal accident happen mostly involves the motorcyclist. Critical situation accident could happen at night or dark condition due to low sight, where the motorcyclists are difficult to see their absent on the road. These situations are very dangerous to the road user especially to the motorcycle and bicycle at night condition. In this project, adding the LED light blinking system to the helmet to make sure motorcyclist will easy to spot by another road consumer. This system used the Arduino microcontroller to used wireless connection and control the LED blinking. The LED light will be located on the back of the helmet that is parallel to the sighting of the driver eyes from behind. Based on analysis, this Smart Safety Helmet can improve the visibility of the other vehicle to rider when using this helmet when low light and bad weather conditions. Construction prototype of the Smart Security Helmets and wireless systems functioning and tested.

ABSTRAK

Kemalangan jalan raya adalah salah satu punca utama penyumbang kadar kematian di Malaysia. Terdapat banyak factor yang menyebabkan kemalangan seperti sikap pemamdu, cuaca and keadaan jalan raya. Jumlah mangsa yang maut apabila berlakunya kemalangan kebiasaannya melibatkan penunggang motosikal. Tambahan lagi, faktor waktu kemalangan biasanya berlaku pada waktu malam atau keadaan gelap apabila jarak penglihatan menjadi rendah menyebabkan motosikal sukar untuk dilihat di jalan raya. Situasi ini amat bahaya kepada pengguna jalan raya terutama sekali kepada motor dan basikal. Dalam projek ini, menambah sistem lampu brek berkelip LED pada helmet adalah untuk memastikan penunggang motosikal akan lebih senang untuk diperhatikan oleh pengguna jalan raya yang lain. Sistem yang menggunakan pengawal mikro Arduino adalah untuk menghubungkan brek menggunakan hubungan tanpa wayar dan mengawal kelipan LED. Lampu LED akan dipasang pada belakang topi keledar yang kedudukannya adalah sejajar dengan mata pemandu daripada belakang. Berdasarkan analisis, Topi Keledar Keselamatan Bijak ini boleh mempertingkatkan kepekaan pemandu lain terhadap motorsikal apabila waktu gelap dan cuaca yang buruk. Pembinaan prototype Topi Keledar Keselamatan Bijak dan sistem tanpa wayar yang berfungsi dan diuji.

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my sincere acknowledgment to my supervisor Mr. Mohd Zakaria Bin Mohammad Nasir from Faculty of Mechanical Engineering University Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement toward this project. Without his idea and suggestion, I cannot be complete this final year project successfully.

I would like to thanks to my family members especially my mother and father for their support in completing this project and degree. Lastly, special thanks to all my friends that help me and teach me to complete this project.

TABLE OF CONTENT

CHAPTER	CONTENT		PAGE	
	DEC	LARATIO	DN	i
	DEDICATION			iii
	ABSI	RACT		iv
	ABST	ГКАК		V
	ACK	NOWLEI	DGEMENTS	vi
	TAB	LE OF CO	ONTENTS	vii
	LIST	OF TAB	LES	X
	LIST	OF FIGU	JRES	xi
	LIST	OF APP	ENDICES	xiv
	LIST	OF ABB	REVIATIONS	XV
	LIST	OF SYM	BOLS	xvii
CHAPTER 1	INTR	RODUCT	ION	1
	1.1	Backg	round	1
	1.2	Proble	m Statement	5
	1.3	Object	ive	6
	1.4	Scope	of Project	6
CHAPTER 2	LITERATURE REVIEW		E REVIEW	7
	2.1	Overvi	iew	7
	2.2	Introdu	action of Safety Helmet	7
		2.2.1	Helmet History	8
		2.2.2	Helmet Type	10
	2.3	Basic 1	Electrical Principle	11
		2.3.1	Electric Components	12
		2.3.2	Integrated Circuit	18
	2.4	Light l	Emitting Diode	19
	2.5	Electri	c Connector	20
		2.5.1	Circuit Wiring	20

