FORCE EFFECTS ON LAMINATED RUBBER-METAL SPRING USING TRANSMISSIBILITY TEST NUMERICAL APPROACH

MUHAMMAD IHSAN BIN MADZUKI

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

DECLARATION

I declare that this project entitled "Force Effect on Laminated Rubber Metal Spring Using Transmissibility Test Numerical Approach" is the result of my own work excepts as cited in the references.

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Plant & Maintenance).

DEDICATION

To my beloved mother, father, wife, siblings and all my friends.

ABSTRACT

The purpose of this project is to study and analyses the laminated rubber-metal spring model by using the finite element analysis software. The model is drawn part by part and assembly by using the CATIA solid modelling software. By using the ANSYS FEA finite element analysis software, the natural rubber rod is analyses with 5 different type of natural rubber rod. This 5-different type of the natural rubber rod that been drawn and be analyses. The 5 different types of the natural rubber rod are the nature rubber rod without embedded plate, the nature rubber rod with 1 embedded aluminium alloy plate, the nature rubber rod with 2 embedded aluminium alloy plate, the nature rubber rod with 3 embedded aluminium alloy plate and the last one is the nature rubber rod with 4 embedded aluminium alloy plate. Every type of the natural rubber rod was analysed by using the 5-different force which is 200N, 400N, 600N, 800N, and 1000N. The result and data of the analysis then is show and represent based on the graph and table. By referring the result, the comparison of the value of the modal analysis, stress frequency response and the deformation frequency response of each type of the natural rubber rod is done. As the summary of the project, the number of embedded plate on the natural rubber rod will affect the result of the modal analysis, stress frequency response and the deformation frequency response.

ABSTRAK

Tujuan project ini adalah untuk mengkaji dan menganalisis model model spring getah berlapis dengan logam dengan menggunakan perisian analisis. Model tersebut telah dilukis bahagian demi bahagian dan digabung dengan menggunakan perisian permodelan pepejal CATIA. 5 jenis rod getah asli telah dianalisis dengan menggunakan perisian ANSYS FEA. 5 jenis rod getah asli tersebut yang telah sediakan telah dianalisis. 5 jenis rod getah asli tersebut ialah rod getah asli tanpa plat aluminium aloi yg tertanam di dalamnya, rod getah asli dengan 1 plate aluminium aloi tertanam di dalamnya, rod getah asli dengan 2 plate aluminium aloi tertanam di dalamnya, rod getah asli dengan 3 plate aluminium aloi tertanam di dalamnya, dan rod getah asli dengan 4 plate aluminium aloi tertanam di dalamnya. Setiap jenis rod getah asli telah dianalisis dengan menggunakan daya 5 yang berbeza iaitu 200N, 400N, 600N, 800N, dan 1000N. Keputusan dan data dari analisis telah di paparkan dalam bentuk graf dan jadual. Merujuk kepada keputusan dan data yang diperolihi, perbandingan diantara setiap analisis telah dilakukan. Sebagai penutup untuk project ini, ternyata bilangan plate aluminium aloi yang tertanam di dalam rod getah asli akan memberi kesan kepada analisis.

ACKNOWLEDGEMENT

Bissmillahirrahmanirrahim,

Alhamdulillah. Thanks to Allah SWT, who with His willing give me the opportunity to complete this Final Year Report (FYP) This project report was prepared for Faculty of Mechanical Engineering (FKM), Universiti Teknikal Malaysia Melaka (UTeM), basically for student in 4th year to complete the requirement for student undergraduate program that leads to the degree of Bachelor of Engineering in Mechanical. This report is based on the methods given by the university.

First of all, I would like to express my deepest appreciation to my parents, Mr. Madzuki Bin Ismail and Madam. Rokiah Binti Ahmad for their supports and encouragement throughout this endeavour. Special thanks to my supervisor, Dr. Mohd Azli Bin Salim for his invaluable guidance, mentorship, wisdom and professionalism for my academic pursuit. Dr. Mohd Azli Bin Salim has been an excellent mentor and has provided unfailing support throughout my final year project conduction. Last but not least, to all my lecturers and dearest friends who involved in this project work, I would like to extend million thanks to them for their patience and kind advice to make this project work possible. Thank you.

CONTENTS

CHAPTER			CONTENT	PAGE
	DEC	LARATI	ON	ii
	APP	ROVAL		iii
	DED	ICATIO	Ň	iv
	ABS	TRACT		v
	ABS	TRAK		vi
	ACK	NOWLE	DGEMENT	vii
	ТАВ	LE OF C	ONTENTS	viii
Klein	LIST	OF FIG	URES	xii
ш Е	LIST	OF TAB	BLES	xix
1	LIST	OF ABE	BREVIATIONS	xxiv
	LIST	OF SYN	TBOLS	XXV
CHAPTER 1	ملا INT	RODUCT	اونيومرسيتي تيڪنيڪا و	1
U	NIVE	Backgro	MALAYSIA MELAKA	1
	1.2	Problem	n Statement	2
	1.3	Objecti	ve	3
	1.4	Scope c	of Project	3
	1.5	Report	Outline	3
CHAPTER 2	LITI	ERATUR	E REVIEW	5
	2.1	Introdu	ction	5
	2.2	Transm	issibility of a Laminated Rubber-Metal	5
		2.2.1	Lumped Parameter Model	6
		2.2.2	Result for Different Number of Layer	9
			Embedded	

2.3	Dyna	mic Analysis of Laminated Rubber-Metal	11
Sprii	ng Using	Finite Element Method	
	2.3.1	Isolator Model	12
	2.3.2	Material Properties for Isolator Model	13
	2.3.3	Finite Element Analysis Method	13
	2.3.4	Comparison for Finite Element	14
		Analysis Result	
2.4	Paran	neter Assessment on Laminated Rubber-	14
Meta	al Spring		
	2.4.1	Parameter Selection	15
	2.4.2	Analysis Result Laminated Rubber	16
	LAYSIA	Metal Spring	
2.5	Finite	Element Analysis for Leaf Spring	16
	2.5.1	Harmonic Response Analysis	17
₽ 2.6	Modal	Analysis Study	17
FIEL	2.6.1	Vibration Mode Shape Frequency and	17
* JAIN	in .	Natural Frequency	
shl.		16. Circustial	
CHAPTER 3 RES	EARCH	AND METHODOLOGY	19
UN ^{3.1} E	Introd	uction NIKAL MALAYSIA MELAKA	19
3.2	Overa	ll Flowchart	20
3.3	Data C	Collection	21
3.4	Comp	uter Aided Design	22
	3.4.1	Step in 3-D Modelling by CATIA	23
	3.4.2	Step for Design a Part by CATIA	26
	3.4.3	Laminated Rubber – Metal Spring	29
		Component	
3.5	Finite-	Element Analysis	33
	3.5.1	Modal Analysis on ANSYS Software	34
	3.5.2	Harmonic Response Analysis on ANSYS	42
		Software	

CHAPTER 4	RESU	LT AN	D DISCUSSION	45
	4.1	Analys	is of Nature Rubber Rod by ANSYS Finite	45
	Elemer	nt Analy	ysis	
	4.2	Modal	Analysis	46
		4.2.1	Modal Analysis of the Type 1 Nature Rubber	46
			Rod	
		4.2.2	Modal Analysis of the Type 2 Nature Rubber	49
			Rod	
		4.2.3	Modal Analysis of the Type 3 Nature Rubber	51
			Rod	
		4.2.4	Modal Analysis of the Type 4 Nature Rubber	53
	abl	AYSIA	Rod	
6	P. Mar	4.2.5	Modal Analysis of the Type 5 Nature Rubber	55
Kulth			Rod	
TE	4.3	Freque	nev Response of the Nature Rubber Rod	57
FIS		4.3.1	Stress Frequency Response of the Nature	57
	"AINO	-	Rubber Rod with 1 Embedded Aluminium	
اد	Nol		Alloy	
_	/~ (4.3.2	Deformation Frequency Response of Nature	64
UN	IVER	SITI	Rubber Rod with 1 Embedded Aluminium (A	
			Alloy	
		4.3.3	Stress Frequency Response of the Nature	70
			Rubber Rod with 2 Embedded Aluminium	
			Alloy	
		4.3.4	Deformation Frequency Response of Nature	76
			Rubber Rod with 2 Embedded Aluminium	
			Alloy	
		4.3.5	Stress Frequency Response of the Nature	82
			Rubber Rod with 3 Embedded Aluminium	
			Alloy	

	4.3.6	Deformation Frequency Response of Nature	88
		Rubber Rod with 3 Embedded Aluminium	
		Alloy	
	4.3.7	Stress Frequency Response of the Nature	94
		Rubber Rod with 4 Embedded Aluminium	
		Alloy	
	4.3.8	Deformation Frequency Response of Nature	100
		Rubber Rod with 4 Embedded Aluminium	
		Alloy	
4.4	Summ	nary	106

LIST OF FIGURES

PAGE

TITLE

FIGURE

2.1	A Bulging Effect in a Rubber Isolator Due to a Large Preload	6
2.2	The Embedded Plate in the Rubber Rod	7
2.3	(a)Mass-Damper-Spring of a LR-MS Model (b) Free-Body-	8
2.4	Diagram for LR-MS Model Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=1	10
2.5	Transmissibility of LR-MS from Lumped Parameter Model	10
2.6	with Numbers of Layers of Plate N=2 Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=5	11
2.7	LR-MS with 1 Embedded Plate Assembly	13
2.8	Vibration Mode and Natural Frequency for a Plate	18
3.1	Part Design Option	23
3.2	Sketching Option	24
3.3	Assembly Design Option	24
3.4	Assembly Design Part Component	25

3.5	Drawing Save Format Option	25
3.6	Part Design Option	26
3.7	x-y Plane Property Option	26
3.8	Profile Option and Constrain Definition for Sketch	27
3.9	Exit Workbench Property Option	27
3.10	Pad Definition Property Option	28
3.11	Model of the Nature Rubber Rod	28
3.12	LR-MS Model Assembly	32
3.13	Engineering Data Option	35
3.14	Connection between Engineering Data and Modal Analysis	35
3.15	Set-Up New Material for the Nature Rubber	36
3.16	Physical Properties for the New Material	36
3.17	Isotropic Elasticity Toolbox Option	37
3.18	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Tensile Yield Strength Toolbox Option	37
3.19	Engineering Data for General Material Option	38
3.20	Geometry Browse Option	38
3.21	Material for Geometry Part Option	39
3.22	Generate Mesh Option	39
3.23	Fix Support for the Model Option	40
3.24	Mode Option	40

3.25	Create Mode Shape Result Option	41
3.26	Result for the Mode Option	41
3.27	Connection Between Modal and Harmonic Analysis Option	42
3.28	Input Force Option	42
3.29	Insert the Frequency Response for Deformation Option	43
3.30	Frequency Range for the Model Option	43
3.31	Solve Option to Run the Analysis	44
4.1	Result of Analysis	45
4.2	Assembly Type 1	46
4.3	Assembly Type 2	49
4.4	Assembly Type 3	51
4.5	Assembly Type 4	53
4.6	اويبوم سيتي تيڪنيڪل مليو Assembly Type 5	55
4.7	Graph Stress Vs Frequency Response for Force 200 N of 1 A Embedded plate	58
4.8	Graph Stress Vs Frequency Response for Force 400 N of 1 Embedded plate	59
4.9	Graph Stress Vs Frequency Response for Force 600 N of 1 Embedded plate	60
4.10	Graph Stress Vs Frequency Response for Force 800 N of 1 Embedded plate	61
4.11	Graph Stress Vs Frequency Response for Force 1000 N of 1 Embedded plate	62

