

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ENERGY HARVESTING FROM ASPHALT PAVEMENT ROADWAYS VEHICLE-INDUCED STRESSES FOR STREET LIGHTING

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

by

MOHAMAD AZRIN BIN MOHAMAD NOOR B071410136 921001-03-5739

FACULTY OF ENGINEERING TECHNOLOGY 2017

C) Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Energy Harvesting From Asphalt Pavement Roadways Vehicle Induced Stresses For Street Lighting

SESI PENGAJIAN: 2017/18 Semester 2

Saya MOHAMAD AZRIN BIN MOHAMAD NOOR

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan

oleh organisasi/badan di mana penyelidikan dijalankan)

TERHAD

SULIT

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

PT 1036 KAMPUNG WAKAF KING

16200 TUMPAT

KELANTAN

Tarikh: _____

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "ENERGY HARVESTING FROM ASPHALT PAVEMENT ROADWAYS VEHICLE-INDUCED STRESSES FOR STREET LIGHTING" is the results of my own research except as cited in references.

Signature	·	
Name	:	MOHAMAD AZRIN BIN MOHAMAD NOOR
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

(Project Supervisor)

ABSTRAK

Penjelasan di sebalik kajian ini adalah untuk menghasilkan satu potensi kuasa penjanaan dengan penuaian tenaga menggunakan piezoelektrik dari kenderaan di jalan. Pendekatan baru untuk mengumpul sendiri akan digunakan dan diramalkan bahawa yang akan sesuai untuk menghasilkan voltan arus terus, sebagai contoh lampu jalan. Sensor piezoelektrik adalah bahagian yang penting dalam projek ini. Ia berfungsi dengan kuasa yang diletakkan di atasnya sebagai tenaga mekanikal untuk berubah kepada tenaga elektrik. Sistem pengumpulan tenaga piezoelektrik akan diletakkan diantara dua plat segi empat tepat di atas jalanraya. Hasil akan disumbangkan oleh mana-mana kenderaan dimana kenderaan akan memijak pada plat, dengan cara ini akan bergetar dan memberi tenaga untuk sensor piezoelektrik untuk menghasilkan kuasa. Selain itu, kuasa yang dihantar dalam voltan adalah untuk mengecas semula superkapasitor sebagai alat penyimpan sebelum diselaraskan untuk digunakan bagi lampu jalan. Projek ini adalah sangat meyakinkan dan dilengkapi untuk digunakan sebagai salah satu lagi strategi untuk penuaian tenaga yang terlepas untuk membina satu sistem yang boleh menghasilkan kuasa daripada pergerakan menggunakan konsep kesan piezoelektrik. Kelebihan utama dari sudut positif untuk adalah bahawa kuasa akan terus dihantar selagi kenderaan akan terus melalui plat piezoelektrik itu. Tambahan pula, projek ini juga akan mengambil berat kepentingan teknologi hijau seperti yang disyorkan dan lampu jalan boleh dijana dengan sistem ini.

ABSTRACT

The explanation behind the review is to improve one of the potential power generate by the energy harvesting using piezoelectric from the vehicles on roadway. This different approach for gathering itself will be used and foreseen that would suitable for creating a DC voltage harvest, for instance street lighting. The piezoelectric sensor is the essential part in the project. It workings through the force located on it as a mechanical energy to be distorted over into electrical energy. The piezoelectric energy gathering system will be connected among two rectangular plates on the roadway. The results will be funded by any force of vehicle which the vehicle will stepping on the plates, in this way wills give force and then providing the energy to the piezoelectric sensor to harvest power. Besides that, the power delivered in voltage is to recover the supercapacitor as capacity device before adjusted to be used for street lighting. The development of this project is an amazingly convincing and equipped to use as another strategy for the missed energy harvesting to build up a system that can produce power from movement utilizing the concept of piezoelectric transducer. The progressive side to yield as the key advantages is that the power will continue delivered as long as the vehicle will keep pass thorough on plate of the piezoelectric. Furthermore, this project is making the important of the green technology element as recommended and the street lighting can be generated through the system.

DEDICATION

To my beloved father and mother, my family"s, my lecturer and my friends, thank you for the support, knowledge and assistance given to me on finishing this thesis.

