CHARACTERISATION OF WIDEBAND NONLINEAR VIBRATION ABSORBER USING ADJUSTABLE MAGNETIC STIFFNESS

ESWARAN A/L MANAKOR

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHARACTERISATION OF WIDEBAND NONLINEAR VIBRATION ABSORBER USING ADJUSTABLE MAGNETIC STIFFNESS

ESWARAN A/L MANAKOR

This report is submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering (Plant & Maintenance)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JUNE 2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "Characterisation of Wideband Nonlinear Vibration Absorber Using Adjustable Magnetic Stiffness" is the result of my own work except as cited in the references

Signature	:	
Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Plant & Maintenance).

Signature	:.	
Name of Supervisor	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved father and mother

ABSTRACT

Linear dynamic vibration absorber can only suppress vibration of primary structure at one frequency. At other frequency it will amplify the vibration of primary structure. Nonlinear dynamic vibration absorber was introduced to increase the operational bandwidth of absorber. In this project, nonlinear dynamic vibration absorber was characterized using adjustable magnetic stiffness. Thisproject starts with identification first vibration mode of primary structure. Then Operating Deflection Shape (ODS) for the first vibration mode was constructed. Then, nonlinear dynamic vibration absorber was characterized using three different variables. They are effect of gap between magnets, effect of input level from shaker and effect of length of absorber beam. Lastly, performance of nonlinear dynamic vibration absorber on primary structure was investigated at three different points and three different gap levels.

ABSTRAK

Penyerap getaran linear hanya boleh menyekat getaran struktur utama pada satu frekuensi sahaja. Pada frekuensi lain ia akan menguatkan getaran struktur utama. Penyerap getaran tak linear telah diperkenalkan untuk meningkatkan jalur lebar operasi penyerap. Dalam projek ini, penyerap getaran tak linear dicirikan menggunakan kekukuhan magnet laras. Projek ini bermula dengan pengenalan mod getaran pertama struktur utama. Kemudian 'Operating Deflection Shape' (ODS) untuk mod getaran yang pertama telah dibina. Kemudian, penyerap getaran tak linear dicirikan menggunakan tiga pembolehubah yang berbeza. Mereka adalah kesan sela antara magnet, kesan tahap input dari penggoncang dan kesan panjang rasuk penyerap. Akhir sekali, prestasi penyerap getaran tak linear pada struktur utama telah disiasat di tiga tempat yang berbeza dan tiga tahap sela yang berbeza.

ACKNOWLEDGEMENT

I would like to convey my sincere gratitude to my supervisor Dr. Roszaidi Ramlan for giving me this opportunity to do this final year project under his supervision. He always encourages and gives me confidence to finish this project successfully. Whenever I encountered problem, he never hesitated to give me advice and guidance.

Secondly, I would like to thank Assistant Engineer Mr Johardi for his kindness in giving me time I needed to use the VibroAcoustics laboratory to complete my project. Also, I would like to thank a senior master's degree student Lim Kah Hei for giving me guidance in conducting experiment and sharing his knowledge in the field of vibration.

Finally, I would like to thank my parents and friends who give me encouragement and be patient with me during the past 1 year.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGE
	DECLARATION	
	DEDICATION	
	ABSTRACT	i
	ABSTRAK	ii
	ACKNOWLEDGEMENT	iii
	TABLE OF CONTENT	iv
	LIST OF FIGURES	vii
	LIST OF TABLES	xii
	LIST OF ABBREVIATIONS	xiii
	LIST OF SYMBOLS	xiv
CHAPTER 1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	4
	1.3 Objectives	5
	1.4 Scope of Project	5
CHAPTER 2	LITERATURE REVIEW	6
	2.1 Passive Dynamic Vibration Absorber	6
	2.2 Semi-active Type Dynamic Vibration Absorber	10

	2.3 Active Type Dynamic Vibration Absorber	14
	2.4 Nonlinear Dynamic Vibration Absorber	17
	2.5 Nonlinear Dynamic Vibration Absorber Using	
	Hardening Mechanism	20
CHAPTER 3	METHODOLOGY	23
	3.1 Flowchart	23
	3.2 Analytical Study on Linear and Nonlinear Absorber	25
	3.3 Experimental Study	36
CHAPTER 4	THEORETICAL RESULTS	49
	4.1 Vibration Mode of Primary Structure	49
	4.2 Operating Deflection Shape	51
	4.3 Characterisation of Nonlinear Dynamic Vibration	
	Absorber	52
	4.4 Performance of Nonlinear Dynamic Vibration	
	Absorber on Primary Structure	54
CHAPTER 5	EXPERIMENTAL RESULTS	58
	4.1 Vibration Mode of Primary Structure	58
	4.2 Operating Deflection Shape	60
	4.3 Characterisation of Nonlinear Dynamic Vibration	
	Absorber	61
	4.4 Performance of Nonlinear Dynamic Vibration	
	Absorber on Primary Structure	73
CHAPTER 6	CONCLUSION	79
	6.1 Conclusion	79