4.12	Result of Five Different Data with Different Value of Force Due to the 1 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	63
4.13	Graph Deformation Vs Frequency Response for Force 200 N of 1 Embedded plate	64
4.14	Graph Deformation Vs Frequency Response for Force 400 N of 1 Embedded plate	65
4.15	Graph Deformation Vs Frequency Response for Force 600 N of 1 Embedded plate	66
4.16	Graph Deformation Vs Frequency Response for Force 800 N of 1 Embedded plate	67
4.17	Graph Deformation Vs Frequency Response for Force 1000 N of 1 Embedded plate	68
4.18	Result of Five Different Data with Different Value of Force Due to the 1 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	69
4.19	Graph Stress Vs Frequency Response for Force 200 N of 2 Embedded plate	70
4.20	Graph Stress Vs Frequency Response for Force 400 N of 2 Embedded plate	71
4.21	Graph Stress Vs Frequency Response for Force 600 N of 2 Embedded plate	72
4.22	Graph Stress Vs Frequency Response for Force 800 N of 2 Embedded plate	73
4.23	Graph Stress Vs Frequency Response for Force 1000 N of 2 Embedded plate	74
4.24	Result of Five Different Data with Different Value of Force Due to the 2 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	75
4.25	Graph Deformation Vs Frequency Response for Force 200 N of 2 Embedded plate	76

4.26	Graph Deformation Vs Frequency Response for Force 400 N of 2 Embedded plate	77
4.27	Graph Deformation Vs Frequency Response for Force 600 N of 2 Embedded plate	78
4.28	Graph Deformation Vs Frequency Response for Force 800 N of 2 Embedded plate	79
4.29	Graph Deformation Vs Frequency Response for Force 1000 N of 2 Embedded plate	80
4.30	Result of Five Different Data with Different Value of Force Due to the 2 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	81
4.31	Graph Stress Vs Frequency Response for Force 200 N of 3 Embedded plate	82
4.32	Graph Stress Vs Frequency Response for Force 400 N of 3 Embedded plate	83
4.33	Graph Stress Vs Frequency Response for Force 600 N of 3 Embedded plate	84
4.34	Graph Stress Vs Frequency Response for Force 800 N of 3 Embedded plate	85
4.35	Graph Stress Vs Frequency Response for Force 1000 N of 3 Embedded plate	86
4.36	Result of Five Different Data with Different Value of Force Due to the 3 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	87
4.37	Graph Deformation Vs Frequency Response for Force 200 N of 3 Embedded plate	88
4.38	Graph Deformation Vs Frequency Response for Force 400 N of 3 Embedded plate	89
4.39	Graph Deformation Vs Frequency Response for Force 600 N of 3 Embedded plate	90

4.40	Graph Deformation Vs Frequency Response for Force 800 N of 3 Embedded plate	91
4.41	Graph Deformation Vs Frequency Response for Force 1000 N of 3 Embedded plate	92
4.42	Result of Five Different Data with Different Value of Force Due to the 3 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	93
4.43	Graph Stress Vs Frequency Response for Force 200 N of 4 Embedded plate	94
4.44	Graph Stress Vs Frequency Response for Force 400 N of 4 Embedded plate	95
4.45	Graph Stress Vs Frequency Response for Force 600 N of 4 Embedded plate	96
4.46	Graph Stress Vs Frequency Response for Force 800 N of 4 Embedded plate	97
4.47	Graph Stress Vs Frequency Response for Force 1000 N of 4 Embedded plate	98
4.48	Result of Five Different Data with Different Value of Force Due to the 4 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	99
4.49	Graph Deformation Vs Frequency Response for Force 200 N of 4 Embedded plate	100
4.50	Graph Deformation Vs Frequency Response for Force 400 N of 4 Embedded plate	101
4.51	Graph Deformation Vs Frequency Response for Force 600 N of 4 Embedded plate	102
4.52	Graph Deformation Vs Frequency Response for Force 800 N of 4 Embedded plate	103
4.53	Graph Deformation Vs Frequency Response for Force 1000 N of 4 Embedded plate	104

- 4.54 Result of Five Different Data with Different Value of Force 105 Due to the 4 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response
- 4.55 Combination of Graph of the Different Types of Modality with 106 the Frequency
- 4.56 a) Graph of Comparison for the Stress Frequency Response for 109
 200N (b) Graph of Comparison for the Deformation Frequency
 Response for 200N

LIST OF TABLES

3.1	Material Properties of Natural Rubber for Analysis	21
3.2	Material Properties of Aluminium Alloy for Analysis	21
3.3	Component of the LR-MS Model	29
4.1	Result of the Modal Analysis for Type 1	47
4.2	Result of the Modal Analysis for Type 2	49
4.3	Result of the Modal Analysis for Type 3	51
4.4	Result of the Modal Analysis for Type 4	53
4.5	Result of the Modal Analysis for Type 5	55
4.6	Result of the Frequency Response Due Stress for Force 200 N of 1 Embedded Plate	57
4.7	Result of the Frequency Response Due Stress for Force 400 N of 1 Embedded Plate	59
4.8	Result of the Frequency Response Due Stress for Force 600 N of 1 Embedded Plate	60
4.9	Result of the Frequency Response Due Stress for Force 800 N of 1 Embedded Plate	61

4.10	Result of the Frequency Response Due Stress for Force 1000 N of 1 Embedded Plate	62
4.11	Result of the Frequency Response Due Deformation for Force 200 N of 1 Embedded Plate	64
4.12	Result of the Frequency Response Due Deformation for Force 400 N of 1 Embedded Plate	65
4.13	Result of the Frequency Response Due Deformation for Force 600 N of 1 Embedded Plate	66
4.14	Result of the Frequency Response Due Deformation for Force 800 N of 1 Embedded Plate	67
4.15	Result of the Frequency Response Due Deformation for Force 1000 N of 1 Embedded Plate	68
4.16	Result of the Frequency Response Due Stress for Force 200 N of 2 Embedded Plate	70
4.17	Result of the Frequency Response Due Stress for Force 400 N of 2 Embedded Plate	71
4.18	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Result of the Frequency Response Due Stress for Force 600 N of 2 Embedded Plate	72
4.19	Result of the Frequency Response Due Stress for Force 800 N of 2 Embedded Plate	73
4.20	Result of the Frequency Response Due Stress for Force 1000 N of 2 Embedded Plate	74
4.21	Result of the Frequency Response Due Deformation for Force 200 N of 2 Embedded Plate	76

4.22	Result of the Frequency Response Due Deformation for Force 400 N of 2 Embedded Plate	77
4.23	Result of the Frequency Response Due Deformation for Force 600 N of 2 Embedded Plate	78
4.24	Result of the Frequency Response Due Deformation for Force 800 N of 2 Embedded Plate	79
4.25	Result of the Frequency Response Due Deformation for Force 1000 N of 2 Embedded Plate	80
4.26	Result of the Frequency Response Due Stress for Force 200 N of 3 Embedded Plate	82
4.27	Result of the Frequency Response Due Stress for Force 400 N of 3 Embedded Plate	83
4.28	Result of the Frequency Response Due Stress for Force 600 N of 3 Embedded Plate	84
4.29	Result of the Frequency Response Due Stress for Force 800 N of 3 Embedded Plate	85
4.30	Result of the Frequency Response Due Stress for Force 1000 N of 3 Embedded Plate	86
4.31	Result of the Frequency Response Due Deformation for Force 200 N of 3 Embedded Plate	88
4.32	Result of the Frequency Response Due Deformation for Force 400 N of 3 Embedded Plate	89
4.33	Result of the Frequency Response Due Deformation for Force 600 N of 3 Embedded Plate	90

4.34	Result of the Frequency Response Due Deformation for Force 800 N of 3 Embedded Plate	91
4.35	Result of the Frequency Response Due Deformation for Force 1000 N of 3 Embedded Plate	92
4.36	Result of the Frequency Response Due Stress for Force 200 N of 4 Embedded Plate	94
4.37	Result of the Frequency Response Due Stress for Force 400 N of 4 Embedded Plate	95
4.38	Result of the Frequency Response Due Stress for Force 600 N of 4 Embedded Plate	96
4.39	Result of the Frequency Response Due Stress for Force 800 N of 4 Embedded Plate	97
4.40	Result of the Frequency Response Due Stress for Force 1000 N of 4 Embedded Plate	98
4.41	Result of the Frequency Response Due Deformation for Force 200 N of 4 Embedded Plate	100
4.42	Result of the Frequency Response Due Deformation for Force 400 N of 4 Embedded Plate	101
4.43	Result of the Frequency Response Due Deformation for Force 600 N of 4 Embedded Plate	102
4.44	Result of the Frequency Response Due Deformation for Force 800 N of 4 Embedded Plate	103
4.45	Result of the Frequency Response Due Deformation for Force 1000 N of 4 Embedded Plate	104
4.46	Natural Frequency for Plate Model from FE Method	107

LIST OF ABBEREVATIONS

- NR Nature Rubber
- FE Finite Element
- FEA Finite Element Analysis
- 3D Three Dimensional
- LR-MS Laminated Rubber-Metal Spring
- DOF Degree-of-Freedom
- CAD Computer Aided Design

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

ω_n	=	Natural frequency
f	=	Frequency
n	=	Mode
k	=	Stiffness
т	=	Mass
c	=	Damper
Т	=	Transmissibility
Fe	=	Force Input
Ft	=	Transmitted Force
ρ	=	Density
Е	=	Modulus of Elasticity
А	=	Area
r		اونيۈم سينې تيڪنيڪل مليسيا Radius

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Background

This project was chosen Natural Rubber (NR) as the main element to be analysis. The model of the Laminated Rubber-Metal Spring (LR-MS) is creating to investigate the NR by using the Finite Element Analysis (FEA). Nowadays the NR was being the most importance substance that can generate the economic resources for our country. Another name for the NR is elastomers. The bark of the HAVEA tree produced the latex and will be going the series of the process before it produces to be a product such as preservation, concentration, coagulation, dewatering, drying, cleaning, and blending. NR consists of isoprene, polymers, and a litter bit of water. NR is between the famous productions in our country.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

In our country, the history of the NR was beginning when the rubber has been brought in by the British to smuggle rubber tree seeds from Amazonia, Brazil to the botanical gardens in London and then planted in colonies, especially in Malaysia and Singapore. The NR usually sold based on the grades. The grades depended on the purity, viscosity, viscosity stability, oxidation resistance, and rate of cure. At the latex stage, the modified process also can have carried out with the treatment at the latex stage.