	2.6	Switch	21
	2.7	MOSFET	22
		2.7.1 Voltage Divider and Voltage Controller	23
	2.8	Wireless system Protocols	25
	2.9	Electronic Device and System	28
CHAPTER 3	METI	HODOLOGY	30
	3.1	Overview	30
	3.2	General Methodology	30
	3.3	LED Blinking System	33
	3.4	Wireless Connection	35
	3.5	Schematic diagram of the system	36
		3.5.1 Transmitter	36
		3.5.2 Receiver	38
	3.6	Fabrication Process	39
		3.6.1 Transmitter	41
		3.6.2 Receiver	42
CHAPTER 4	DATA	A AND DISCUSSION	42
	4.1	Understand wireless system	42
	4.2	Wireless NRF24L01	45
	4.3	Coding and Program of Arduino (Uno and Nano)	45
	4.4	Prototype Smart Safety Helmet	50
	4.5	Test the System	53
	4.6	Graph of Visibility	56
	4.7	Discussion and Analysis	59
CHAPTER 5	CON	CLUSION AND RECOMMENDATION FOR	62
	FUTU	JRE RESEARCH	
	5.1	Conclusion	62
	5.2	Recommendation	63

REFERENCES APPENDIXES

64 67

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Death road user in various region in 2012	3
2.1	symbols and component used in electrical circuit	12
2.2	Comparison on the wireless protocols	27
2.3	Comparison on the wireless protocols	28

LIST OF FIGURE

FIGURE	TITLE	PAGE
1.1	Statistic road traffic death by MIROS.	2
1.2	World Health Organisation (WHO) report on Road safety 2015	2
1.3	Total death and Road Safety Index in Malaysia	5
2.1	Global Report on Road Safety 2015 by WHO	8
2.2	First helmet made from leather and Pudding Bowl helmet	8
2.3	First full face helmet (BELL STAR)	10
2.4	Types of helmet	10
2.5	Direction of electron and conventional current	12
2.6	Resistor	13
2.7	Resistor Colour Code	14
2.8	Capacitor	15
2.9	Common Capacitor type and specification	16
2.10	Transistor	16
2.11	Diodes	17
2.12	Integrated Circuits	18
2.13	LED operating mechanism	19
2.14	Copper with PVC insulator cable	21
2.15	Roller Lever Limit Switch	21
2.16	Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)	22
2.17	N-channel type MOSFET symbol	22
2.18	Voltage divider circuit schematic diagram	23

2.19	current flow in voltage divider	24
2.20	Ultra-Wide Band transmitter or receiver	25
3.1	flowchart of the project	32
3.2	Basic blinking system using Arduino Software	34
3.3	Schematic diagram for basic blinking system using Arduino	34
3.4	Coding declaration library for wireless system (transmitter)	36
3.5	Schematic diagram for transmitter circuit system	37
3.6	NRF24L01 Arduino transceiver module	37
3.7	Schematic diagram for receiver circuit system	38
3.8	Male to male jumper wire	40
3.9	Testing for blinking system	40
3.10	flow chart transmitter fabrication	41
3.11	flow chart receiver fabrication	42
4.1	Illustrated wireless system	43
4.2	The "No radio available" massage show receiver not get signal	44
4.3	Massage "111" show the signal reach the receiver	45
4.4	Coding for blinking system	45
4.5	NRF24L01 radio transceiver and NRF24L01 connect to Arduino	46
4.6	Arduino Software interface	47
4.7	Writing radio library and coding for sending signal	47
4.8	Coding to receive command from switch	48
4.9	Writing radio library use and initialize the output pin	48
4.10	Declaration output pin and looping method	49
4.11	Performing the output signal and massage	50
4.12	Final Product of the smart safety helmet model system	51
4.13	Isometric view design of the bracket Smart Safety Helmet	52
4.14	Side view design of the bracket Smart Safety Helmet	52

4.15	Back view design of the bracket Smart Safety Helmet	53
4.16	ordinary tail light back view	54
4.17	Ordinary tail light with smart safety helmet when brake	54
4.18	Testing visibility at distance 70m	55
4.19	Testing visibility at afternoon condition (1.30 p.m)	55
4.20	Graph distance vs visibility fine condition at afternoon.	56
4.21	Graph distance vs visibility fine condition at evening.	57
4.22	Graph distance vs visibility fine condition night with road lamp.	57
4.23	Graph distance vs visibility fine condition at night without road	58
	lamp.	
4.24	Graph distance vs visibility rainy condition at night.	58
4.25	Graph Distance Vs Visibility for overall conditions.	59

