EFFECTS OF BORONIZING ON GROOVED METAL SURFACE

JOHNNIE LIEW ZHONG LI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECTS OF BORONIZING ON GROOVED METAL SURFACE

JOHNNIE LIEW ZHONG LI

A report submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering (Structure and Material)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this report entitle "The effect of boronizing on grooved metal surface" is the result of my own research except as cited in the references.

Signature	:
Name of Student	:
Date	:

C Universiti Teknikal Malaysia Melaka

SUPERVISOR'S DECLARATION

I have checked this report and the report can now be submitted to JK-PSM to be delivered back to supervisor and to the 2nd examiner.

Signature	:
Name of Supervisor	:
Date	:

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved father and mother

ABSTRACT

The main purpose of this project was to study the effects of temperature and time on the boride layer thickness of grooved surface. Boronizing is a thermo-chemical surface hardening process that allow the boron atoms diffuse into the metal surface. Different geometry groove surface is expected to affect the boronizing thickness and diffusion rate. The boronizing thickness and effectiveness of diffusion rate on different grooved geometry surfaces were studied. There were nine fabricated specimens in this project. Each of the specimen has four different grooved surfaces which are U-shaped (rectangular), 2mm C-shaped (circular), 4mm C-shaped (circular) and V-shaped (triangular). The specimens were placed in furnace for heating process. The boronizing time were 2 hours, 4 hours and 6 hours wheareas the boronizing temprature were 1123K, 1173K and 1223K. The specimens were cooled down in room temperature. Specimens were grinded and polished. The specimens were characterized for boride layer thickness measurement by using Scanning Electron Microscope and Inverted Optical Microscope. The activation energy of each grooved surface was calculated and analysed. The result and analysis showed that the boronizing thickness of different geometry surfaces were increased with temperature but inconsistent with time.

ABSTRAK

Tujuan utama projek ini dijalankan adalah untuk mengkaji bagaimana suhu dan mempengaruhi ketebalan lapisan borida pada permukaan beralur. masa Penyusukanboronan adalah satu proses pengerasan permukaan termo-kimia yang membolehkan atom boron meresap ke dalam permukaan logam. Perbezaan permukaan geometri alur dijangka memberi kesan kepada ketebalan dan kadar resapan penyusukboronan. Ketebalan penyusukboronan dan keberkesanan kadar resapan pada permukaan geometri beralur yang berbeza telah dikaji. Sembilan spesimen telah disediakan dalam projek ini. Setiap spesimen mempunyai empat permukaan beralur yang berbeza bentuk iaitu; bentuk-U (segi empat), bentuk-C bersaiz 2mm (bulat), bentuk-C bersaiz 4mm (bulat) dan bentuk-V (segi tiga). Semua spesimen telah diletakkan ke dalam dandang untuk proses pemanasan. Masa proses pemanasan adalah 2 jam, 4 jam dan 6 jam. Suhu proses pemanasan pula adalah 1123K, 1173K dan 1123K. Setiap spesimen telah disejukkan dalam suhu bilik. Pencirian spesimen telah dilakukan untuk pengukuran ketebalan lapisan borida dengan menggunakan alat Mikroskop Imbasan Electron dan Mikroskop Optik. Tenaga pengaktifan untuk setiap permukaan beralur telah dikira dan dianalisis. Keputusan dan analisis menunjukkan bahawa ketebalan penyusukboronan pada permukaan geometri yang berbeza telah meningkat dengan suhu tetapi tidak konsisten dengan masa.

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor, Dr. Rafidah Binti Hassan, who has helped me so much by constantly imparting her knowledge and suggestion so that i could complete my PSM project successfully. Besides, sincere thanks to Dr. Mohd Zulkefli Bin Selamat and Dr. Siti Hajar Bt Sheikh for evaluating my final year project and presentation. The suggestions and ideas given were precious for me to finalized this PSM project.

