FORCE EFFECTS ON LAMINATED RUBBER-METAL SPRING USING TRANSMISSIBILITY TEST NUMERICAL APPROACH

MUHAMMAD IHSAN BIN MADZUKI

This report submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering (Plant & Maintenance)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project entitled "Force Effect on Laminated Rubber Metal Spring Using Transmissibility Test Numerical Approach" is the result of my own work excepts as cited in the references.

Signature:.....Name: MUHAMMAD IHSAN BIN MADZUKIDate: 17 MAY 2017

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Plant & Maintenance).

Signature:Supervisor's Name: DR. MOHD AZLI BIN SALIMDate:

DEDICATION

To my beloved mother, father, wife, siblings and all my friends.

ABSTRACT

The purpose of this project is to study and analyses the laminated rubber-metal spring model by using the finite element analysis software. The model is drawn part by part and assembly by using the CATIA solid modelling software. By using the ANSYS FEA finite element analysis software, the natural rubber rod is analyses with 5 different type of natural rubber rod. This 5-different type of the natural rubber rod that been drawn and be analyses. The 5 different types of the natural rubber rod are the nature rubber rod without embedded plate, the nature rubber rod with 1 embedded aluminium alloy plate, the nature rubber rod with 2 embedded aluminium alloy plate, the nature rubber rod with 3 embedded aluminium alloy plate and the last one is the nature rubber rod with 4 embedded aluminium alloy plate. Every type of the natural rubber rod was analysed by using the 5-different force which is 200N, 400N, 600N, 800N, and 1000N. The result and data of the analysis then is show and represent based on the graph and table. By referring the result, the comparison of the value of the modal analysis, stress frequency response and the deformation frequency response of each type of the natural rubber rod is done. As the summary of the project, the number of embedded plate on the natural rubber rod will affect the result of the modal analysis, stress frequency response and the deformation frequency response.

ABSTRAK

Tujuan project ini adalah untuk mengkaji dan menganalisis model model spring getah berlapis dengan logam dengan menggunakan perisian analisis. Model tersebut telah dilukis bahagian demi bahagian dan digabung dengan menggunakan perisian permodelan pepejal CATIA. 5 jenis rod getah asli telah dianalisis dengan menggunakan perisian ANSYS FEA. 5 jenis rod getah asli tersebut yang telah sediakan telah dianalisis. 5 jenis rod getah asli tersebut ialah rod getah asli tanpa plat aluminium aloi yg tertanam di dalamnya, rod getah asli dengan 1 plate aluminium aloi tertanam di dalamnya, rod getah asli dengan 2 plate aluminium aloi tertanam di dalamnya, rod getah asli dengan 3 plate aluminium aloi tertanam di dalamnya, dan rod getah asli dengan 4 plate aluminium aloi tertanam di dalamnya. Setiap jenis rod getah asli telah dianalisis dengan menggunakan daya 5 yang berbeza iaitu 200N, 400N, 600N, 800N, dan 1000N. Keputusan dan data dari analisis telah di paparkan dalam bentuk graf dan jadual. Merujuk kepada keputusan dan data yang diperolihi, perbandingan diantara setiap analisis telah dilakukan. Sebagai penutup untuk project ini, ternyata bilangan plate aluminium aloi yang tertanam di dalam rod getah asli akan memberi kesan kepada analisis.

ACKNOWLEDGEMENT

Bissmillahirrahmanirrahim,

Alhamdulillah. Thanks to Allah SWT, who with His willing give me the opportunity to complete this Final Year Report (FYP) This project report was prepared for Faculty of Mechanical Engineering (FKM), Universiti Teknikal Malaysia Melaka (UTeM), basically for student in 4th year to complete the requirement for student undergraduate program that leads to the degree of Bachelor of Engineering in Mechanical. This report is based on the methods given by the university.

First of all, I would like to express my deepest appreciation to my parents, Mr. Madzuki Bin Ismail and Madam. Rokiah Binti Ahmad for their supports and encouragement throughout this endeavour. Special thanks to my supervisor, Dr. Mohd Azli Bin Salim for his invaluable guidance, mentorship, wisdom and professionalism for my academic pursuit. Dr. Mohd Azli Bin Salim has been an excellent mentor and has provided unfailing support throughout my final year project conduction. Last but not least, to all my lecturers and dearest friends who involved in this project work, I would like to extend million thanks to them for their patience and kind advice to make this project work possible. Thank you.