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Data for Visibility Experiment	67
В	Codding of Arduino (microcontroller) for transmitter	72
С	Codding of Arduino (microcontroller) for receiver	75
D	Gantt Chart PSM I	79
E	Gantt Chart PSM II	80

LIST OF ABBREVATIONS

WHO	World Health Organisation	
PDRM	Polis DiRaja Malaysia	
IC	Integrated Circuit	
USB	Universal Serial Bus	
LED	Light Emitting Diode	
Wi-Fi	Wireless Fidelity	
RFID	Radio Frequency Identification	
PNP	Positive-Negative-Positive	
NPN	Negative-Positive-Negative	
PVC	Poly Vinyl Chloride	
MOSFET	Metal-Oxide-Semiconductor Field-Effect Transistor	
WPAN	Wireless Personal Area Network	
UWB	Ultra-Wide Band	
FFD	Full Function Device	
POS	Personal Operating Space	
RFD	Reduce Function Device	
AP	Access Point	
DC	Direct Current	
AC	Alternating Current	
VCC	Verified Concurrent	
MOSI	Master Output Slave Input	

GND Ground

LIST OF SYMBOLS

V	=	Voltage
Ι	=	Current
R	=	Resistance
Р	=	Power
Ω	=	Ohm
F	=	Farad
m	=	metre
А	=	Amplitude
С	=	Capacitance
d	=	Distance
1	=	Length
W	=	Watt
Hz	=	Hertz
V in	=	Input Voltage
V out	=	Output Voltage

CHAPTER 1

INTRODUCTION

1.1 Background

Accidents in Malaysia are the one of main cause of death among the road user. According from the statistic shown in Table 1.1, Malaysia is top five very popular in the ASEAN countries that had the higher motorcycle fatalities. Motorcyclists are the most of the victim of the death and serious injury accident that had always happen nowadays. There are many factors that cause the accident such as driver attitude, weather, and road condition. Based on the statistical from the PDRM, the major death accident happens at night and also when heavy raining condition. Road condition as know are the main factor can cause accident to all user of the road. Road that has hole, unfinished road and, bad condition can cause fatal accident to user. Besides that, road without importance facilities such as separated line, signboard, road reflector and road lamp also can increase the factor of accident (Erhardt, Rice, Troszak, & Zhu, 2016).

Figure 1.1: statistic road traffic death by MIROS.

Figure 1.2: World Health Organisation (WHO) report on Road safety 2015.

No.	ASEAN	population	Registered mot	orcycle	Report fatalities		Road	Motorcycle
	country		(2012)		(2012)		fatalities	fatalities per
							per 100000	10000
			Total	(%)	Total	%	populations	registered
			(million)				1 1	motorcycle
								motoreyete
1.	Brunei	390056	0.01	4	54	11	13.8	4.9
2.	Singapore	4436281	0.14	17	214	48	4.8	7.1
3.	Lao P.D.R.	5859393	0.51	79	608	80	10.4	9.6
4.	Cambodia	14443670	0.13	84	1545	63	10.7	75.1
		0.000	5.01	45	(202			1.6
5.	Malaysia	265/18/9	7.91	4/	6282	58	23.6	4.6
6.	Myanmar	48798212	0.68	65	1638	10	3.4	2.4
7.	Thailand	63883662	16.14	63	12493	70	19.6	5.4
8	Vietnam	87375196	21.78	95	12800	80	14.6	17
0.	v ietilalli	87373190	21.76	95	12800	80	14.0	4.7
9.	Philippines	87375196	2.65	48	1185	37	1.3	1.7
10.	Indonesia	231626978	46.22	73	16548	61	7.1	2.2
Tota	1	571345453	96.17	58	53366	52	-	-
1010	1	5/15-05	20.17	50	55500	52		
			l	1	1	1		

Table 1.1: Death road user in various region in 2012 (Polis DiRaja Malaysia)

In Malaysia, the death of the road user always increasing and growing by years. Although, the Road Safety Index in Malaysia based on the Figure 1.3, the road value decreasing and lower per 10000 vehicles. From the data shows that the accident happens become lower over years because of the improving the safety equipment and developing new system by the vehicle and motorist company. Based on the scientific study by MIROS, road fatality in Malaysia is projected to reach 10,716 in 2020. The fatalities will cause minimum loss to Malaysia that estimate at RM 20.6 Billion in 2020.

