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ABSTRACT 

 

 

 

Split Savonius wind turbine is a type of vertical axis wind turbine. Conventional Split 

Savonius wind turbine consists of two blades, advancing and returning. Advancing blade 

produces drag force from main flow while returning blade develops return force from 

opposite direction through a gap called overlap. Two types of torque are generated due to 

rotational motion of these blades against working fluid, positive and negative torque. Main 

objective of present study is to conduct a two dimensional numerical analysis between 

conventional Split Savonius rotor and new configurations in term of net positive torque 

and coefficient of performance (COP). Three new configurations are designed based on 

conventional Split Savonius rotor by keeping end plate diameter, overlap and aspect ratio 

constant. A validation study is performed by comparing torque obtained by numerical 

approach with torque obtained by experimental approach. Validated methodology is 

adopted to simulate new configurations. An improvement in COP ranging from 0.78% to 

1.33% for different inlet velocities is achieved for new configuration Design 1. Other 

designs show negative improvement.   
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ABSTRAK 

 

 

 

Turbin angin Split Savonius adalah sejenis turbin angin vertikal. Turbin angin Split 

Savonius yang asas terdiri daripada dua jenis bilah iaitu bilah mara dan bilah kembali. 

Bilah mara menghasilkan daya seret dari aliran utama manakala bilah kembali 

menghasilkan daya kembali dari arah bertentangan melalui jurang yang dikenali sebagai 

pertindihan. Dua jenis daya kilas dijana daripada pergerakan putaran antara bilah-bilah 

ini dan bendalir yang digunakan iaitu daya kilas positif dan negatif. Objektif utama kajian 

ini adalah untuk mengendalikan analisa numerik dua dimensi antara pemutar asas Split 

Savonius dan konfigurasi baru dari segi daya kilas positif bersih dan pekali prestasi. Tiga 

jenis konfigurasi baru direka berdasarkan pemutar asas Split Savonius dengan 

mengekalkan diameter plat, pertindihan dan nisbah aspek malar. Kajian pensahihan 

dilaksanakan dengan membandingkan nilai daya kilas yang diperolehi daripada kaedah 

numerik dengan nilai daya kilas yang diperolehi daripada kaedah eksperimentasi. 

Metodologi yang sahih tersebut digunakan bagi mensimulasi konfigurasi baru. 

Peningkatan pekali prestasi antara nilai 0.78% sehingga 1.33% telah dicapai bagi halaju 

masuk yang berbeza-beza untuk konfigurasi 1. Konfigurasi-konfigurasi lain tidak 

menunjukkan sebarang peningkatan.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

 

 The Sun radiates 1.74×1017W energy to the Earth per hour and approximately 2% 

of this energy is converted into wind energy (Energy and Environment, 2016). Wind has 

been used as a source of energy as early as 5000 BC when wind energy is used to propel 

boats along Nile River (Wind Energy Foundation, 2016). By the end of 2015, 432.9GW 

wind power capacity has been installed globally led by Germany and United States of 

America (Global Wind Energy Council, 2016). This improvement has been possible with 

the use of wind turbine technology. Wind turbine is used to generate electricity by 

converting kinetic energy of the wind into mechanical energy which is used to turn the 

rotor and power up the generator, thus, generating electricity. 

 

 There are two types of wind turbine; horizontal axis wind turbine (HAWT) and 

vertical axis wind turbine (VAWT). These wind turbines can operate on either lift force, 

drag force or the combination of both. HAWT dominates the wind industry due to its 

efficiency compared to VAWT (Vertical Axis Wind Turbines vs Horizontal Axis Wind 

Turbines, 2009). HAWT is capable of achieving efficiency up to 50% whilst VAWT is 

only able to achieve efficiency approximately 15% (John Patrick Abraham, 2012). 

However, there are two types of VAWT which have the potential of being developed; 

Savonius wind turbine and Darrieus wind turbine (Figure 1.1) (Barnard, 2014). 

Conventional Savonius wind turbine (Figure 1.2) operates on drag force whereas Split 

Savonius wind turbine (Figure 1.3) operates on the combination of lift and drag forces 

(Fluid Mechanics: Fundamentals and Applications, 2010). Savonius wind turbine has low 
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efficiency due to lack of body force and surface force (Bagus Wahyudi, Sudjito 

Soeparmanb, H W M Hoeijmakersc, 2014). However, Savonius wind turbine is built due to 

its uncomplicated and low cost construction (Bagus Wahyudi, Sudjito Soeparmanb, H W 

M Hoeijmakersc, 2014) (Abdul Qadir Versiani, 2015). It is a slow rotating machine with 

higher torque compared to Darrieus wind turbine. Savonius rotor is not affected by the 

direction of wind thus suitable for non-uniform wind areas (Bagus Wahyudi, Sudjito 

Soeparmanb, H W M Hoeijmakersc, 2014) (Abdul Qadir Versiani, 2015). It is normally 

used for small water pumping applications.  