The NR is the unique material that was used in a lot of engineering application and manufacturing. This incredibly material has been used in the application of automotive industries, electrical industries, toys, balls, and a lot. The flexibility of the rubber was used in vehicles tire, and rollers industries, while the elasticity of the NR made that substance is suitable for the shock absorbers and for the machinery. The mounting will design to reduce the vibration and noise of the machines. The higher resistance of the rubber made the rubber is good as the insulation for the cable wire, protective gloves, and shoes because it has the higher electrical resistance.

The analysis that will be made in this project are to study the relationship of the NR due to the force, the deformation of the rubber, and the natural frequency of the rubber. NR can be deflected to larger deformation such as they perform as springs or seals. When deflected, they will provide energy lost. The tensile strength of an elastomer or another name for it is an ultimate tensile strength is less than a metal material, but, its capacity to store energy is greater than a metal substances. The tensile strength of an elastomer is 3000Psi at 600% elongation. The natural rubber only loss the strength due to increasing the temperature and increasing of stiffness with lower temperature.

The software ANSYS 16.0 FEA will run the process of the analysis for this project. This software is related to every site such as manufacturing, automotive, aerospace, and so on. The process to develop the model is used the CATIA V5R20 software start from the part design drawing, assembly the drawing and after the step was finished, import the drawing into the ANSYS software, for analyse the result. The result will obtain in the Microsoft Excel to show more detail about the data that collect from the analysis.

1.2 Problem Statement

NR is the most important substances and a lot of application commonly used in the industry. So, that it was the importance things for us to know the strength properties of the rubber. By used the FEA technique, we will obtain the result of the natural frequency of the rubber rod on the LR-MS model with or without the embedded aluminium plates, the deformation of the rubber rod due to the force, and the frequency response of the rubber rod due to the number of the embedded aluminium alloy plates.

1.3 Objective

The objectives of this project are as follows:

- 1. To develop laminated rubber-metal spring models using numerical approach.
- 2. To investigate the force distribution effects in laminated rubber-metal spring.

1.4 Scope of Project

This project work is discussing the analysis of the LR-MS modelling by using the FEA. The analysis was will consist of the five-different rubber rod model with the embedded aluminium alloy on the rubber with the same diameter.

1.5 Report Outline

Chapter 1 was introduced into the flow of the project. In this chapter, the basic explanation about this project was introduced. This chapter was consisting in 4 parts starting with background introduction, problem statement, objective, and scope of the project.

Chapter 2 is literature review from the past project were taken and will review. The past project is very importance as the references due to our project and the comparison will carry out to get the better understanding about our project.

Chapter 3 is methodology. This part will explain the flow of this project to obtain the result. This part is the most importance part because we need to determine how this project came to be.

Chapter 4 is the part that shows the result and discussion on this project. To more detail, the result that we obtain from the analysis must be generated in graph and table form. With this form, we can easily to understand the detail.

Chapter 5 is the last part of this report. In this section, the conclusion and recommendation are placed. The suggestion and recommendation were made to improve another project in the future.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, there will focus on the theory of the NR and the transmissibility of the LR-MS model. This literature review will use to help the reader to understand the concept and the objective with more clearly.

2.2 Transmissibility of a Laminated Rubber-Metal Spring

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

In this day, the development of the vibration isolator made from rubber material is still in progress. To reduce the vibration transmission, the vibration isolators must be applying in the vehicles, building for protecting the structure from the earthquake happen. Besides that, the rubber material has the very high damping that can cause the sufficient dissipation of vibration energy from the seismic waves. To reduces the performance of the isolator as well as its durability and to prevent the rubber block of the conventional isolator from excessive bulging effect, the embedded metal plates were applied to the rubber structure. The design was related to the earthquake protection that to provide the isolation when subjected to a shear force at the low frequency. The application of the engine mounting, isolation of building from ground-borne vibration near railways lines or train vehicles suspension, the input of force comes from the vertical direction and can extend up to higher frequencies.

2.2.1 Lumped Parameter Model

Figure 2.1: A Bulging Effect in a Rubber Isolator Due to a Large Preload (Azli Salim

et al., 2013)

Transmissibility of an LR-MS model was carried out by using a lumped parameter model, that consist of the mass, spring, and damper component. The model was loaded with a lumped mass M with a harmonic force Fe at the spring to assess the vibration isolation performance. The rubber is modelled as a massless component with a constant stiffness k and damping coefficient c. The embedded plate in the rubber was defined as a rigid solid mass m without any damping coefficient.

Figure 2.2: The Embedded Plate in the Rubber (Azli Salim et al., 2013)

The laminated spring is attached to the structure and next, the transmissibility is derived in vertical motion and neglected the rational motion. The figure below shows the schematic diagram of the model laminated spring with one layer of a metal plate which creates 2 Degree-of-Freedom (DOF) system.

(a)

Fe

$$m_1 \ddot{y}_1 + c_1 (\dot{y}_1 - \dot{y}_2) + k_1 (y_1 - y_2) = F_e \qquad (1)$$

$$m_1 \ddot{y}_2 + c_1 (\dot{y}_1 - \dot{y}_2) + k_1 (y_2 - y_1) + k_2 y_2 = 0 \qquad (2)$$

Substituting y= Ye j ω t in equation (1) and (2) with *Y* the complex amplitude and ω the frequency, the equations of motion can be expressed in matrix form as below.

$$\left(-\omega^2 \begin{vmatrix} M & 0 \\ 0 & M \end{vmatrix} + j\omega \begin{vmatrix} c_1 & -c_1 \\ -c_1 & c_1 + c_2 \end{vmatrix} + \begin{vmatrix} k_1 & -k_1 \\ -k_1 & c_1 + k_2 \end{vmatrix} \right) \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} F_e \\ 0 \end{pmatrix}$$

Equation of motion express in general form

2.2.2

$$[-\omega^2 M + j\omega C + K] \tilde{Y} = F$$

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, Y and F are the vectors of complex displacement amplitude and force, respectively. The displacements Y1 and Y2 at each frequency ω , therefore be obtained the equation below.

$$\tilde{\mathbf{Y}} = [-\omega^2 \mathbf{M} + j\omega \mathbf{C} + \mathbf{K}]^{-1} \mathbf{F}$$

where A^{-1} indicates the inverse of matrix A. For the case of the system in figure 2.2, the force transmitted to the receiver structure can be written as a function of the displacement of the bottom metal layer. For an excitation force of unit amplitude Fe =1, the transmissibility, for example, the amplitude ratio of transmitted force to excitation force, is given by below equation.

For the result, the transmissibility for a different number of layer N of embedded in the metal plate was plotted. By assuming the mass of each plate is the same as the loaded mass and assuming the damping is very small value, the calculation is made. The peak on the graph is indicated the amplified of the injection of the injected force to the receiver structure can be seen at low frequencies, for example at 9 Hz and 23 Hz in the figure below, which appear at the natural frequencies of the system. The addition of the number of plates embedded in the rubber will cause the increasing in a number of DOF and natural frequency in the system. At the 25 Hz of the frequency, the isolation region can be seen roughly. This is because the LR-MS can improve the vibration isolation at high frequency.

Figure 2.5: Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=2 (Azli Salim et al., 2013)

Figure 2.6: Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=5 (Azli Salim et al., 2013)

As the conclusion, the transmissibility of an LR-MS has been modelled using a lumped parameter system assuming only transverse vibration in the spring. This simple model shows improvement of isolation performance of the spring when more layers of plates are included, but creates more resonances towards low frequency. However, an extended model is required to consider the mass of the rubber, the layer width and various directions of wave propagation inside the spring including the rotational motion for comprehensive analysis.

2.3 Dynamic Analysis of Laminated Rubber-Metal Spring Using Finite Element Method

LR-MS is widely applied in buildings, vehicles and to protect sensitive equipment. The purpose of this analysis is to determine the axial vibration transmissibility performance of the solid rubber isolator and LR-MS using dynamic analysis of FEA. The transmissibility frequency is defining the vibration characteristic of the isolator and to prove the experimental result study, the FEA software is used in this analysis. Based on this study, the dynamic
performance of the isolator was analysed. By using the Finite Element (FE) method, the five model of the rubber based isolator with the different number of layer metal plate was analysed and the transmissibility ratio of the model was determined from the displacement changes of the isolator. The result showed the rubber bearing with embedded metal plate layers can improve the transmissibility ratio at high frequency.

2.3.1 Isolator Model

The isolator model is made with the cylindrical sandwiched mounts shape consists of the steel layer and rubber discs. The diameter, D of each isolator model is same which is 0.1m and 0.1m and the flange plate located at both isolator ends is 5mm in thickness. The metal plate embedded inside the isolator model with the length tS of 3mm and radius of 0.05m. The thickness of the rubber disc was changed according to the changes of the metal plate number, while, the total length of the isolator and the metal plate are maintained for this whole analysis. The length, tR for the rubber section for the solid rubber to 4 metal plates isolator were 0.1m, 0.049m, 0.031m, 0.023m and 0.018m respectively while the isolator without metal plate was labelled as solid rubber while LR-MS were labelled based on the number of plate layers exist which were LR-MS with 1 embedded plate to LR-MS with 4 embedded plates on it. The figure below shows the example of the LR-MS with 1 embedded plate assembly.

Figure 2.7: LR-MS with 1 Embedded Plate Assembly (Azli Salim et al., 2016)

2.3.2 Material Properties for Isolator Model

For the material properties, the material of the NR has Young Modulus, E =1.4 MPa and density, ρ =920kgm⁻³, while for the metal plate, the material properties involved are E=211GPa and ρ =7850kgm⁻³. The part of the metal plate was defined as the rigid body and rigid mass of 0.3kg was applied to that body.

2.3.3 Finite Element Analysis Method

The FE modelling of the rubber bearing was analysed by using the ABAQUS FEA software. For the rubber section, it was modelled by using fully integrated axisymmetric solid elements which are CAX8H, while for the both metal end plate used the CAX8. At the given frequency, the direct steady-state dynamic analysis will provide the steady-state amplitude of the response of a system due to harmonic excitation and the transmissibility result was obtained from the ratio of the displacement response of the output end plate to the input

displacement excitation applied to the input end plate. The figure below was shown the results obtain from the ABAQUS FEA due to the solid rubber and the LR-MS isolator. The different types of lines on the result indicate the experimental result for the dashed black line and the solid grey line was representing the FEA result. Based on the result, the observation is the FEA result have good agreement with the experimental data and the presented methodology has good accuracy for analysing solid rubber and LR-MS isolator.

2.3.4 Comparison for Finite Element Analysis Result

The natural frequency for all the isolators was maintained at the low-frequency while frequency while exhibiting better high-frequency performance for the bigger number of metal plates. Between the tested model, the LR-MS 4 was indicated the best dynamic performance among all the tested model because of the stiffness changes of isolator structure with the presence of interlayer metal plates. The better isolation performance, especially at high frequency is the greater stiffness.

For the conclusion, the dynamic analysis of solid rubber isolator and LR-MS was carried out using finite element method in ABAQUS was shown more interlayer metal plate inside LR-MS has better transmissibility performance at the higher frequency and the FEA method has good accuracy for analysing cylindrical solid rubber and LR-MS isolators.