In addition, i would like to thank Faculty of Mechanical Engineering (FKM), Universiti Teknikal Malaysia Melaka (UTeM) for giving me this chances to finish this project and allow me to utilize all the required equipment and machines for this project. Eventually, i would like to acknowledge with much appreciations to my family and friends for thier encouragement and supports throughout the project duration.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	SUPERVISOR'S DECLARATION	iii
	DEDICATION	iv
	ABSTRACT	v
	ABSTRAK	vi
	ACKNOWLEDGEMENT	vii
	TABLE OF CONTENT	viii-x
	LIST OF TABLES	xi
	LIST OF FIGURES	xii-xiv
	LIST OF ABBEREVATION	XV
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xvii

CHAPTER

1.		INTRODUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Objectives	3
	1.4	Scope of Project	3

2.	LITERATURE REVIEW
2.1	Boronizing

2.1.1	Material of Boronizing	6
2.1.2	Type of Boronizing	8
2.1.3	Factor and Reaction of Boronizing	9
2.1.4	Application of Boronizing	11

4 4

	2.2	Advantages and Disadvantages of Boronizing	14
		2.2.1 Advantages	14
		2.2.2 Disadvantages	14
	2.3	Mild Steel	15
3.		METHODOLOGY	16
	3.1	Flow Chart	16
	3.2	Gantt Chart	18
	3.3	Designs of Specimen	19
	3.4	Preparation of Specimens	21
		3.4.1 Material	21
		3.4.2 Apparatus	22
	3.5	Boronzing	26
		3.5.1 Preparation	26
		3.5.2 Procedure	28
	3.6	Characterization	31
4		RESULT AND ANALYSIS	34
	4 1	SEM Cross Sectional View	34
	4.2	Boronizing of U-Shaped (Rectangular)	36
		4.2.1 Boride laver thickness	36
		4.2.2 Activation energy analysis	38
	4.3	Boronizing of 2mm C-Shaped (Circular)	41
		4.3.1 Boride layer thickness	41
		4.3.2 Activation energy analysis	43
	4.4	Boronizing of 4mm C-Shaped (Circular)	45
		4.4.1 Boride layer thickness	45
		4.4.2 Activation energy analysis	47
	4.5	Boronizing of V-Shaped (Triangular)	49
		4.5.1 Boride layer thickness	49
		4.5.2 Activation energy analysis	51

5.	DISCUSSION	53
5.1	Cross Sectional View of Specimens	53
5.2	Boride Layer Thickness	54
5.3	Activation Energy	58
6.	CONCLUSION AND RECOMMENDATION	60
6.1	Conclusion	60
6.2	Recommendation	61
REFERE	NCE	62
APPEND	IX A	64
APPEND	IX B	68
APPENDIX C		71

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Material of boronizing	2
2.1	Constituent phase and microhardness of different substrate	5
2.2	Application of boronizing	12
2.3	Mechanical properties of mild steel	15
4.1	Boride layer thickness of U-shaped at different time and temperature	re 37
4.2	Boride layer thickness of 2mm C-shaped at different time and temperature	42
4.3	Boride layer thickness of 4mm C-shaped at different time and temperature	46
4.4	Boride layer thickness of V-shaped at different time and temperature	re 50
5.1	Boride layer thickness on different grooved surfaces	55
5.2	Activation energy on different grooved surfaces	58

LIST OF FIGURES

FIGURE	TITLE P	AGE
2.1	Boron compound layer of FeB layer and Fe_2B layer	6
2.2	Thickness of boride layer is proportional to temperature and time	11
3.1	20mm×20mm×20mm cube specimen	19
3.2	Design on specimen	20
3.3	Isometric view of four designs	20
3.4	Mild steel rectangular rod	21
3.5	Bandsaw cutting machine	22
3.6	Cutting process of mild steel rod	23
3.7	Y and X axis of 30mm×35mm×35mm mild steel cube	24
3.8	The mild steel is fixed at the base of machine	24
3.9	Nine pieces of 20mm×20mm×20mm mild steel cube	25
3.10	Four designs are molded on the 20mm \times 20mm \times 20mm mild steel cub	e 25
3.11	Acetone and silica gel	26
3.12	Containers and lid	27
3.13	Boronizing powder (Ekabor 1)	27
3.14	Container filled with 10mm boronizing powder	28
3.15	The specimen is placed into the container	28
3.16	The container is fully filled with boronizing powder and covered with lid	29
3.17	Schematic diagram of container	29
3.18	Heating process inside furnace	30
3.19	Containers cool down in room temperature	30
3.20	Schematic diagram for boronizing process	31