 

 
Figure1.1 Darrieus Wind Turbine. (Source: McAdam, 2016) 

 

 

 
Figure 1.2 Conventional Savonius Wind Turbine. (Source: REUK.co.uk, Wenlong Tian, 

2015) 
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Figure 1.3 Split Savonius Wind Turbine. (Source: Frederikus Wenehenubuna, Andy 

Saputraa, Hadi Sutanto, 2014) 

 

 Basic Split Savonius wind turbine consists of two blades; advance blade and return 

blade. Advance blade produces drag force from main flow whereas return blade develops 

return force from opposite direction through a gap between blades called overlap. Overlap 

serves as an entry of outflow from advance blade to return blade. Overlap is the main 

difference between Conventional Savonius wind turbine and Split Savonius wind turbine 

(Bagus Wahyudi, Sudjito Soeparmanb, H W M Hoeijmakersc, 2014). There are few 

modification done to improve Split Savonius rotor in previous researches such as number 

of blades, blades twist angle, number of stages, overlap ratio, aspect ratio and end plates 

presence.  

 

 

1.2 PROBLEM STATEMENT 

 

 Savonius wind turbine is a type of vertical axis wind turbine. Vertical axis wind 

turbine is known for its low efficiency compared to horizontal axis wind turbine. However, 

Savonius wind turbine possesses few advantages over horizontal axis wind turbine. 

Savonius wind turbine is used in non-uniform wind areas due to its independency towards 

direction of wind flow. It has low angular velocity compared to horizontal axis wind 

turbine but it is capable of generating higher torque. Therefore, in this study, rotor 

modification will be made to conventional Split Savonius rotor to increase its torque.  
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1.3 OBJECTIVE 

 

The research objective is: 

 

1. To conduct a two dimensional comparative study between conventional Split 

Savonius rotor and new configured Split Savonius rotors by performing CFD 

analysis.  

 

 

1.4 SCOPE OF PROJECT 

 

The scopes of research are: 

 

1. Wind velocities used are 6.0, 8.23, and 10.17 m/s.  

2. Modification is made to conventional Split Savonius rotor by changing the 

rotor shape to obtain higher torque. 

3. Three new rotor configurations are drawn by using commercial software, 

ANSYS DesignModeler. 

4. CFD simulation is performed by using commercial CFD software, ANSYS 

Fluent to study moment coefficient at the blades.  

5. Torque and coefficient of performance are calculated by using these values.  
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CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 

2.1  ENERGY IN THE WIND 

 

 According to Albert Betz in 1919, any wind turbine regardless the design, is only 

capable of converting not more than 59.3% of wind kinetic energy into mechanical energy. 

Betz limit is also known as the theoretical maximum power efficiency of wind turbines. 

Power efficiency of wind turbine can be measured by using power coefficient equation, 

𝐶𝑂𝑃. 𝐶𝑂𝑃 is the ratio between mechanical power and power available in the wind. 

 

𝐶𝑂𝑃 = 𝑃𝑠

𝑃
                                    (2.1) 

 

Where  𝑃𝑠 , is the mechanical power and 𝑃 is the power available in the wind. Mechanical 

power of wind turbine can be calculated by using equation (2.2). 

 

     𝑃𝑠 = Tω     (2.2) 

 

Where T is the mechanical torque (Nm) and ω is the angular speed (rad/s). In the present 

study, brake torque is considered as mechanical torque for above equation. Angular speed 

can be calculated from equation (2.3).  

 

     ω = 2𝜋𝑁

60
    (2.3) 

 

Where N is the frequency of rotation for the rotor, (rpm). 
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Power available in the wind can be calculated by using equation (2.4). 

 

     𝑃 = 1
2
ρA𝑉3    (2.4) 

 

Where ρ is the air density (kg/𝑚3), A is the projected area of the rotor (𝑚2) and V is the 

wind speed (m/s).  