ACKNOWLEDGEMENT

First of all, I would like to thanks to Allah S.W.T for the opportunity giving to me for finish and thorough this report "Projek Sarjana Muda 1" with a success after I went through a lot of obstacles with patience. This report would not be completed without the kindness and generosity of my supervisor, Madam Emy Zairah Binti Ahmad. She was very patient with me and willing to guide me in order to accomplish this final year project. Besides that, she gave valuable knowledge and a lot of information in completing this project. Her willingness to help me contributed tremendously to my progress, and she had inspired me greatly with her encouragement and motivation to carry on with my project. Not to forget, 1 would like to thank others lectures and staffs of Faculty Engineering Technology that willing spends their time to help me to solve the problem. A lot of thank for the cooperation and great commitment during complete the project. Moreover, special thank go out to my family and friends, especially my parents. They have shown me the virtue of endurance in the face of extreme adversity. On the other hand, their wonderful support and understanding throughout completing this project. Last but not least, I would like to thank to authority of Universiti Teknikal Malaysia Melaka (UTeM) for providing me with a good and more convenient environment and facilities to complete this project.

TABLE OF CONTENT

Declaration	i
Approval	ii
Abstrak	iii
Abstract	iv
Dedication	v
Acknowledgement	vi
Table of Content	vii
List of Tables	xi
List of Figures	xii
List Abbreviations, Symbols and Nomenclatures	XV

CHAPTER 1: INTRODUCTION

1.0	Introduction	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Scope	5
1.5	Project Significant	6

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction		7
2.1	Piezoe	electric Device	7
2.2	Piezoe	electric Material	9
	2.2.1	Crystal Quartz	11
	2.2.2	Lead – Zirconate – Titanate (PZT) Ceramics	12
	2.2.3	Barium Titanate Ceramics	13
2.3	Applic	cation of the Piezoelectric Effect	13
	2.3.1	Energy Harvesters In Floor	14
	2.3.2	Piezoelectric Tyres	15
	2.3.3	High Voltage and Power Source	16
2.4	Conne	ection of the Piezoelectric Sensor	17

CHAPTER 3: METHODOLOGY

3.0	Introduction	19
3.1	Flowchart	20
3.2	Piezoelectric Development	21
3.3	General Piezoelectric Energy Harvesting System Block diagram	22
3.4	Piezoelectric System Setup	23
	3.5.1 The Energy Harvesting Part Setup	24
	3.5.2 Designing the Prototype of Energy Harvester	26
3.6	The Component Used in Converter Circuit	28

3.6.1	Full Wave Bridge Rectifier	28
3.6.2	Schottky Diode	29
3.6.3	Supercapacitor	30
3.6.4	Capacitor	31
3.6.5	Battery	32
Conclu	ision	33

CHAPTER 4: RESULT

3.7

4.0	Introd	uction	34
4.1	Circui	it Testing and Checking	35
	4.1.1	Full Bridge Rectifier Circuit	35
	4.1.2	Piezoelectric Circuit Testing	36
4.2	Analy (PZT)	sis the Different Diameter of Lead Zirconate Titanate Piezoelectric Material	37
	4.2.1	Comparison between the Different Sizes of PZT Material	37
	4.2.2	Data Measurement between Different Diameters PZT Material	39
	4.2.3	Performance Analysis between Different Diameters PZT Material	40
4.3	Analy Titana	rsis the Quantity Use For Diameter 35mm Lead Zirconate ate (PZT) Piezoelectric Material	42
	4.3.1	Comparison of the Different Quantity Use PZT Material	42
	4.3.2	Data Measurement of the Different Quantity Use PZT Material	46

	4.3.3	Performance Analysis of the Different Quantity Use	
		PZT Material	47
4.4	Discu	ission	50
	4.4.1	Calculation Generating Street Light from the PZT	51
		Piezoelectric Energy Harvesting	

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.0	Introduction	53
5.1	Conclusion	53
5.2	Recommendation	54

REFERRENCES	55
APPENDICES	57

LIST OF TABLES

2.1	Piezoelectric characteristic	10
2.2	Comparison of the properties of the pure PZT and modified-PZT	12
3.1	Piezoelectric parameters	22
4.1	Measurement of the diameter 27mm PZT piezoelectric	39
4.2	Measurement of the diameter 35mm PZT piezoelectric	40
4.3	Measasurement of the 10 piece PZT piezoelectric	47
4.4:	Measasurement of the 10 piece PZT piezoelectric	47
4.5	Data Measurement to achieve street light power 0.9 watt	52