C Universiti Teknikal Malaysia Melaka

3.21	Grinding the specimens	32
3.22	Polishing the specimens	32
3.23	Etching	33
3.24	Metallographic analysis	33
4.1	SEM image of (a) U-shaped, (b) 2mm C-shaped, (c) 4mm C-shaped	, 35
	(d) V-shaped	
4.2	SEM cross sectional view of U-shaped at 1123K for 4 hours	36
4.3	The variation of boride layer thickness against boronizing time for	37
	U-shaped	
4.4	Square of boride layer thickness against boronizing time for	38
	U-shaped	
4.5	Natural logarithm of boron growth rate against reciprocal	40
	boronizing temperature for U-shaped	
4.6	SEM cross sectional view of 2mm C-shaped at 1123K for 2 hours	41
4.7	The variation of boride layer thickness against boronizing time for	42
	2mm C-shaped	
4.8	Square of boride layer thickness against boronizing time for	43
	2mm C-shaped	
4.9	Natural logarithm of boron growth rate against reciprocal	44
	boronizing temperature for 2mm C-shaped	
4.10	SEM cross sectional view of 4mm C-shaped at 1123K for 6 hours	45
4.11	The variation of boride layer thickness against boronizing time for	46
	4mm C-shaped	
4.12	Square of boride layer thickness against boronizing time for	47
	4mm C-shaped	
4.13	Natural logarithm of boron growth rate against reciprocal	48
	boronizing temperature for 4mm C-shaped	
4.2	SEM cross sectional view of V-shaped at 1123K for 4 hours	49
4.3	The variation of boride layer thickness against boronizing time for	50
	V-shaped	

4.4	Square of boride layer thickness against boronizing time for	51
	V-shaped	
4.5	Natural logarithm of boron growth rate against reciprocal	52
	boronizing temperature for V-shaped	
5.1	Boride thickness of mild steel (saw-tooth structure)	53
5.2	Single phase formation	54
5.3	Boride layer thickness on different grooved surfaces for 2 hours	56
5.4	Boride layer thickness on different grooved surfaces for 4 hours	57
5.5	Boride layer thickness on different grooved surfaces for 6 hours	57
5.6	Comparison of activation energy on different grooved surface	58

C Universiti Teknikal Malaysia Melaka

LIST OF ABBEREVATIONS

- CVD-5B Chemical Vapor Diffusion process
- CNC Computer Numerical Control

LIST OF SYMBOLS

- x Thickness
- K growth rate constant
- t Time
- Q Activation energy
- T Temperature
- x Horizontal displacement
- y Vertical displacement
- μm Micrometer
- UTeM Universiti Teknikal Malaysia Melaka
- HV Hardness Vickey

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Fabrication	64
В	Heating, grinding and polishing	68
С	Measurement of boride layer thickness (SEM)	71

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

There are numerous surface hardening technologies at the present time. Thermal spray (Sampath, 2015), stellite (Kapoor, 2012) and hard chromium plating (Koorapati *et al.*, 2013) are methods that often used in metal hardening. Boronizing or so called boriding can achieve reliable effect in metal hardening process. Boronizing is a chemical vapor diffusion process (CVD-5B) which allow the boron atoms diffuse into the metal surface of a wide variety of ferrous and non-ferrous materials to form complex boride such as Iron Boride (*FeB*) and Iron(II) Boride (*FeB*₂) (Buijnsters *et al.*, 2003). This process are surrounded by a boron rich substance such as a fine powder or granulated medium before being taken to elevated temperature for a time during which the boron diffuses into the outer layer of the steel. Chemical vapor diffusion frames a hard layer that attains a hardness of close to Rockwell Hardness of around 84 HRC and strong wear-resistant metal mesh on the metal surface (Black and Kohser, 2008).

Practically all the ferrous material can be boronized including titanium (Ti), Nickel (Ni) and Cobalt alloy (Co). Nevertheless, the content of alloy element has direct influence to the diffusion rate. Higher content of alloy element might have longer the diffusion rate. The boride layer thickness is varied according to temperature, treatment duration and material. Boride layer thickness is around 10µm-200µm and it can attain a Vickers Hardness of

between 1600HV to 2000HV (Arun *et al.*, 2013). Boron yielding material can be heated to temperatures between 650 °C to 1000 °C (1200°F-1830°F) during the boronizing process (CVD-5B). Thus, metal that undergo boronizing is immensely wear resistant and last longer than conventional heat treatment such as Nitriding, Carburizing and Nitrocarburizing (Suwattananont, 2004).

Boronizing include ferrous metals, non-ferrous metal and alloys as shown in Table 1.1. Different material has different properties and outcome. Boronizing increases the hardness of ferrous material and temperature resistance by 1400HV-2000HV and 1830°F respectively (Jurci and Hudakova, 2010). Most importantly the boride layer can reduce the coefficient of friction and the resistance of acid. In addition, heat treatment can be fully hardened after boronizing. Treatment can apply to irregular shape and it dimension of diffusion layer are adjustable.