CONTENTS

CHAPTER			CONTENT	PAGE
	DECI	LARAT	TION	ii
	APPF	ROVAL		iii
	DEDI	ICATIO	DN	iv
	ABST	FRACT		v
	ABST	FRAK		vi
	ACK	NOWL	EDGEMENT	vii
	TABI	LE OF	CONTENTS	viii
	LIST	OF FI	GURES	xii
	LIST	OF TA	ABLES	xix
	LIST	OF AE	BREVIATIONS	xxiv
	LIST	OF SY	MBOLS	XXV
CHAPTER 1	INTR	ODUC	TION	1
	1.1	Backg	ground	1
	1.2	Proble	em Statement	2
	1.3	Objec	tive	3
	1.4	Scope	e of Project	3
	1.5	Repor	rt Outline	3
CHAPTER 2	LITE	RATU	RE REVIEW	5
	2.1	Introd	uction	5
	2.2	Trans	missibility of a Laminated Rubber-Metal	5
		2.2.1	Lumped Parameter Model	6
		2.2.2	Result for Different Number of Layer	9
			Embedded	

	2.3	Dyna	mic Analysis of Laminated Rubber-Metal	11
	Sprin	ng Using	Finite Element Method	
		2.3.1	Isolator Model	12
		2.3.2	Material Properties for Isolator Model	13
		2.3.3	Finite Element Analysis Method	13
		2.3.4	Comparison for Finite Element	14
			Analysis Result	
	2.4	Paran	neter Assessment on Laminated Rubber-	14
	Meta	l Spring		
		2.4.1	Parameter Selection	15
		2.4.2	Analysis Result Laminated Rubber	16
			Metal Spring	
	2.5	Finite	Element Analysis for Leaf Spring	16
		2.5.1	Harmonic Response Analysis	17
	2.6	Modal	Analysis Study	17
		2.6.1	Vibration Mode Shape Frequency and	17
			Natural Frequency	
CHAPTER 3	RES	EARCH	AND METHODOLOGY	19
	3.1	Introd	uction	19
	3.2	Overa	ll Flowchart	20
	3.3	Data (Collection	21
	3.4	Comp	uter Aided Design	22
		3.4.1	Step in 3-D Modelling by CATIA	23
		3.4.2	Step for Design a Part by CATIA	26
		3.4.3	Laminated Rubber – Metal Spring	29
			Component	
	3.5	Finite-	-Element Analysis	33
		3.5.1	Modal Analysis on ANSYS Software	34
		3.5.2	Harmonic Response Analysis on ANSYS	42
			Software	

CHAPTER 4	RESU	JLT AN	ID DISCUSSION	45
	4.1	Analy	sis of Nature Rubber Rod by ANSYS Finite	45
	Eleme	ent Anal	ysis	
	4.2	Modal	Analysis	46
		4.2.1	Modal Analysis of the Type 1 Nature Rubber	46
			Rod	
		4.2.2	Modal Analysis of the Type 2 Nature Rubber	49
			Rod	
		4.2.3	Modal Analysis of the Type 3 Nature Rubber	51
			Rod	
		4.2.4	Modal Analysis of the Type 4 Nature Rubber	53
			Rod	
		4.2.5	Modal Analysis of the Type 5 Nature Rubber	55
			Rod	
	4.3	Freque	ency Response of the Nature Rubber Rod	57
		4.3.1	Stress Frequency Response of the Nature	57
			Rubber Rod with 1 Embedded Aluminium	
			Alloy	
		4.3.2	Deformation Frequency Response of Nature	64
			Rubber Rod with 1 Embedded Aluminium	
			Alloy	
		4.3.3	Stress Frequency Response of the Nature	70
			Rubber Rod with 2 Embedded Aluminium	
			Alloy	
		4.3.4	Deformation Frequency Response of Nature	76
			Rubber Rod with 2 Embedded Aluminium	
			Alloy	
		4.3.5	Stress Frequency Response of the Nature	82
			Rubber Rod with 3 Embedded Aluminium	
			Alloy	