2.4 Parameters Assessment on Laminated Rubber-Metal Spring

The most important part of a vehicle is the internal combustion engine part. When the system is running, it will produce the noise and the vibration. This noise and the vibration that generated from this system cannot be neglected because it is the natural reaction. The engine mounting basically only can absorb up to 30 percent of the vibration amplitude that produces by the vehicle engine and the other 70 percent will transfer to the body of the vehicle. From

this 70 percent of the vibration, it will disturbance the driver and the passenger on the car and adding with by another source of vibration such as from the tyres and road surface.

2.4.1 Parameters Selection

In this study, the selected parameter is the mass, Young's Modulus, and the radius. From this three-selected parameter, the mass is chosen as the importance parameter because it can to influenced the point of the natural frequency ω_n . The statement will prove by the equation below.

$$\omega_n = \sqrt{\frac{k}{m}}$$

where k is the stiffness of the system and m is mass.

From this equation, we know the natural frequency is influenced by the stiffness k and the mass m. It means the value of the natural frequency will be reduced when the mass is increase. The second importance parameter is Young's modulus. This will be simplified by the equation below.

$$k = \frac{EA}{L}$$

where E is Young's modulus, A is the area and L is the length.

From this equation, the value of the stiffness is directly proportional to Young's modulus and it will prove if the area and the length of the material are set in the same value. The stiffness value will increase the elasticity of the material increased. The other importance parameter is the value of the radius that used to determine the quantum of an area of a material. The equation below is used to determines the area of the material.

where r is a radius. From the above equation, the value of an area is directly proportional to the radius. By increasing the radius, the area of the material also increase.

2.4.2 Analysis Result of Laminated Rubber-Metal Spring

Results obtained showed that for the effect of mass on the transmissibility, the value of internal resonance will be closer to unity after the value of mass become decreased and it will be further when the mass volume increased. By increasing the number of degree of freedom, the transmissibility is directly proportional to the quantum of mass and it is inversely proportional. The results also indicate that Young's modulus parameter does not directly affect the transmissibility value for this material. Finally, the effect of the radius was also obtained which revealed that when the smaller radius is used, then the LR-MS will be further away from the unity and by increasing the number of degree of freedom, then the LR-MS will be more ideal in terms of its transmissibility.

2.5 Finite Element Analysis for Leaf Spring

In commercial vehicles, the leaf spring is one of of the importance parts of suspension component. The purpose of the leaf spring is to absorb shock load and vibration in the automobiles like heavy duty truck and in the rail system. To meet the needs of the natural resource conservation, energy, and economy, recently the automobile manufacturers have been attempting to minimise the weight of the vehicle.

This study has been carried out on a multi-leaf spring consists of seven leaves of given specification by using the Static structure and the Harmonic Response analysis using ANSYS to find the stress and deformation of the material. The objective of this study is to study the multi-leaf steel leaf spring and verification of the results within the desirable limits. The model of the leaf spring is done and imported into the ANSYS Finite Element Analysis workbench to analyse. This analysis was carried out by using three different materials, namely AISI 6150

Steel, Ti-6Al-4V alloy and S-Glass Fibre Composite for the static analysis as well as for harmonic response analysis.

2.5.1 Harmonic Response Analysis

Harmonic response analysis is a technique used to determine the steady-state response of a linear structure to loads that vary harmonically with time. The main motive is to calculate the structure's response at several frequencies and obtain a graph of displacement versus frequency. The leaf spring based on S-Glass Fiber Composite and Ti-6Al-4Valloy has a lower mass compared to AISI 6150 Steel. The total mass of S-Glass Fiber Composite, Ti-6Al-4V alloy and AISI 6150 steel based multi-leaf spring is 10.278 Kg, 18.318 Kg and 32.532 Kg respectively. Reducing the leaf spring mass in automobiles, we can achieve better riding comfort against hard braking and acceleration. Under the same static load conditions, the stresses in leaf springs are found with the great difference. Stress in S-Glass Fiber Composite is found to be more as compared to conventional AISI 6150 steel. Titanium alloy based leaf spring, under same static loading conditions, shows lesser stress than S-Glass Fiber composite and AISI 6150 steel based leaf spring.

2.6 Modal Analysis Study

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Modal analysis is used to determine the vibration characteristics (natural frequencies and mode shapes) of a vibration system. The results from modal analysis may be further applied for another dynamic analysis via mode superposition method.

2.6.1 Vibration Mode Shape Frequency and Natural Frequency

Figure 4.1 shows the results obtained through the modal analysis made by using FE analysis. This figure shows six vibration modes based on the analysis that was carried out to a plate. Based on the FE analysis shown in Figure 4.1, it is shown that a simulation using FE modelling not only extract the natural frequencies but also to show the form of frequency vibration modes. For example, the first modes, or can be also called as bending modes, it has

the natural frequency of 32.775 Hz. Meanwhile, for the second vibration modes, or also known as torsional modes, the natural frequency was 52.996 Hz. Then, for the third vibration modes, or also called as double bending modes with 91.547 Hz of natural frequency. For the fourth vibration modes, it has the natural frequency of 113.69 Hz and called as double twisting modes. Meanwhile, for the fifth vibration modes and also known as triple bending modes, the natural frequency was 179.75 Hz. Lastly, for the sixth vibration modes, or also called as triple twisting modes, it has the natural frequency of 188.7 Hz.

Figure 2.8: Vibration Mode and Natural Frequency for a Plate.

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

This chapter will describe and cover the detail explanation methodology method that we will use in this project to obtain the data. For the first step in the methodology, we need to identify the literature review about this project. The literature review is an evaluative report and information finding from previous research that can get from any source such as at the book, journal, laboratory report, internet, or others. The importance of the literature review is to make sure the information that found for the literature review related to the area of study in this project. Then, from the literature review, we can get the information to perform analysis, we can run the project analysis by following the step procedure. Static structure analysis is a method to analysis for the laminated rubber and metal due to the force was given. By study and understanding the function of the static structure, this project will be easier to start. The static structure analysis divided into four part which is the engineering data, geometry, model, setup, solution and the last one is the result. Make sure all this part is right before running the analysis to avoid the problem while the analysis is running. The flow of the method used in this project will show with more detail on next part in this chapter.

3.2 Overall Flowchart

3.3 Data Collection

The literature review is a step to find the information and the data collection that related to this project. By using this method, the getting information is easy to analyse, describe and evaluate to use for analysis the model in this project. All the writing that identify related with the study field must be read to get the data collection to use in the project. The literature review is a method to find the information, definition and solution based on previous research. From the collected data, the needed value for starting the analyse was identified as shown in the table below.

 Table 3.1: Material Properties of Natural Rubber for Analysis

Mass density	920 kg/m ⁻³
Young's modulus	1.4 MPa
Poison Ratio	0.49
Tensile Strength	6900000 Pa
- 43	

Table 3.2: Material Properties of Aluminium Alloy for Analysis

Mass density	2770 kg/m ⁻³
Voung's modulus	L MAL 7.1 x 10 ¹⁰ Pa LAKA
Poison Ratio	0.33
Tensile Strength	2.8 x 10 ⁸ Pa

3.4 Computer Aided Design

3-dimension (3D) Computer Aided Design (CAD) is a process to define the design process by using the information technology. The system consists of information technology hardware and specialised software. The application is depending based on the area of application because the certain application is more specialised. The computer aided design software is a way to use the graphic application with easily modified the graphical to represent the product. With the short time, the user can perform the complex design model by nearly view the actual product or representations of the real part on the screen and easily make any changes and modification to the model. This way usually uses at the early stages of the product making process because of it able to show the idea about the product design without any prototype.

The 3D modelling becomes popular in any industries such as aerospace and automotive industries because the system can represent the body of the product and today the use of CAD system was expanded to all industries sector such as electronics, textiles, packaging, clothing, and shoe. CAD system is applied to many industries application such as sports-were, computers, equipment, and complex part for the automobile industries. It performs the initial concept before the creation of the manufacturing of the product by using the combination of the digital sketching without enabling the traditional tools to perform the experimentation. So, the user is easy to evaluation and review the quality, accuracy, and precision to integration with engineering concept and the manufacturing process by transfer the data to the CAD systems. The most popular systems in the industries design are Alias/Wavefront, Maya, CDRS, and CATIA.

3.4.1 Step in 3-D Modelling by CATIA.

Step 1: Open the V5R20 CATIA software. Click to "Start" and select the "Part Design" option.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Step 2: Select the axis on the screen and draw the component follow the correct dimension by using the "Profile, User Selection Filter, Operation, and Constrain" option.

Step 3: Save all the component drawing in a folder. Click to "Start" and select the "Assembly Design" option.

CATIA V5 - [Product1]	
Start ENOVIA V5 VPM File Edit	View Insert Tools Analyze Window Help
Infrastructure	
Mechanical Design	Part Design
<u>Shape</u>	Assembly Design
Analysis & Simulation	Sketcher
AEC Plant	De Product Functional Tolerancing & Annotation
- Machining	• Weld Design
Digital Mockup	<u>Mold Tooling Design</u>
Eguipment & Systems	Structure Design
Digital Process for Manufacturing	2D Layout for 3D Design
Machining Simulation	• 😤 Drafting
Ergonomics Design & Analysis	• 🕼 <u>C</u> omposites Grid Design
<u>K</u> nowledgeware	Core & Cavity Design
ENOVIA V5 VPM	Healing Assistant
1 Broduct1	Eunctional Molded Part
Triodacti	Sheet Metal Design
1 tingkat3.CATPart	Aerospace Sheet Metal Design
2 tingkat2.CATPart	Sheet Metal Production
3 tingkat 1.CATPart	W Composites Design
4 kaki dlm x4.CATPart	Wireframe and Surface Design
5 kaki luar x4.CATPart	Generative Sheetmetal Design

Figure 3.3: Assembly Design Option

Step 4: On the property screen, select the "Existing Component" option to import the component geometry. Select the "Manipulation" option to move the component.

Figure 3.4: Assembly Design Part Component

Step 5: After finish the step, click the "File" and select the "Save As" to save the drawing. Save as the drawing in ". stp" format.

Figure 3.5: Drawing Save Format Option

3.4.2 Step for Design a Part by CATIA.

Step 1: Open the V5R20 CATIA software. Click to "Start" and select the "Part Design" option.

Figure 3.7: x-y Plane Property Option

Step 3: Use the "Profile" option and select "Circle" shape to draw the circle. And then, to set the radius, use the "Constrain" option. Set the needed diameter at the diameter constrain definition column.

Figure 3.8: Profile Option and Constrain Definition for Sketch

Terminal States of The States and the Article Article

Step 4: After done the step 3, click on the "Exit Workbench" option.

Figure 3.9: Exit Workbench Property Option

Step 5: Click on the "Pad" option, and change the length of the sketch on the pad definition column.

Figure 3.11: Model of the Nature Rubber Rod

3.4.3 Laminated Rubber – Metal Spring Component

Table below is to show the details of parts component of the LR-MS model after the sketching and drawing process by using the CATIA CAD.