Ferrous Metal	Non-Ferrous Metal	Alloy
Stainless steel	Aluminum	• Hastelloy
• Carbon steel	• Copper	• Nimonic 80A
Wrought Iron	• Silver	• Inconel 625
• Mild steel	• Lead	
Cast iron		

Table 1.1 Material of boronizing (Adapted from Fichtl, 1981)

1.2 PROBLEM STATEMENT

Steel is an important material that comprises many residential and commercial structures. It ranks among the sturdiest construction material and multi shaped. Different geometry on groove surface is expected to affect the boronizing thickness and diffusion rate. In this project, the boronizing thickness and the effectiveness of diffusion rate on different grooved geometry surfaces are studied.

1.3 OBJECTIVES

- 1. To identify how the temperature and time affect the boronizing thickness on the grooved surface by using metallographic analysis.
- 2. To analyses the effect of different grooved geometries on the boronizing diffusion by using activation energy analysis.

1.4 SCOPE OF PROJECT

The scopes of this study focus on:

- 1. The boronizing apparatus design, preparation and process.
- 2. The analysis of diffusion for boride layer thickness by using microscopic observation.
- 3. The analysis of activation energy for boronizing on different grooved geometry surfaces.

CHAPTER 2

LITERATURE REVIEW

2.1 BORONIZING

Boronizing is a thermo-chemical surface hardening process that enables the boron atom diffuse into a pedestal metal to create a compact metallic boride layer on the surface. Boron atom disperse into the metallic lattice of the metal surface by heating in the temperature range of 1200°F- 1830°F during the boronizing process (Suwattananont, 2004). As a consequence, a single-phase boride or poly-phase boride appear and form an interstitial boron compound. The boron compound layer is usually about 20µm-300µm. Different substrates have different microhardness and constituent phases of the boride layer as shown in Table 2.1. Thermo-chemical surface treatments can strengthen the resistance to corrosion and abrasive wear, decreases coefficient of friction and increase the surface hardness. Boronizing can be applied to ferrous metals, non-ferrous metals and alloys. Magnesium alloy and aluminium alloys cannot be boronized because of its low melting point.

Substrate	Constituent phases in the boride layer	Microhardness of layer, HV	
Fo	FeB	1900-2100	
TC .	Fe ₂ B	1800-2000	
Co	СоВ	1850	
0	Co ₂ B	1500-1600	
Co 27.5 Cr	СоВ	2200 (100g)	
0-27.5 01	Co ₂ B	~1550 (100g)	
	Ni ₄ B ₃	1600	
Ni	Ni ₂ B	1500	
	Ni ₃ B	900	
Inco 100	-	1700 (200g)	
Mo	Mo ₂ B	1660	
IVIO	Mo_2B_5	2400-2700	
	W ₂ B	~2700 (overall hardness)	
W	WB		
	W_2B_5		
T;	TiB	2500	
11	TiB ₂	3370	
T: 6 A1 AV	TiB	2000(100g)(overall hardness)	
11-0A1-4 V	TiB ₂	suuu(100g)(overail nardness)	
Nh	Nb ₂ B ₂	2600-3000 (overall hardness)	
INU	NbB_4		
Та	Ta ₂ B	3200-3500	
10	TaB ₂	2500	
7r	ZrB ₂	2300-2600 (overall hardness)	
2.1	Zr_2B		
Re	ReB	2700-2900	

Table 2.1: Constituent phase and microhardness of different substrate(Adapted from Suwattananont, 2004)

2.1.1 Material of boronizing

Borides can be formed on ferrous metal, non-ferrous metal and alloys. There are two separate reactions during the process. The first reaction is a steady process between the boron merge with the base-metal surface and form a hard and thin boride layer. Second reaction is the boron atoms diffused further into the substrate at a faster rate and form a boron compound layer. (Keddam *et al.*, 2015)

Ferrous metal

Most of the ferrous metals can be boronized such as low-alloy steel, tool steel, stainless steel, carbon steel, and mild steel. The boron compound layer will be formed on the ferrous metal surface. The boron compound layer can be either in single phase formation or double phase formation with a certain composition. The single phase consists of Fe_2B layer whereas the double phase formation consists of FeB layer and Fe_2B layer as shown in Figure 2.1. (Yorulmaz, 2007)

Figure 2.1: Boron compound layer consists of FeB layer (dark) and Fe_2B layer (light) (Krastev, 2012)

(C) Universiti Teknikal Malaysia Melaka