		4.3.6	Deformation Frequency Response of Nature	88
			Rubber Rod with 3 Embedded Aluminium	
			Alloy	
		4.3.7	Stress Frequency Response of the Nature	94
			Rubber Rod with 4 Embedded Aluminium	
			Alloy	
		4.3.8	Deformation Frequency Response of Nature	100
			Rubber Rod with 4 Embedded Aluminium	
			Alloy	
	4.4	Summ	ary	106
CHAPTER 5	CON	ICLUSI	ON AND RECOMMENDATION	112
	1.1	Conc	lusion	112
	1.2	Reco	nmendation	113
		REF	ERENCES	114
		APPI	ENDICES	116

LIST OF FIGURES

PAGE

TITLE

FIGURE

2.1	A Bulging Effect in a Rubber Isolator Due to a Large Preload	6
2.2	The Embedded Plate in the Rubber Rod	7
2.3	(a)Mass-Damper-Spring of a LR-MS Model (b) Free-Body- Diagram for LR-MS Model	8
2.4	Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=1	10
2.5	Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=2	10
2.6	Transmissibility of LR-MS from Lumped Parameter Model with Numbers of Layers of Plate N=5	11
2.7	LR-MS with 1 Embedded Plate Assembly	13
2.8	Vibration Mode and Natural Frequency for a Plate	18
3.1	Part Design Option	23
3.2	Sketching Option	24
3.3	Assembly Design Option	24
3.4	Assembly Design Part Component	25

3.5	Drawing Save Format Option	25
3.6	Part Design Option	26
3.7	x-y Plane Property Option	26
3.8	Profile Option and Constrain Definition for Sketch	27
3.9	Exit Workbench Property Option	27
3.10	Pad Definition Property Option	28
3.11	Model of the Nature Rubber Rod	28
3.12	LR-MS Model Assembly	32
3.13	Engineering Data Option	35
3.14	Connection between Engineering Data and Modal Analysis	35
3.15	Set-Up New Material for the Nature Rubber	36
3.16	Physical Properties for the New Material	36
3.17	Isotropic Elasticity Toolbox Option	37
3.18	Tensile Yield Strength Toolbox Option	37
3.19	Engineering Data for General Material Option	38
3.20	Geometry Browse Option	38
3.21	Material for Geometry Part Option	39
3.22	Generate Mesh Option	39
3.23	Fix Support for the Model Option	40
3.24	Mode Option	40

3.25	Create Mode Shape Result Option	41
3.26	Result for the Mode Option	41
3.27	Connection Between Modal and Harmonic Analysis Option	42
3.28	Input Force Option	42
3.29	Insert the Frequency Response for Deformation Option	43
3.30	Frequency Range for the Model Option	43
3.31	Solve Option to Run the Analysis	44
4.1	Result of Analysis	45
4.2	Assembly Type 1	46
4.3	Assembly Type 2	49
4.4	Assembly Type 3	51
4.5	Assembly Type 4	53
4.6	Assembly Type 5	55
4.7	Graph Stress Vs Frequency Response for Force 200 N of 1 Embedded plate	58
4.8	Graph Stress Vs Frequency Response for Force 400 N of 1 Embedded plate	59
4.9	Graph Stress Vs Frequency Response for Force 600 N of 1 Embedded plate	60
4.10	Graph Stress Vs Frequency Response for Force 800 N of 1 Embedded plate	61
4.11	Graph Stress Vs Frequency Response for Force 1000 N of 1 Embedded plate	62

4.12	Result of Five Different Data with Different Value of Force Due to the 1 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	63
4.13	Graph Deformation Vs Frequency Response for Force 200 N of 1 Embedded plate	64
4.14	Graph Deformation Vs Frequency Response for Force 400 N of 1 Embedded plate	65
4.15	Graph Deformation Vs Frequency Response for Force 600 N of 1 Embedded plate	66
4.16	Graph Deformation Vs Frequency Response for Force 800 N of 1 Embedded plate	67
4.17	Graph Deformation Vs Frequency Response for Force 1000 N of 1 Embedded plate	68
4.18	Result of Five Different Data with Different Value of Force Due to the 1 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	69
4.19	Graph Stress Vs Frequency Response for Force 200 N of 2 Embedded plate	70
4.20	Graph Stress Vs Frequency Response for Force 400 N of 2 Embedded plate	71
4.21	Graph Stress Vs Frequency Response for Force 600 N of 2 Embedded plate	72
4.22	Graph Stress Vs Frequency Response for Force 800 N of 2 Embedded plate	73
4.23	Graph Stress Vs Frequency Response for Force 1000 N of 2 Embedded plate	74
4.24	Result of Five Different Data with Different Value of Force Due to the 2 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	75
4.25	Graph Deformation Vs Frequency Response for Force 200 N of 2 Embedded plate	76