 

 

2.2  WIND TURBINE 

 

 Bagus wahyudi et al. in his study states that Savonius wind turbine is a pure drag 

type wind turbine which highly influenced by density, blade sweep area and fluid velocity 

(Bagus Wahyudi, Sudjito Soeparmanb, H W M Hoeijmakersc, 2014). However, according 

to Abdullah Al-Faruk et al., it is observed that at low angle of attack, lift force contributes 

to the overall torque generation which then concluded Savonius wind turbine is a 

combination of drag and lift forces type of wind turbine (Abdullah Al-Faruk, 2016). As 

mentioned earlier VAWT has lower efficiency compared to HAWT. Regardless its low 

efficiency, VAWT is used due to several advantages. VAWT is smaller than HAWT thus 

requires smaller footprint compared to HAWT. Due to this advantage, some of VAWT 

application involves other building in which VAWT is mounted to such as cellular 

communication tower (John Patrick Abraham, 2012). VAWT does not need control system 

to search for wind direction as it is able to rotate regardless the flow direction. VAWT is 

able to start rotate at lower wind speed compared to HAWT thus it is suitable to be used 

for power generation at lower wind speed area. VAWT rotates slower than HAWT 

resulting in higher mechanical power compared to HAWT.   

 

 Figure 2.1 shows the airflow around Savonius rotor. In this figure, rotor is rotated 

clockwise. Air flow patterns are indicated by streamlines shown. As the inlet is located at 

bottom side of the figure, the flow is directed upward. Two torques generated by the flow; 

primary and opposing. Primary torque caused rotation in the direction of wind flow whilst 

opposing torque caused rotation to slow down. Therefore, in order to improve the rotor, 

primary torque must be higher than opposing torque.  
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Figure 2.1 Streamlines, primary and opposing torques. (Source: John Patrick Abraham, 

2012) 

 

 

2.3  OPTIMIZATION OF SAVONIUS WIND TURBINE 

 

  Number of researches has been conducted to increase the efficiency of Savonius 

wind turbine. Mohammed Hadi Ali states that performance of Savonius wind turbine is 

related to these three principles; speed of blade tip is directly proportional to speed of the 

wind, maximum torque is proportional to the speed of wind squared and maximum power 

is proportional to the speed of wind cubed (Ali, 2013). Optimization of Savonius wind 

turbine is measured by using 𝐶𝑂𝑃 equation. Thus, researchers normally compared their 

new configurations with conventional torque which is then used to calculate 𝐶𝑂𝑃. 

 

 

2.3.1 BLADE DESIGN 

 

 Bagus Wahyudi et al. in his study designed a new configuration of blades by 

adding tandem blades and deflectors to the rotor (Bagus Wahyudi, Sudjito Soeparmanb, H 

W M Hoeijmakersc, 2014). Tandem blades are used to increase the projected area of the 

rotor which will improve the surface force thus, increase the force acting on return blade 
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and improve balancing of the couple forces. Previously, three models with different 

tandem blades configuration were simulated by CFD; Overlap TBS, Symmetrically TBS 

and Convergent TBS (B Wahyudi, 2013). By using maximum pressure gap between 

upstream and downstream equation, it is determined that Convergent TBS is capable of 

generating more power compared to the others. Water is used as working fluid in this study 

to increase the fluid momentum force acting on the blade. Response surface method and 

CFD show the variation in velocity and pressure near blades region. Pressure gap occurs 

across the rotor from upstream to downstream area indicate that power extracted by the 

rotor is causing it to rotate. Static pressure on convex side of both blades is lower than 

those on concave side due to high water velocity flowing over the convex side which 

produce torque to rotate the blades. Drag force acting on the return blade is increased due 

to compartment gap narrowing in tandem blades adjacent to the axis which increase 

pressure dynamics on the concave blades. It is observed that with the use of both deflector 

and tandem blade, velocity ratio on narrow gap and torque produced by drag force on 

return blade are improved compared to the configuration with tandem blades alone.  

Deflector caused positive static moment at any tip diameter for both angle deflector 

designs; radial and tangential whilst configuration without deflector shows the presence of 

negative values in some range.  

 

 Abdul Qadir Versiani et al. claimed in his study that twisted blade has lower 

negative projected area compared to conventional blade (Abdul Qadir Versiani, 2015). 

Twisted design caused the air flow to be swept inward and outward, creating a couple 

which ensure smooth rotation with higher rotational velocity and torque. An increase in 

velocity drop is shown from the inlet to the outlet via static and rotational analysis whilst 

static pressure contour shows that static pressure decreases from upstream to downstream 

area of the rotor which produces drag force and torque for the rotor. It is proven in his 

study that the optimum twisted angle is 40° as shown in Figure 2.2 where maximum 

velocity drop across the blade is achieved. It shows that most kinetic energy of the wind is 

successfully converted into mechanical energy. A study on twisted Savonius rotor is also 

performed by A. Reza Hassanzadeh et al. to study the comparison between conventional 

and Helical Savonius Marine Current Turbine (A. Reza Hassanzadeh, 2013). This study is 

using water as working fluid. Helical is chosen because twisted rotor has better self-start 

ability. It rotates smoothly but with high RPM at low flow velocity. Twisted rotor also has 

higher average power output and operates steadily. CFD is used to simulate helical rotor as 