Other than that, motorcycle at night are very hard to see from far away distance because the tail light is too dim and not give attraction to the other vehicle from back. From that, the main factor to focus are sighting of the other vehicle when the motorcyclist used the road at low light condition. One of the alternative to reduce the factor of the accident is motorcycle's user can wear the safety reflector vest or at least wearing bright and attracted colour to make sure the other user can spot motorcyclist in low light. Attitude of the motorcyclist in Malaysia are bad because they are always overlook about their own safety while using carriageway. Uncomfortable, unattractive, and difficult to use are some reason that make mostly motorcyclists are not using safety vest. Existing safety vests are not interesting and looking like contractor worker are main reason claim by the user especially by youth and middle age.

Based on government and safety law, all motorcyclist or cyclist must wear helmet (Buckley, 2016). From that, redesign and make improvement to existing product by adding some LED light at the back of the helmet can improve the safety to the motorcyclist. Other than that, adding some blinking light when crash to make sure the other vehicle from back slow down. The accident occurs when the other vehicle could not the motorcycle crash or stop at the middle ways (Buckley, 2016).

	Total death	Road Safety Index in Malaysia						
Year	for Road User in Malaysia	Per 10,000 vehicles	Per 100,000 population	Per Billion VKT (Vehicle Kilometre Travelled)				
1999	5794	5.83	25.5	26.79				
2000	6035	5.69	26.0	26.25				
2001	5849	5.17	25.1	23.93				
2002	5891	4.90	25.3	22.71				
2003	6286	4.90	25.1	22.77				
2004	6228	4.52	24.3	21.10				
2005	6200	4.18	23.7	19.58				
2006	6287	3.98	23.6	18.69				
2007	6282	3.74	23.1	17.60				
2008	6527	3.63	23.5	17.65				
2009	6745	3.55	23.8	17.27				
2010	6872	3.40	23.8	16.21				
2011	6877	3.21	23.71	14.68				
2012	6917	3.04	23.61	13.35				
2013	6915	2.90	23.1	12.19				
2014	6674	2.66	22.0	10.64				
2015	6706	2.55	21.5	9.6				
10			Malaysian Institute of	Road Safety Research road user vehicle, road				

Figure 1.3: Total death and Road Safety Index in Malaysia.

1.2 Problem statement

Motorcycle accident could lead to serious injuries and death. Severe situation of accident mostly happens at night and at heavy raining condition when the sight of the driver decreased and the motorcycles are hard to spot just by tail light from more than sighting distance. Sighting distance in normal are 10-20m, rainy condition less than 10m, heavy rain and storm less than 3m. The most dangerous when motorcycle had a crash on the federal highways, the motorcyclist on the road can crash by following vehicle if they cannot notice the injured men on the road.

The present helmet on today market that only used to protect head and face from injuries are not enough function. Reflected helmet or helmet with bright colour are not interested by young that always want to used simple and dark colour helmet especially black colour. Wearing black and dark colour of the helmet are not recommended because the motorcyclist can be hard to vehicle's driver to spot the rider at night or low light condition. Other than that, the accident that happen after first accident always happen. As known, the following accident can be preventing from happen if the other driver from behind are can see the signal from the accident area to decelerate the vehicles.

1.3 Objective

The objectives of this project are:

- 1) Design of brake light circuit system for motorcycle helmet.
- 2) Prototype development of safety helmet with wireless LED brake light.

1.4 Scope of the project

Scopes of this project are as the following:

- Literature study of the helmet, wireless technology, radio frequency identification (RFID) system, Bluetooth, Wi-Fi, electrical system and microcontroller.
- Design the bracket used safety feature for braking and signal LED light attached on current helmet.
- 3. Design and analysis on electrical system for blinking.
- 4. Fabricate the model and prototype.