Name	Part	Specifications
Rubber		Material: Rubber Quantity: 1
Holder, (L.	بتي فر كل ملر. I TEK KAL MALAYSIA	Material: Aluminium Alloy Quantity: 4
Spring	- Cliffe	Material: Aluminium Alloy Quantity: 8

Table 3.3: Component of the LR-MS Model

Figure 3.12: LR-MS Model Assembly

3.5 Finite-Element Analysis

In engineering application, the most famous of the numerical analysis process is the FEA. With FEA, the user easily analyses and study the performance of a product or object by dividing the object into several small building blocks, called FE.

The example of the functional performance of an object is structure stresses and deflection that can be predicted by using this FEA. To forms the model of the real object, the product will have divided into a grid of an element. The element usually has the simple shape such as a square, triangle, cube or any other shape that was related to the FEA program. With the shape, the finite-element analysis program can convey the information to write the governing information's in the form of a stiffness matrix. The unknown parameters for each element are the displacements at the node points, which are the points at which the elements are connected.

With the FEA program, it will assemble the stiffness matrices for the element to the global stiffness form for the whole model. By giving the known force and the boundary condition, the FEA program will solve the stiffness matrix of the unknown displacement. By analysing the displacement of the object at the nodes, the stress of each element can be calculated. Today, for engineering analysis program, the software package was developed for covering a wide range of application. The engineering analysis application is including the static analysis, transient dynamic analysis, natural frequency analysis, heat transfer analysis, plastic analysis, fluid flow analysis, and so on.

3.5.1 Modal Analysis on Ansys Software

Step 1: Open the Ansys software and select the "Engineering Data" to the "Project Schematic".

Step 2: Select the "Modal" in the "Analysis System" to the "Project Schamatic". And then, share the Engineering Data A and B.

Figure 3.14: Connection between Engineering Data and Modal Analysis

Step 3: To set the rubber material, click the "Engineering Data A" and write down the Rubber in the columm " Click Here To Add a New Material".

Figure 3.15: Set-Up New Material for the Nature Rubber

Step 4: Double click the "Density" for the "Physical Properties" at the "Toolbox". Then, set the density for the rubber.

Growed Project Workbersch	1.175	ALC: NO P	-	- 17	CID. P	UZAL BRAL	4.34	COLA BRETLAL	- 5 ×
The 220 men Tools Lines Brank	Jara V	ALKOI		214	IN	IKAL MAL	AT	SIA MELAP	A
1 2 2 2 2 - 1 # AP	Page Street of	1 36 000 pt							
T Har Departure line and Departure lines	· Toucine								
- = X	1 COLOR	and the state of				+ # #		A Description of Second	× 4.
El Photos Procesilias				1.1	<	P			
0	1	- Elizabeth of the	mana and the state	+ 17	a line to	Description	4	The party is a state of the second state of the	
Contraction of the second seco	E	al-reserve					-		
Destroyer Destationers Calificate of Dimetropy: Instationers Conflicted	1	S Sector	#58m	19	-	Religios Data et sero treori altera tornal Non-1998 AGME EPIY Code, Section 8, Ele- 1. Table 5-190-1			
Constant Demping Coefficien	4	a Tab- radiative ar	operad.	15			1		
The frameway (Actor(2)		244 best the	A strength of the strength of		1		4		
Tel Phy Type									
D UnterDants							-		
E Strive Center							green	10	÷\$
Amentra posilientary							1.1		
Constraint States of States of States	and and	No. of Contract Spectrum	And the second second				2		
P Amentape Tanpentan Depentant					-		1		
E. repealed a Department Gev	1	-	1 Burniers			Lan.a (m) 52 53	4		
125 Umpele/Test/Data	1	and Density		_		type-3 alt to	11		
C fixed factors					-				
The Comparison Test Data									
Di Smpla Shari Test Dieta									
Umakiel Textion Test Data									
The Low and all Editopresents in Test Data									
The supervised									
The Aresta from									
the Get									
The blasses =	1								
The M Continue	11								
E KANDY									Maximum Street Street

Figure 3.16: Physical Properties for the New Material

Step 5: Double click the "Isotropic Elasticity" for the "Linear Elasticity" at the "Toolbox". Then, set the Young's Modulus and the Poisson's Ratio for the rubber.

Step 6: Double click the "Tensile Yield Strength" for the "Strength" at the "Toolbox". Then, set the Tensile Yield Strength for the rubber.

Plan Disconte Data and the province	Delta Developii				-			-	
Teales		And and a second second second							
2 couply furnants line go	-		*	7	1.5		D		
E Darting Gunwi Srengti	1	Cipler	and group of the pro-	12.00	and in	1	peorpore		
Zarill Armstonig Strangt	1	I marte							
2 Paraditan		Strange Steel		10	1.64	Patros Data at 1910 main stress core	a thins 1988 45H	E 6P1 Criter, Sinter	rik, DiviZ, Table 5
E Sent					-	-122.1			
Signature and a second	1000	A B with waters		£10	-				
The new printing sector	-	Salar for the salar sector states and			1				
The Contriguing Contrary									
The second second second second									
Committee and an exception									
The Proof of an all Three Print Streeting									
The line of the of The second Internet in the second second									
El Hodified Shan Hardening									
Cananalizad Canafia									
199 Hoddhad Shan Herdening 199 Generalizad Gandala 198 Kuji semilar Keni									
Egil Hod frad Smart He damig Generalizat Candia Gel Kalendari Tani	-								
Eil Hoddhad Shan Hedening Cananitad Cantha Seil Suissendia Fuer North	-			_		_	_	_	~ 1
I Hoddhad Shani hardanig I Ganarijizah Gandia I Sulamati Arbani I North Control Thraitecturing	-	Mail and an end	_	_		-	_		- 4
In Sodial Shuri Hedang In Generated Candia In Series Soliton Continued The Heatening Continued The Heatening Relation	-	Mail of States	+	_					
Fig. 2			-					÷ Jul	1
Good had then theorem, Good had theorem, Good had theorem	4	V all set	ar Transfit			- 4 Mer	kg er s	e Jaj	1
Construct Services Construct Services Construct Service Service Service Retroom Transmost Service Construct Transmost Service Retroom Transmost Service Retroom Transmost Service Service Service Service Service		VIZ Danah 또 2일 Seman Davan	÷ setti			4 She	la e l	e Jai	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Construct Services Construct Services Construct Service Construct Service Construct Traction Construct Service Construct Ser		이날 Datab 역 2월 Sanata Datas Nation Datas Nation				4 Silver Sporty Public and Assert)	1q.er 1	÷ Jaji	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Koof had then theorem Configure damatic Koof had then theorem Koof had the theo	-1	vi⊇ Dente © j© somen Dente Dente han Tengri Hosika	à. Thuấn			4 Siles Sport Hobbs and Source)	1q=-1 -21 -74	÷	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Contract Service Control of		vi⊇ bresh 8 22 bresh Dave kar Tenga Nosdan Pomoti Ras				4 Niter Face-giv Headdes and Prosectly.	19 m - 21 Pa	÷ -Mi	1 1 1 1 1 1 1 1
		vi≥ Doroth © 2015 Series Ray Dense Ray Tourga Notable Posserie Rate: Interfoodule	3 70010			4 Salar Teorify Hubble and Asserty	tq = - =l - Pe - Pe	÷ Jai	
Construct Eleventer dense Construct Eleventer Construct elevente		Via Domini Dense kap Torgi Posta Possoka Possoka Hikkitotala Brai Modulo	àr Thailte			H Siller Facego Haddes and Assertio	liger - Pe Pe Pe	÷	1
	1 4 4 1 4 4 4 4	vi⊒ borsto © 201 termine theken Derive here Trange Notekla Pomoris Rates Hikk Hotekla Bara Maalle Bi 20 Tet Sundhen				4 Sile Sarge holdes and Source)	ra ==== Pa Pa	÷	2 = 10 2 = 10
Construct Start Start Construct Start Start Construct Tracks Start Construct Tracks Start Construct Tracks Start Construct Tracks Start Construct Const	1 2 4 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	vite: Domain Denice Rue Denice Rue Posantis Russ Halk Hohala Bar Malala I mar Malala III 20 - Radi soundina Temperature	a. Tradis			4 Like Sarge holds of Asserts	na	÷ -301	
	1					H Nither Face-giv Headdes and Assessments The No.	No Pe	÷ 	
Kolfhad Brachtedrang, Gaungsack Gautha Konton Guinerstein Frein Constraint Trictering Rutha Generational Trictering Rutha Generational Trictering Kutha Societariant Strategie Societariant Strategie Societariant Strategie Gonzeturg et Book in Indeg Societariant Strategie Gonzeturg et Book in Indeg Societariant Strategie Societariant	Teld Introduction	vi⊇ Dorach Brief avman, theview Dorac frag Postor frag Postor frag Postor frag Butertoodus Bran Podulo Bran Podulo Bran Podulo Temperature Tana Angel Deg Samon Fridas	2 Tuelli			A Sales Agargi Hukkas and Assarry The The Be	Pa Pa Pa	÷ -341-	

Figure 3.18: Tensile Yield Strength Toolbox Option

Step 7: Click the "Engineering Data Source" and click at the "General Material". Then, choose and click the "Aluminium Alloy" to add in the Engineering Data.

Figure 3.19: Engineering Data for General Material Option

Step 8: Right click on "Geometry" and browse the model from the external.

	VERSITI T	EKNIP	0		15	MA MELA	KA	+
Begenerne Date Degreening Date Degreening (U-D-Main Equary) Degreening (U-D-Main Equary) Degreening (U-D-Main Equary) Degreening (U-D-Main Equary) Prover	1 Banna de 2 Esperins Satur C a Esperins Satur C a	A Dennes D Dennes D Dennes A Dennes A Denn	No. 4	Nex Design/Kodelier Generatry Wei Nacol Des Generatry Propert Generate Dastable Triangle Code Frances		al trans		
A Hasterical APDL Henderical MDLA Prent Frankow Frank				Prendre Danie To Stern Undoarn Updates Updietene Components Notroal Heart Rammen Properties Quick-Heb And Prope	*	annen fyr deiger alb aff mei fer fyn Ressolar (m af Generic Fyn Ressolar (m		
Parts CDD Parts CDP Parts CDP Parts CDP Parts CDP Parts CDP Parts PD Parts P								

Step 9: Double click the "Model" on the Work Bench. To change the material of the model, select the geometry part and choose the material.

Step 10: Right click on "Mesh" and select the "Update" to generate the mesh.

Figure 3.22: Generate Mesh Option

Step 11: Right click on "Modal" and select the "Fixed Support" to build the fix support option to the model. And then, select the "Solve" option to update the project.

Figure 3.23: Fix Support for the Model Option

Step 12: Right click on "Analysis Setting" and select the "Max Mode to Find" and set the mode for the model.

Figure 3.24: Mode Option

Step 13: Right click on "Solution" and select the "Select All" at the graph. Then, at the graph, select the "Create Mode Shape Result". Then click the "Solve" option to resolve the solution.

Figure 3.26: Result for the Mode Option

3.5.2 Harmonic Response Analysis on ANSYS Software

Step 1: To set the Harmonic Responces Analysis, choose the "Harmonic Response" and connect with the "Modal Analysis" as shown in figure below.