4.26	Graph Deformation Vs Frequency Response for Force 400 N of 2 Embedded plate	77
4.27	Graph Deformation Vs Frequency Response for Force 600 N of 2 Embedded plate	78
4.28	Graph Deformation Vs Frequency Response for Force 800 N of 2 Embedded plate	79
4.29	Graph Deformation Vs Frequency Response for Force 1000 N of 2 Embedded plate	80
4.30	Result of Five Different Data with Different Value of Force Due to the 2 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	81
4.31	Graph Stress Vs Frequency Response for Force 200 N of 3 Embedded plate	82
4.32	Graph Stress Vs Frequency Response for Force 400 N of 3 Embedded plate	83
4.33	Graph Stress Vs Frequency Response for Force 600 N of 3 Embedded plate	84
4.34	Graph Stress Vs Frequency Response for Force 800 N of 3 Embedded plate	85
4.35	Graph Stress Vs Frequency Response for Force 1000 N of 3 Embedded plate	86
4.36	Result of Five Different Data with Different Value of Force Due to the 3 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	87
4.37	Graph Deformation Vs Frequency Response for Force 200 N of 3 Embedded plate	88
4.38	Graph Deformation Vs Frequency Response for Force 400 N of 3 Embedded plate	89
4.39	Graph Deformation Vs Frequency Response for Force 600 N of 3 Embedded plate	90

4.40	Graph Deformation Vs Frequency Response for Force 800 N of 3 Embedded plate	91
4.41	Graph Deformation Vs Frequency Response for Force 1000 N of 3 Embedded plate	92
4.42	Result of Five Different Data with Different Value of Force Due to the 3 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	93
4.43	Graph Stress Vs Frequency Response for Force 200 N of 4 Embedded plate	94
4.44	Graph Stress Vs Frequency Response for Force 400 N of 4 Embedded plate	95
4.45	Graph Stress Vs Frequency Response for Force 600 N of 4 Embedded plate	96
4.46	Graph Stress Vs Frequency Response for Force 800 N of 4 Embedded plate	97
4.47	Graph Stress Vs Frequency Response for Force 1000 N of 4 Embedded plate	98
4.48	Result of Five Different Data with Different Value of Force Due to the 4 Embedded Plate Due to the Natural Rubber Rod for Stress Frequency Response	99
4.49	Graph Deformation Vs Frequency Response for Force 200 N of 4 Embedded plate	100
4.50	Graph Deformation Vs Frequency Response for Force 400 N of 4 Embedded plate	101
4.51	Graph Deformation Vs Frequency Response for Force 600 N of 4 Embedded plate	102
4.52	Graph Deformation Vs Frequency Response for Force 800 N of 4 Embedded plate	103
4.53	Graph Deformation Vs Frequency Response for Force 1000 N of 4 Embedded plate	104

4.54	Result of Five Different Data with Different Value of Force Due to the 4 Embedded Plate Due to the Natural Rubber Rod for Deformation Frequency Response	105
4.55	Combination of Graph of the Different Types of Modality with the Frequency	106
4.56	a) Graph of Comparison for the Stress Frequency Response for 200N (b) Graph of Comparison for the Deformation Frequency Response for 200N	109

LIST OF TABLES

PAGE

TITLE

TABLE

3.1	Material Properties of Natural Rubber for Analysis	21
3.2	Material Properties of Aluminium Alloy for Analysis	21
3.3	Component of the LR-MS Model	29
4.1	Result of the Modal Analysis for Type 1	47
4.2	Result of the Modal Analysis for Type 2	49
4.3	Result of the Modal Analysis for Type 3	51
4.4	Result of the Modal Analysis for Type 4	53
4.5	Result of the Modal Analysis for Type 5	55
4.6	Result of the Frequency Response Due Stress for Force 200 N of 1 Embedded Plate	57
4.7	Result of the Frequency Response Due Stress for Force 400 N of 1 Embedded Plate	59
4.8	Result of the Frequency Response Due Stress for Force 600 N of 1 Embedded Plate	60
4.9	Result of the Frequency Response Due Stress for Force 800 N of 1 Embedded Plate	61