LIST OF FIGURES

2.1	Piezoelectric devices market share overview on applications	8
2.2	How to work piezoelectric	9
2.3	Mechanism of piezoelectric effect in quartz	11
2.4	Example of piezoelectric effect	14
2.5	Special flooring tiles with piezoelectric crytals	15
2.6	Piezoelectric effect in a tyre	16
2.7	The connection of parallel and series for the V-I graph	17
2.8	The combination of series and parallel connection of V-1 graph	18
3.1	The flow chart of the project	20
3.2	The principle of piezoelectric effect	21
3.3	The piezoelectric energy harvesting system block diagram	23
3.4	Piezoelectric road cross – section	24
3.5	Piezoelectric plate place on the roadways	24
3.6	The piezoelectric place between two plate	25
3.7	The condition of plate after pressure given by vehicle	25
3.8	Solidworks software for designing the prototype	26
3.9	Designing the screw of the prototype	26
3.10	Designing the spring of the prototype	27
3.11	Designing the plate of the prototype	27
3.12	Prototype designing by using Solidworks	27

3.13	The full wave bridge rectifier of the system	28
3.14	Symbol of Schottky diode	29
3.15	The supercapacitor of the system	30
3.16	Capacitor 1000uF use in this project	31
3.17	Li-on battery for storage the charge	32
4.1	Example of Lead Zirconate Titanate (PZT) piezoelectric material	34
4.2	Continuity test on Full bridge rectifier circuit	35
4.3	Connection of multimeter to the circuit	36
4.4	Series parallel connection on PZT piezoelectric	36
4.5	27mm diameter PZT piezoelectric	37
4.6	35mm diameter PZT piezoelectric	37
4.7	Multimeter for measure output current and output voltage	38
4.8	Graph of load against output current for different diameter	40
4.9	Graph of load against output voltage for different diameter	41
4.10	Graph of load against power for different diameter	42
4.11	10 piece PZT piezoelectric to be use	43
4.12	20 piece PZT piezoelectric to be use	43
4.13	PZT piezoelectric place on the plate and connect to multimeter	44
4.14	Multimeter reading for load 75-84kg was given	44
4.15	Multimeter reading for load 95-104kg was given	45
4.16	Multimeter reading for load 85-94kg was given	45
4.17	Multimeter reading for load 95-104kg was given	46

4.18	Graph of load against output current for 10 and 20 pieces piezoelectric	48
4.19	Graph of load against output voltage for 10 and 20 pieces piezoelectric	48
4.20	Graph of load against output power for 10 and 20 pieces piezoelectric	49
4.21	Type of LED Street Light to be generate	51
4.21	Street light using LED	51

LIST OF ABREVIATIONS, SYMBOLS AND NOMENCLATURE

mA	-	Mili ampere	
mW	-	Mili Watt	
А	-	Ampere	
Р	-	Power	
Ι	-	Current	
V	-	Voltage	
D1	-	Diode 1	
D2	-	Diode 2	
D3	-	Diode 3	
D4	-	Diode 4	
AC	-	Alternating Current	
DC	-	Direct Current	
CAD	-	Computer-Aided Design	
CAE	-	Computer-Aided Engineering	
BaTiO3	-	Barium Titinate	
PZT	-	Lead Zirconate Titanate	
LED	-	Light Emitting Diode	
RE	-	Renewable Energy	
EMI	-	Electromagnetic Interference	
MEMS	-	Micro Electro Mechanical System	

MM	-	Milimeter
Kg	-	Kilogram
PSM	-	Projek Sarjana Muda

CHAPTER 1 INTRODUCTON

1.0 Introduction

Project background, objectives, scope, problem statement and project significant will be describes detail in this section.