Hitamond Project - Weickheimin		- 0
No - The Los comment		
and the second second		
diterri	V Lander Travel	
A many of Gamma A many of Gamma Destroy Destroy	Tree remaining the second seco	
Date Demons (Data)(1) Date Demons (

Figure 3.27: Connection Between Modal and Harmonic Analysis Option

Step 2: Select the "Harmonic Response" and click to the "Force" option. On the "Detail of Force" set the needed force due to z-component.

Figure 3.28: Input Force Option

Step 3: Select the "Solution", click to the "Frequency Response" option, and insert the "Deformation".

Figure 3.29: Insert the Frequency Response for Deformation Option

Step 4: Select the "Analysis Setting" and go to the "Detail of Analysis Setting". Set the "Range Maximum" and the "Range Manimum" for the analysis.

Figure 3.30: Frequency Range for the Model Option

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Analysis of Nature Rubber Rod by ANSYS Finite Element Analysis

This chapter will generally explain the result from the analysis. By following the required step in the previous chapter, from the analysis, it shows there are different types of colour that generate at all the nature rubber rod. The different colour of the nature rubber rod was represented the different value of the deformation due to the frequency as the Figure 4.1 below. All the data gained from the analysis will be generated in the table and graph in the next part.

Figure 4.1: Result of Analysis

As we can see in Figure 4.1 above, it shows the various type of colour that represent the different value of the minimum deformation and the maximum deformation on the natural rubber rod. The highest value of the deformation was showed the red colour as the indicator. It shows that the natural rubber rod has been imposed by the highest load and highest deformation was occur on that place. The part that not affected by the deformation will show in the blue colour with the lowest value for the deformation on the natural rubber rod.

4.2 Modal Analysis

From this analysis, the results obtained will show the modal analysis made by using ANSYS Finite Element Analysis (FEA) software. This analysis shows six vibration modes that were carried out to the rubber rod without embedded aluminium alloy on it.

4.2.1 Modal Analysis of the Type 1 Nature Rubber Rod

Based on the FEA is shown in Figure 4.1, it is shown that a simulation using Finite Element (FE) modelling not only extracts the natural frequencies but also to show the form of frequency vibration modes. For example, the first modes, or can be also called as bending modes, it has the natural frequency of 13.951 Hz. Meanwhile, for the second vibration modes, or also known as torsional modes, the natural frequency was 14.039 Hz. Then, for the third vibration modes, or also called as double bending modes with 21.009 Hz of natural frequency. For the fourth vibration modes, it has the natural frequency of 37.949 Hz and called as double twisting modes. Meanwhile for the fifth vibration modes and known as triple bending modes, the natural frequency of 39.947 Hz

Figure 4.2 below represent the assembly by the CATIA modelling software, for the type without the embedded plate on the nature rubber rod.

Figure 4.2: Assembly Type 1

Table 4.1: Result of the Modal Analysis for Type 1

4.2.2 Modal Analysis of the Type 2 Nature Rubber Rod

Figure 4.3: Assembly Type 2

4.2.3 Modal Analysis of the Type 3 Nature Rubber Rod

Figure 4.4: Assembly Type 3

4.2.4 Modal Analysis of the Type 4 Nature Rubber Rod

Figure 4.5: Assembly Type 4

4.2.5 Modal Analysis of the Type 5 Nature Rubber Rod

Figure 4.6: Assembly Type 5

4.3 Stress Frequency Response of the Nature Rubber Rod

4.3.1 Stress Frequency Response of the Nature Rubber Rod with 1 Embedded Aluminium Alloy

4.3.1.1 For Force 200 N

Table 4.6 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.7 below.

	Frequency [Hz]	Amplitude (MPa)	
C M	LAYSIA 10	3.9708 x 10 ⁻⁷	
and the second s	20	4.0281 x 10 ⁻⁷	
TEK	30 >	4.1346 x 10 ⁻⁷	
E	40	4.4022 x 10 ⁻⁷	WI
843AI	50	4.4091 x 10 -7	
del	60	4.7211 x 10 -7	
ملاك	السبيا	4.9077 x 10 ⁻⁷	اوييوم
	80 RSITI TEKNIKA	3.6803 x 10 -6	
OHIVE	90-1111	3.0103 x 10 ⁻⁷	
	100	4.0517 x 10 ⁻⁷	

Table 4.6: Result of the Frequency Response Due Stress for Force 200 N

Figure 4.7: Graph Stress Vs Frequency Response for Force 200 N

4.3.1.2 For Force 400 N

Table 4.7 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in figure 4.8 below.

Table 4.7: Result of the Frequency Response Due Stress for Force 400 N

Figure 4.8: Graph Stress Vs Frequency Response for Force 400 N

4.3.1.3 For Force 600 N

Table 4.8 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.9 below.

Table 4.8: Result of the Frequency Response Due Stress for Force 600 N

Figure 4.9: Graph Stress Vs Frequency Response for Force 600 N

4.3.1.4 For Force 800 N

Table 4.9 consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.10 below.

Table 4.9: Result of the Frequency Response Due Stress for Force 800 N

Figure 4.10: Graph Stress Vs Frequency Response for Force 800 N

4.3.1.5 For Force 1000 N

Table 4.10 consist of the result of the Force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.11 below.

Table 4.10: Result of the Frequency Response Due Stress for Force 1000 N

Figure 4.11: Graph Stress Vs Frequency Response for Force 1000 N

Based on Figure 4.12 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.12: Result of Five Different Data with Different Value of Force Due to the 1 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response

4.3.2 Deformation Frequency Response of Nature Rubber Rod with 1 Embedded Aluminium Alloy

4.3.2.1 For Force 200 N

Table 4.11 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.13 below.

Table 4.11: Result of the Frequency Response Due Deformation for Force 200 N

Figure 4.13: Graph Deformations Vs Frequency Response for Force 200 N

4.3.2.2 For Force 400 N

Table 4.12 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.14 below.

Figure 4.14: Graph Deformations Vs Frequency Response for Force 400 N

4.3.2.3 For Force 600 N

Table 4.13 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.15 below.

Table 4.13: Result of the Frequency Response Due Deformation for Force 600 N

Figure 4.15: Graph Deformations Vs Frequency Response for Force 600 N

4.3.2.4 For Force 800 N

Table 4.14 below consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.16.

Table 4.14: Result of the Frequency Response Due Deformation for Force 800 N

Figure 4.16: Graph Deformations Vs Frequency Response for Force 800 N

4.3.2.5 For Force 1000 N

Table 4.15 consist of the result of the force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.17.

Table 4.15: Result of the Frequency Response Due Deformation for Force 1000 N

Figure 4.17: Graph Deformations Vs Frequency Response for Force 1000 N

Based on Figure 4.18 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.18: Result of Five Different Data with Different Value of Force Due to the 1 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response

4.3.3 Stress Frequency Response of the Nature Rubber Rod with 2 Embedded Aluminium Alloy

4.3.3.1 For Force 200 N

Table 4.16 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.19 below.

	Frequency [Hz]	Amplitude (MPa)	
	10	4.7996 x 10 ⁻⁷	
	20	4.9030 x 10 ⁻⁷	
	30	5.0839 x 10 ⁻⁷	
AL M	40	5.3400 x 10 ⁻⁷	
No.	50	5.8789 x 10 ⁻⁷	
E	60	6.4536 x 10 ⁻⁷	
FIRE	70	7.3387 x 10 ⁻⁷	VI.
" ATI	80	8.2827 x 10 ⁻⁷	
shl.	90	2.0089 x 10 ⁻⁶	s. i. d
- ,~	100	3.3665 x 10 ⁻⁶	اويوم

Table 4.16: Result of the Frequency Response Due Stress for Force 200 N

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Figure 4.19: Graph Stress Vs Frequency Response for Force 200 N

4.3.3.2 For Force 400 N

Table 4.17 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.20 below.

Table 4.17: Result of the Frequency Response Due Stress for Force 400 N

Figure 4.20: Graph Stress Vs Frequency Response for Force 400 N

4.3.3.3 For Force 600 N

Table 4.18 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.21 below.

Table 4.18: Result of the Frequency Response Due Stress for Force 600 N

Figure 4.21: Graph Stress Vs Frequency Response for Force 600 N

4.3.3.4 For Force 800 N

Table 4.19 consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.22 below.

Table 4.19: Result of the Frequency Response Due Stress for Force 800 N

Figure 4.22: Graph Stress Vs Frequency Response for Force 600 N

4.3.3.5 For Force 1000 N

Table 4.20 consist of the result of the Force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.23 below.

Table 4.20: Result of the Frequency Response Due Stress for Force 1000 N

Figure 4.23: Graph Stress Vs Frequency Response for Force 1000 N

Based on figure 4.24 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.24: Result of Five Different Data with Different Value of Force Due to the 2 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response

4.3.4 Deformation Frequency Response of Nature Rubber Rod with 2 Embedded Aluminium Alloy

4.3.4.1 For Force 200 N

Table 4.21 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.25 below.

Table 4.21: Result of the Frequency Response Due Deformation for Force 200 N

Figure 4.25: Graph Deformations Vs Frequency Response for Force 200 N

4.3.4.2 For Force 400 N

Table 4.22 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.26 below.

Table 4.22: Result of the Frequency Response Due Deformation for Force 400 N

Figure 4.26: Graph Deformations Vs Frequency Response for Force 400 N

4.3.4.3 For Force 600 N

Table 4.23 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.27 below.

Table 4.23: Result of the Frequency Response Due Deformation for Force 600 N

Figure 4.27: Graph Deformations Vs Frequency Response for Force 600 N

4.3.4.4 For Force 800 N

Table 4.24 below consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.28.

Table 4.24: Result of the Frequency Response Due Deformation for Force 800 N

Figure 4.28: Graph Deformations Vs Frequency Response for Force 800 N

4.3.4.5 For Force 1000 N

Table 4.25 consist of the result of the force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.29 above.

Table 4.25: Result of the Frequency Response Due Deformation for Force 1000 N

Figure 4.29: Graph Deformations Vs Frequency Response for Force 1000 N

Based on Figure 4.30 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.30: Result of Five Different Data with Different Value of Force Due to the 2 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response

4.3.5 Stress Frequency Response of the Nature Rubber Rod with 3 Embedded Aluminium Alloy

4.3.5.1 For Force 200 N

Table 4.26 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.31 below.

	Frequency [Hz]	Amplitude (MPa)	
	10	9.5120 x 10 ⁻⁷	
	20	9.2308 x 10 ⁻⁷	
	30	9.4026 x 10 ⁻⁷	
AT M	40	1.0005 x 10 ⁻⁶	
Eller The	50	8.2064 x 10 ⁻⁷	
TEA	60	9.0224 x 10 ⁻⁷	
III O	70	9.1348 x 10 ⁻⁷	VI.
83AT	80	8.7069 x 10 ⁻⁷	
shl.	90	1.2751 x 10 -6	1.1
מעב	100	9.2946 x 10 ⁻⁷	اويوم

Table 4.26: Result of the Frequency Response Due Stress for Force 200 N

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Figure 4.31: Graph Stress Vs Frequency Response for Force 200 N

4.3.5.2 For Force 400 N

Table 4.27 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.32 below.