4.10	Result of the Frequency Response Due Stress for Force 1000 N of 1 Embedded Plate	62
4.11	Result of the Frequency Response Due Deformation for Force 200 N of 1 Embedded Plate	64
4.12	Result of the Frequency Response Due Deformation for Force 400 N of 1 Embedded Plate	65
4.13	Result of the Frequency Response Due Deformation for Force 600 N of 1 Embedded Plate	66
4.14	Result of the Frequency Response Due Deformation for Force 800 N of 1 Embedded Plate	67
4.15	Result of the Frequency Response Due Deformation for Force 1000 N of 1 Embedded Plate	68
4.16	Result of the Frequency Response Due Stress for Force 200 N of 2 Embedded Plate	70
4.17	Result of the Frequency Response Due Stress for Force 400 N of 2 Embedded Plate	71
4.18	Result of the Frequency Response Due Stress for Force 600 N of 2 Embedded Plate	72
4.19	Result of the Frequency Response Due Stress for Force 800 N of 2 Embedded Plate	73
4.20	Result of the Frequency Response Due Stress for Force 1000 N of 2 Embedded Plate	74
4.21	Result of the Frequency Response Due Deformation for Force 200 N of 2 Embedded Plate	76

4.22	Result of the Frequency Response Due Deformation for Force 400 N of 2 Embedded Plate	77
4.23	Result of the Frequency Response Due Deformation for Force 600 N of 2 Embedded Plate	78
4.24	Result of the Frequency Response Due Deformation for Force 800 N of 2 Embedded Plate	79
4.25	Result of the Frequency Response Due Deformation for Force 1000 N of 2 Embedded Plate	80
4.26	Result of the Frequency Response Due Stress for Force 200 N of 3 Embedded Plate	82
4.27	Result of the Frequency Response Due Stress for Force 400 N of 3 Embedded Plate	83
4.28	Result of the Frequency Response Due Stress for Force 600 N of 3 Embedded Plate	84
4.29	Result of the Frequency Response Due Stress for Force 800 N of 3 Embedded Plate	85
4.30	Result of the Frequency Response Due Stress for Force 1000 N of 3 Embedded Plate	86
4.31	Result of the Frequency Response Due Deformation for Force 200 N of 3 Embedded Plate	88
4.32	Result of the Frequency Response Due Deformation for Force 400 N of 3 Embedded Plate	89
4.33	Result of the Frequency Response Due Deformation for Force 600 N of 3 Embedded Plate	90

4.34	Result of the Frequency Response Due Deformation for Force 800 N of 3 Embedded Plate	91
4.35	Result of the Frequency Response Due Deformation for Force 1000 N of 3 Embedded Plate	92
4.36	Result of the Frequency Response Due Stress for Force 200 N of 4 Embedded Plate	94
4.37	Result of the Frequency Response Due Stress for Force 400 N of 4 Embedded Plate	95
4.38	Result of the Frequency Response Due Stress for Force 600 N of 4 Embedded Plate	96
4.39	Result of the Frequency Response Due Stress for Force 800 N of 4 Embedded Plate	97
4.40	Result of the Frequency Response Due Stress for Force 1000 N of 4 Embedded Plate	98
4.41	Result of the Frequency Response Due Deformation for Force 200 N of 4 Embedded Plate	100
4.42	Result of the Frequency Response Due Deformation for Force 400 N of 4 Embedded Plate	101
4.43	Result of the Frequency Response Due Deformation for Force 600 N of 4 Embedded Plate	102
4.44	Result of the Frequency Response Due Deformation for Force 800 N of 4 Embedded Plate	103
4.45	Result of the Frequency Response Due Deformation for Force 1000 N of 4 Embedded Plate	104
4.46	Natural Frequency for Plate Model from FE Method	107

LIST OF ABBEREVATIONS

NR	Nature Rubber
FE	Finite Element
FEA	Finite Element Analysis
3D	Three Dimensional
LR-MS	Laminated Rubber-Metal Spring
DOF	Degree-of-Freedom

CAD Computer Aided Design