1.1 Background

Nowadays most of entire lifetime is need on electricity. Electricity is one of the usually used approaches of energy. It is important in our day-to-day life because without electricity a lot of works cannot be complete on time. But, now source that can produce electricity are decreasing year by year. So that, renewable energy is used for accommodate the reducing of source electricity. Renewable energy also identified as natural energy sources. It can be used as a part of an extreme long choice of times and without a hesitation to never run out. Currently, several states all over the world are focused on certain choice methods to produce power by recommending out a great deal of new approaches for energy saving because of the desire to cut the reliance of the present unsustainable sources. With all option recommended, piezoelectricity eras occur to be one approach of energy harvesting and can perhaps be formed to a huge scale and can harvest adequate quantity of power. Furthermore, the statistics of vehicles on the road now are increasing quickly. The traffic actuated strains and stresses delivered by the vehicles can be possibly used for the energy harvesting purposes. Harvesting energy from the asphalt pavement roadways as they transform mechanical strain energy into electrical voltage using piezoelectric devices is perfect. In this project, the roads are used to generate electricity with the piezoelectric present. As we know, the total statistics of vehicle on the road are increasing day by day so from this the total of electricity that can be harvest also can increase. This electricity produced can be used for different purpose such as backup for solar street lighting at night.

The planned system involves a certain movement or vibrations on the piezoelectric material to change vibration to electric current. Hence, the system is designed to be applied on the roadways because have vibration when the vehicle through the roadways.

1.2 Problem Statement

As a quickly creating country, Malaysia isn't accepted since the difficulties. Malaysia too has started systems toward limit the harmful ecological effect in the energy source chain. In 1979, the National Energy Policy was figured to guarantee ampleness, security and cost-effectiveness of energy supply, and in addition to advance the proficient usage of energy. This was additionally underlined in the Ninth Malaysia Plan where efforts in the use of sustainable power source assets and effective utilization of energy were additionally advanced. In this manner, Malaysia's significance in motivating the news that ,,dean and green' is the path advancing to making an economy that depends on reasonable preparations inspired by the foundation of the Ministry of Energy, Green Technology and Water .

Energy is the essential requirement for the economic development of our nation. In our everyday life, utilizes energy greater amount for different reason like domestic, industrial and business reason. Electrical energy is creating from energy available in different structures in nature. We can produce power by utilizing renewable and non-renewable sources. These sources are wind, sun, water, fuel, sea and so on. By utilizing such regular conventional sources for the generation of electrical power, it will dirty the environment. Without these sources television can't be on the grounds that no power supply, cell phone could be charge when out of battery, roadways will be dull around evening time since road light can't light on and so on.

By utilizing sustainable power source, it gives numerous potential advantages particularly in human life and condition. Sustainable power source have such a large number of categories. Sunlight is one of the greater part of these sustainable power sources. The straight outcome of differential warming of the Earth's surface which prompts air moving and precipitation shaping as the air is lifted, for example such as Wind and hydroelectric power. Besides that, energy supply from the sunlight is the straight change of sunlight utilizing boards or collectors. Other example which contained in plants like biomass energy is put away the sunlight. With a continuous supply of sustainable power source, the world will have more energy supplies to maintain planet, keep human race, generation and also bring economic benefit to numerous regional region.

Nowadays, many vehicles can we see on the road. However, have we thought about the amount of energy wasted by each vehicle on the road every day. From the vehicle on the road, it can produces energy that can be applied and used as a sustainable power sources. But, the main challenging for this sustainable power sources system is, the budget are greater than non-sustainable power sources and sometimes it contribute to assist air pollution problem. New concepts are being verified by several advanced engineer and researchers from all over the world. Besides that, some example such as hydroelectric power generators can be further solutions that can be explored to be assigning as new assets. So that, the easiest alternative that are cheapest and suitable to eco-system must be consider first.

1.3 Objectives

There are a few goals need to be reached and achieve after complete and finish this final year project due to the following features below:

- i. To investigate a suitable piezoelectric material for generating electrical power those are sustainable, economic and feasible.
- ii. To design piezoelectric free energy harvester.
- iii. To develop the piezoelectric prototype as energy harvester.

1.4 Scope

The energy harvesting from asphalt pavement roadways vehicle-induced stresses is the main scope of this final year project. This project will focus on designing and developing a prototype of energy harvester using piezoelectric material. The piezoelectric material that use in this project must be suitable. Other than that, this project also will focus on generating free energy which is give a lot of advantages to the community. The generating of free energy harvester is for the usage of the street light. Moreover, this project will focus on how the piezoelectric operate as a renewable energy that gives a lot of benefit as green technology. The project will be test and check to ensure to get on the performance of piezoelectric.