Table 4.27: Result of the Frequency Response Due Stress for Force 400 N

Figure 4.32: Graph Stress Vs Frequency Response for Force 400 N
4.3.5.3 For Force 600 N

Table 4.28 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.33 below.

Table 4.28: Result of the Frequency Response Due Stress for Force 600 N

Figure 4.33: Graph Stress Vs Frequency Response for Force 600 N

4.3.5.4 For Force 800 N

Table 4.29 consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.34 below.

Table 4.29: Result of the Frequency Response Due Stress for Force 800 N

Figure 4.34: Graph Stress Vs Frequency Response for Force 600 N

4.3.5.5 For Force 1000 N

Table 4.30 consist of the result of the Force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.35 below.

Table 4.30: Result of the Frequency Response Due Stress for Force 1000 N

Figure 4.35: Graph Stress Vs Frequency Response for Force 1000 N

Based on Figure 4.36 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.36: Result of Five Different Data with Different Value of Force Due to the 3 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response

4.3.6 Deformation Frequency Response of Nature Rubber Rod with 3 Embedded Aluminium Alloy

4.3.6.1 For Force 200 N

Table 4.31 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.37 below.

Table 4.31: Result of the Frequency Response Due Deformation for Force 200 N

Figure 4.37: Graph Deformations Vs Frequency Response for Force 200 N

4.3.6.2 For Force 400 N

Table 4.32 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.38 below.

Table 4.32: Result of the Frequency Response Due Deformation for Force 400 N

Figure 4.38: Graph Deformations Vs Frequency Response for Force 400 N

4.3.6.3 For Force 600 N

Table 4.33 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.39 below.

Table 4.33: Result of the Frequency Response Due Deformation for Force 600 N

Figure 4.39: Graph Deformations Vs Frequency Response for Force 600 N

4.3.6.4 For Force 800 N

Table 4.34 below consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.40.

Table 4.34: Result of the Frequency Response Due Deformation for Force 800 N

Figure 4.40: Graph Deformations Vs Frequency Response for Force 800 N

4.3.6.5 For Force 1000 N

Table 4.35 consist of the result of the force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.41 above.

Table 4.35: Result of the Frequency Response Due Deformation for Force 1000 N

Figure 4.41: Graph Deformations Vs Frequency Response for Force 1000 N

Based on Figure 4.42 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.42: Result of Five Different Data with Different Value of Force Due to the 3 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response

4.3.7 Stress Frequency Response of the Nature Rubber Rod with 4 Embedded Aluminium Alloy

4.3.7.1 For Force 200 N

Table 4.36 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.43 below.

	Frequency [Hz]	Amplitude (MPa)	
	10	1.1591 x 10 ⁻⁶	
	20	1.1757 x 10 ⁻⁶	
	30	1.2067 x 10 ⁻⁶	
Nº M	40	1.2698 x 10 ⁻⁶	
and the second s	50	1.0588 x 10 ⁻⁶	
E .	60	1.2849 x 10 ⁻⁶	V
F	70	1.3706 x 10 ⁻⁶	VI.
*311	80	1.4401 x 10 ⁻⁶	
shl.	90	1.2488 x 10 ⁻⁶	1.1.1
-)~	100	2.5088 x 10 ⁻⁶	اويوم

Table 4.36: Result of the Frequency Response Due Stress for Force 200 N

4.3.7.2 For Force 400 N

Table 4.37 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.44 below.

Table 4.37: Result of the Frequency Response Due Stress for Force 400 N

Figure 4.44: Graph Stress Vs Frequency Response for Force 400 N

4.3.7.3 For Force 600 N

Table 4.38 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.45 below.

Table 4.38: Result of the Frequency Response Due Stress for Force 600 N

Figure 4.45: Graph Stress Vs Frequency Response for Force 600 N

4.3.7.4 For Force 800 N

Table 4.39 consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.46 below.

Table 4.39: Result of the Frequency Response Due Stress for Force 800 N

Figure 4.46: Graph Stress Vs Frequency Response for Force 600 N

4.3.7.5 For Force 1000 N

Table 4.40 consist of the result of the Force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.47 below.

Table 4.40: Result of the Frequency Response Due Stress for Force 1000 N

Figure 4.47: Graph Stress Vs Frequency Response for Force 1000 N

Based on figure 4.48 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.48: Result of Five Different Data with Different Value of Force Due to the 4 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response

4.3.8 Deformation Frequency Response of Nature Rubber Rod with 4 Embedded Aluminium Alloy

4.3.8.1 For Force 200 N

Table 4.41 consist of the result of the force 200 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.49 below.

Table 4.41: Result of the Frequency Response Due Deformation for Force 200 N

Figure 4.49: Graph Deformations Vs Frequency Response for Force 200 N

4.3.8.2 For Force 400 N

Table 4.42 consist of the result of the force 400 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.50 below.

Table 4.42: Result of the Frequency Response Due Deformation for Force 400 N

Figure 4.50: Graph Deformations Vs Frequency Response for Force 400 N

4.3.8.3 For Force 600 N

Table 4.43 consist of the result of the force 600 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.51 below.

Table 4.43: Result of the Frequency Response Due Deformation for Force 600 N

Figure 4.51: Graph Deformations Vs Frequency Response for Force 600 N

4.3.8.4 For Force 800 N

Table 4.44 below consist of the result of the force 800 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.52.

Table 4.44: Result of the Frequency Response Due Deformation for Force 800 N

Figure 4.52: Graph Deformations Vs Frequency Response for Force 800 N

103

4.3.8.5 For Force 1000 N

Table 4.45 consist of the result of the force 1000 N against the LR-MS model. The result of the analysis is represented in the form of graph in Figure 4.53 above.

Table 4.45: Result of the Frequency Response Due Deformation for Force 1000 N

Figure 4.53: Graph Deformations Vs Frequency Response for Force 1000 N

Based on Figure 4.54 below, it shows the five-different line that represents the value of each analysis that completely done with the different value of the force due to the four-embedded plate on the natural rubber rod. The value of force is set to be 200N represent the yellow line, 400N represent the brown line, 600N represent the red line, 800N represent the purple line, and lastly, 1000N represent the green line. The data that obtain show that the graph is linearly increasing. The value of the amplitude increases with respectively to the value of the force.

Figure 4.54: Result of Five Different Data with Different Value of Force Due to the 4 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response

4.4 Summary

In this section, it will show the summary of the result and discussion. The data and the result of the analysis are shown in the table and graph below.

Based on the Figure 4.55 below, it shows the result of combination of the 5 different types of lines that refer to the different types of the natural rubber rod. The red line represents the nature rubber rod without embedded plate on it, the yellow line represents for the nature rubber rod with 1 embedded plate on it, black line represents for the nature rubber rod with 2 embedded plates on it, brown line represents for the nature rubber rod with 3 embedded plates on it, and lastly, green line represents for the nature rubber rod with 4 embedded plates on it with different number of modality. Refer to the graph, the data show the value of the frequency is increase follow by the increasing number of embedded plate on the nature rubber rod.

Figure 4.55: Combination of Graph of the Different Types of Modality with the Frequency

	Natural Frequency (Hz)											
Vibration	Without	1 Embedded	2 Embedded	3 Embedded	4 Embedded							
Mode	Embedded	Plate	Plate	Plate	Plate							
	Plate											
1	13.951	42.490	45.585	45.644	47.927							
2	14.039	42.720	45.976	45.842	48.117							
3	21.009	45.385	48.274	47.839	49.977							
4	37.949	79.064	87.232	87.704	94.532							
5	39.925	79.072	87.845	88.136	94.923							
6	39.947	85.246	96.550	95.636	99.916							
	5	7										

Table 4.46: Natural Frequency for Plate Model from Finite Element Method.

Based on the Table 4.46 above, it shows the data is intemperate from the graph in the Figure 4.55. From the table, the value of the frequency against the increasing modality for every type of the nature rubber rod can be seen. Based on that data, the lowest frequency is located on the modality 1 with the without the embedded plate on natural rubber rod. The value is increasing following the increasing of the modality in every type of rubber rod and increasing the number of the plate that embedded on the natural rubber rod.

Frequency	1 Embedded	2 Embedded	3 Embedded	4 Embedded						
(Hz)	plate	plate	plate	plate						
Stress Frequency Response (MPa)										
10	3.9708 x 10 ⁻⁷	4.7996 x 10 ⁻⁷	9.5120 x 10 ⁻⁷	1.1591 x 10 ⁻⁶						
20	4.0281 x 10 -7	4.9030 x 10 ⁻⁷	9.2308 x 10 ⁻⁷	1.1757 x 10 ⁻⁶						
30	4.1346 x 10 -7	5.0839 x 10 ⁻⁷	9.4026 x 10 ⁻⁷	1.2067 x 10 ⁻⁶						
40	4.4022 x 10 ⁻⁷	5.3400 x 10 ⁻⁷	1.0005 x 10 ⁻⁶	1.2698 x 10 ⁻⁶						
50	4.4091 x 10 ⁻⁷	5.8789 x 10 ⁻⁷	8.2064 x 10 ⁻⁷	1.0588 x 10 ⁻⁶						
60	4.7211 x 10 ⁻⁷	6.4536 x 10 ⁻⁷	9.0224 x 10 ⁻⁷	1.2849 x 10 ⁻⁶						
70	4.9077 x 10 ⁻⁷	7.3387 x 10 ⁻⁷	9.1348 x 10 ⁻⁷	1.3706 x 10 ⁻⁶						
80	3.6803 x 10 ⁻⁶	8.2827 x 10 ⁻⁷	8.7069 x 10 ⁻⁷	1.4401 x 10 ⁻⁶						
90	3.0103 x 10 -7	2.0089 x 10 ⁻⁶	1.2751 x 10 ⁻⁶	1.2488 x 10 ⁻⁶						
100 🔤	4.0517 x 10 ⁻⁷	3.3665 x 10 ⁻⁶	9.2946 x 10 ⁻⁷	2.5088 x 10 ⁻⁶						
Deformation Frequency Response (mm)										
10	5.5757 x 10 ⁻⁴	6.0542 x 10 ⁻⁴	6.5606 x 10 ⁻⁴	6.9514 x 10 ⁻⁴						
20	5.8221 x 10 ⁻⁴	6.2264 x 10 ⁻⁴	6.6990 x 10 ⁻⁴	7.0495 x 10 ⁻⁴						
30 🔄	6.2941 x 10 ⁻⁴	6.5427 x 10 ⁻⁴	6.9498 x 10 ⁻⁴	7.2245 x 10 ⁻⁴						
40	7.2785 x 10 ⁻⁴	7.1064 x 10 ⁻⁴	7.3982 x 10 ⁻⁴	7.5228 x 10 ⁻⁴						
50 UN	8.1789 x 10 ⁻⁴	7.4638 x 10 ⁻⁴	7.5524 x 10 ⁻⁴	7.2764 x 10 ⁻⁴						
60	1.0689 x 10 ⁻³	8.6898 x 10 ⁻⁴	8.4191 x 10 ⁻⁴	8.0863 x 10 ⁻⁴						
70	1.6519 x 10 ⁻³	1.0492 x 10 ⁻³	9.5027 x 10 ⁻⁴	8.7050 x 10 ⁻⁴						
80	4.5724 x 10 ⁻³	1.3794 x 10 ⁻³	1.1118 x 10 ⁻³	9.5050 x 10 ⁻⁴						
90	4.6564 x 10 ⁻³	1.9673 x 10 ⁻³	1.3801 x 10 ⁻³	1.0591 x 10 ⁻³						
100	1.4007 x 10 ⁻³	4.8077 x 10 ⁻³	1.8752 x 10 ⁻³	1.2158 x 10 ⁻³						

Table 4.47: Result of Stress and Deformation Frequency Response for 200 N

Figure 4.56: (a) Graph of Comparison for the Stress Frequency Response for 200N (b) Graph

All the table above show the combination all the data and the result of the analysis done by using the ANSYS Finite Element Analysis software. In Table 4.77 above, it contains the result of the natural rubber rod embedded with the different number of aluminium alloy plate against the frequency. Every type of the rubber rod will contain the 3-types of the result and for every result has been tested with 5-different of forces. Every type of natural rubber rod

of Comparison for the Deformation Frequency Response for 200N

is the 1- aluminium alloy plate embedded, 2-aluminium alloy plate embedded, 3-aluminium alloy plate embedded and lastly 4-aluminium alloy plate embedded, it produced the 2-different result which is the stress frequency response, and the deformation frequency response. For every type of the natural rubber rod has been tested with the 5-different type of forces which is 200N, 400N, 600N, 800N and the last one is 1000N.

Based on the Figure 4.56 below, it shows the 4-different line that represents the value of the number of the embedded plate on the natural rubber rod. The 1- aluminium alloy plate embedded represent the yellow line, 2- aluminium alloy plate embedded represent the black line, 3- aluminium alloy plate embedded represent the red line, and lastly 4- aluminium alloy plate embedded 800N represent the purple line. For Figure 4.56 (a), for the stress frequency response, the analysis was carried out by using the 200N force. From this analysis, the natural rubber rod with 1- aluminium alloy plate embedded was produced the higher value of the stress frequency response, followed by natural rubber rod with 2- aluminium alloy plate embedded, natural rubber rod with 3- aluminium alloy plate embedded, and the lastly natural rubber rod with 4- aluminium alloy plate embedded. The value of the stress frequency decrease with increase the number of embedded aluminium alloy plate on the natural rubber rod.

For Figure 4.56 (b), the deformation frequency response analysis was carried out with the same 200N value of force. From this analysis, the natural rubber rod with 1- aluminium alloy plate embedded was produced the higher value of the stress frequency response, followed by natural rubber rod with 2- aluminium alloy plate embedded, natural rubber rod with 3- aluminium alloy plate embedded, and the lastly natural rubber rod with 4- aluminium alloy plate embedded. The value of the deformation frequency decrease with increase the number of embedded aluminium alloy plate on the natural rubber rod.

And next, the analysis was carried out with the increasing value of force due to the all of the number of aluminium alloy embedded on the natural rubber rod which is 400N, 600N, 800N and 1000N, the natural rubber rod with 1- aluminium alloy plate embedded also was produce the higher value of the stress frequency response and deformation frequency response, followed by natural rubber rod with 2- aluminium alloy plate embedded, natural rubber rod with 3- aluminium alloy plate embedded, and the lastly natural rubber rod with 4-

aluminium alloy plate embedded. The value of every type of frequency decrease with increase the number of embedded aluminium alloy plate on the natural rubber rod.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This chapter summarised overall progress of this project is presented including all part that related to this project. The conclusion consists of the effect of each type of embedded aluminium alloy with the applied force due to the analysis.

This project has the 5 type of the natural rubber rod that was been analyse by using the 5-different value of force. The analysis involved is the modal analysis, stress frequency response and the deformation frequency response. The type of the natural rubber rod is the nature rubber rod without embedded plate, the nature rubber rod with 1 embedded aluminium alloy plate, the nature rubber rod with 2 embedded aluminium alloy plate, the nature rubber rod with 4 embedded aluminium alloy plate. The value of force that involve in this analysis is 200N, 400N, 600N, 800N and 1000N.

From the analysis, refer to the graph and data, it showed the value of the frequency is increase followed by the increasing the number of the modality and the value of the frequency is increase followed by the increasing number of the embedded plate on the nature rubber rod. The lowest frequency is from the analysis of the vibration mode 1 for the natural rubber rod without embedded aluminium alloy plate with 13.951Hz and the highest frequency for this analysis is from the analysis of the vibration mode 6 for the nature rubber rod with 4 embedded aluminium alloy plate. As conclusion, the value of the natural frequency of the natural rubber rod will increase with increase the number of embedded aluminium alloy plate.

Next is about the stress frequency response analysis. As the conclusion, from the result obtain it show that the value of stress (MPa) against the frequency will decrease when the number of embedded plates applied to the natural rubber rod. The value of deformation (mm) against the frequency also decrease when the number of embedded plates applied to the natural rubber rod. From the analysis, the number of the stress and the deformation against the frequency is increased when the value of the force is increase, but decrease against the increasing number of the embedded plate on the natural rubber rod.

For the overall, every type of embedded that has been analysed in this analysis create the different result and outcome. The result obtained is show the effectiveness in every parameter used.

5.2 Recommendation

WALAYSI,

In the future, from the result and conclusion made, the improvement and modification for this project should be carried out for the future to make the discovery of this project to become more challenge and interesting. The modified on the natural rubber rod can be improved based on the research by carrying out the experiment by using the real equipment, tools, and models in the laboratory. Based on the result of the experiment, we also can compare the result such as the percentage of error of this experiment result with the result of analysis that obtains by using the ANSYS Finite Element Analysis software. Besides that, we should try another alternative to ensure the validity of the data that gained from the analysis by comparing the result from the analysis with the other type of the Finite Element Analysis Software such as CATIA Finite Element Analysis Software or ABAQUS Finite Element Analysis Software.

Other than that, the modification on the natural rubber rod should be carried out. For example, the modification on the diameter of the natural rubber rod, the modification on the height of the natural rubber rod, and the modification if the thickness of every plate that embedded on the natural rubber rod. With this modification, we can see the comparison and make the better conclusion whether which one from this study will produce the productive result.

REFFRENCES

Salim, M. A., Putra, A., Thompson, D., Ahmad, N., & Abdullah, M. A. (2013). Transmissibility of a Laminated Rubber-Metal Spring: A Preliminary Study. *Applied Mechanics and Materials*, 393, 661-665. doi:10.4028/www.scientific.net/amm.393.661

Putra, A., Norfarizan, S., Samekto, H., & Salim, M. A. (2013). Static Analysis of a Laminated Rubber-Metal Spring Using Finite Element Method. *Advanced Materials Research*, 845, 86-90. doi:10.4028/www.scientific.net/amr.845.86

Conference Calendar. (2007). Engineering Applications of Artificial Intelligence, 20(5). doi:10.1016/s0952-1976(07)00065-6

Du, B., Wang, X., Feng, Y., Yu, D., & Xu, G. (2014). Intelligent Assembly Technology Based on Standard Parts Feature of CATIA. *Modern Applied Science*, 8(2). doi:10.5539/mas. v8n2p49

Salim, M. A., Putra, A., Thompson, D., Ahmad, N., & Abdullah, M. A. (2013). Transmissibility of a Laminated Rubber-Metal Spring: A Preliminary Study. *Applied Mechanics and Materials*, 393, 661-665. doi:10.4028/www.scientific.net/amm.393.661

رست تکنک

Salim, M. A., Putra, A., & Abdullah, M. A. (2013). Analysis of Axial Vibration in the Laminated Rubber-Metal Spring. *Advanced Materials Research*, *845*, 46-50. doi:10.4028/www.scientific.net/amr.845.46

Salim, M., Putra, A., Mansor, M., Musthafah, M., Akop, M., & Abdullah, M. (2016). Analysis of Parameters Assessment on Laminated Rubber-Metal Spring for Structural Vibration. *IOP Conference Series: Materials Science and Engineering*, *114*, 012014. doi:10.1088/1757-899x/114/1/012014

Modeling Material Damping Properties in Ansys - Documents. (2014, November 17). Retrieved May 14, 2017, from <u>http://documents.mx/documents/modeling-material-damping-properties-in-ansys.html</u> Lian, K., Fan, B., Miao, Y., & Zhu, X. (2016). Research on Optimal Design and Modal Analysis of the Frame. *Proceedings of the 2016 International Conference on Artificial Intelligence: Technologies and Applications*. doi:10.2991/icaita-16.2016.6

Li, Z., Zang, X. Z., Suo, L. C., Zhu, Y. H., & Zhao, J. (2014). Static Analysis and Modal Analysis of Heavy-Load Manipulator Based on ANSYS. *Applied Mechanics and Materials*, *556-562*, 1059-1064. doi:10.4028/www.scientific.net/amm.556-562.1059

A. (n.d.). ANSYS Mechanical APDL Theory Reference. Retrieved May 14, 2017, from <u>https://www.scribd.com/document/290527666/ANSYS-Mechanical-APDL-Theory-Reference</u>

Meng, J., Liu, Y., & Liu, R. (2011). Finite Element Analysis of 4-Cylinder Diesel Crankshaft. *International Journal of Image, Graphics and Signal Processing, 3*(5), 22-29. doi:10.5815/ijigsp.2011.05.04

ALAYSIA

Amnuaypornsri, S., Sakdapipanich, J., & Tanaka, Y. (2009). Green strength of natural rubber: The origin of the stress-strain behavior of natural rubber. *Journal of Applied Polymer Science*, *111*(4), 2127-2133. doi:10.1002/app.29226

Salim, M., Putra, A., Mansor, M., Musthafah, M., Akop, M., & Abdullah, M. (2016). Analysis of Parameters Assessment on Laminated Rubber-Metal Spring for Structural Vibration. *IOP Conference Series: Materials Science and Engineering*, *114*, 012014. doi:10.1088/1757-899x/114/1/012014

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPENDICES

Appendix A

Gantt Chart for PSM I

Appendix B

Gantt Chart for PSM II

WEEK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TASK															
Continuous study of the of the model															
Draw the 5-different type of rubber rod on CATIA															
Figure out the transmissibility formula related to the types of rubber rod	A 44														
Analysis the type 2 and 3	1	1													
of the rubber rod		P									V				
E. E					J .						1				
Analysis the type 4 and 5					-				-						
of the rubber rod		_													
سيا ملاك	ah	1		a	:4		ai	1	-	м, "м	in.	01			
Combination result of	e ^h	0		- 10				9	2.0	~	- 40 ⁻				
parameters UNIVERSIT	T	EK	NIF	(AI	L N	A	LA	YS	IAI	ME	_Ak	(A			
Report writing															
Submit the draft report															
Seminar PSM 2															
Complete report submits															

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

Appendix K

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

No	Part Name	Quantity
1	Holder	4
2	Outer Shaft	4
3	Upper Spring Holder	1
4	Lower Spring Holder	1
5	Rubber Base	1
6	Rubber	1
7	Spring Holder	8
8	Spring	8
9	Inner Shaft	4
10	Structure Base	1