6.2 Recommendation for Future Works	81
REFERENCES	83

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	FRF for dynamic vibration absorber	4
2.1	Setup of absorber with negative stiffness	7
2.2	Positions where absorber attached in electric grass trimmer	9
2.3	Design of MR-SVA	11
2.4	Comparison of semi-active and passive absorbers	12
2.5	Proposed magnetorheological elastomer-based tuned absorber	13
2.6	Realization of proposed model as hard mechanical element	15
2.7	Setup of active absorber	16
2.8	Comparison between active absorber, without absorber and	
	optimum passive absorber	16
2.9	Setup of nonlinear absorber	17
2.10	Comparison between FENE absorber and absorber with cubic	
	nonlinearity	19
2.11	Snap-through mechanism setup	21
3.1	Image of absorber inside Taipei 101 building	25
3.2	Setup of linear undamped vibration absorber	26
3.3	Graph of force against extension of spring	27
3.4	FRF of liner undamped vibration absorber	28
3.5	FRF primary structure with linear absorber	28

3.6	Setup of linear damped absorber	29
3.7	FRF of linear damped vibration absorber	
3.8	FRF of primary structure for different damping coefficient	31
3.9	Setup of nonlinear vibration absorber	33
3.10	Difference between linear and nonlinear stiffness	34
3.11	FRF for nonlinear vibration absorber	35
3.12	Bump test setup	36
3.13	Setup of beam excited without absorber	37
3.14	Setup to identify vibration mode of primary structure	38
3.15	Schematic diagram of experimental setup to obtain ODS	
	Of primary structure	39
3.16	Primary structure marked with points to measure ODS	40
3.17	Schematic diagram of experimental setup of nonlinear absorber	41
3.18	Design of nonlinear dynamic vibration absorber	41
3.19	Characterisation of nonlinear dynamic vibration absorber	
	on shaker	43
3.20	Schematic diagram of characterisation of NDVA	43
3.21	Shaker used for characterisation of absorber	45
3.22	Method to increase or decrease gap between magnets	46
3.23	Starting point of effective length	47
3.24	Points nonlinear vibration absorber placed on primary	
	structure	48
4.1	FRF for primary structure indicating its vibration mode	50
4.2	ODS for first mode of vibration	51

4.3	FRF for nonlinear absorber indicating jump-down and jump-up	
	frequency	52
4.4	Graph showing difference between linear and nonlinear spring	53
4.5	Nonlinear dynamic vibration absorber	55
4.6	FRF for properly tuned absorber on primary structure	57
5.1	FRF of primary structure from impact test	58
5.2	Accelerance of primary structure without dynamic vibration	
	absorber	59
5.3	ODS for first vibration mode of primary structure	60
5.4	Three types of characterisation of nonlinear vibration absorber	61
5.5	Displacement response for gap of 0.5 mm [Input: 2.5 mm pk-pk,	
	Length: 5 cm]	62
5.6	Displacement response for gap of 1.0 mm [Input: 2.5 mm pk-pk,	
	Length: 5 cm]	62
5.7	Displacement response for gap of 1.3 mm [Input: 2.5 mm pk-pk,	
	Length: 5 cm]	63
5.8	Displacement response for gap of 2.0 mm [Input: 2.5 mm pk-pk,	
	Length: 5 cm]	63
5.9	Displacement response for gap of 2.5 mm [Input: 2.5 mm pk-pk,	
	Length: 5 cm]	64
5.10	Displacement response for gap of 5.0 mm [Input: 2.5 mm pk-pk,	
	Length: 5 cm]	64
5.11	Displacement response from input excitation 0.05 mm pk-pk	
	[Length 5 cm Gap of 1.0 mm]	66

5.12	Displacement response from input excitation 1.0 mm pk-pk		
	[Length 5 cm Gap of 1.0 mm]	66	
5.13	Displacement response from input excitation 1.5 mm pk-pk		
	[Length 5 cm Gap of 1.0 mm]	67	
5.14	Displacement response from input excitation 2.0 mm pk-pk		
	[Length 5 cm Gap of 1.0 mm]	67	
5.15	Starting point of effective length	69	
5.16	Displacement response for length 4.5 cm		
	[Input: 1 mm pk-pk, Gap: 1 mm]	70	
5.17	Displacement response for length 5.0 cm		
	[Input: 1 mm pk-pk, Gap: 1 mm]	70	
5.18	Displacement response for length 5.2 cm		
	[Input: 1 mm pk-pk, Gap: 1 mm]	71	
5.19	Displacement response for length 5.5 cm		
	[Input: 1 mm pk-pk, Gap: 1 mm]	71	
5.20	Accelerance graph of primary structure with absorber		
	attached to position 1 with gap of 1.5 mm between magnets	73	
5.21	Accelerance graph of primary structure with absorber		
	attached to position 2 with gap of 1.5 mm between magnets	74	
5.22	Accelerance graph of primary structure with absorber		
	attached to position 3 with gap of 1.5 mm between magnets	75	
5.23	Accelerance graph of primary structure with absorber		
	attached to position 1 with gap of 1.0 mm between magnets	77	
5.24	Accelerance graph of primary structure with absorber		
	attached to position 1 with gap of 1.5 mm between magnets	77	

C Universiti Teknikal Malaysia Melaka

5.25	Accelerance graph of primary structure with absorber		
	attached to position 1 with gap of 2.0 mm between magnets	78	
6.1	Modes of vibration	81	
6.2	Changing vertical gap between magnets	82	

LIST OF TABLES

TABLE	TITLE	PAGE
3.1	Specifications of magnet	42
3.2	Specifications of beam	42

LIST OF ABBREVIATIONS

- DVA Dynamic vibration absorber
- TVA Tuned vibration absorber
- ATVA Adaptive tuned vibration absorber
- MRE Magnetorheological elastomer
- MR Magnetorheological
- FRF Frequency response function
- PZT Zicronite titanate
- LVDT Linear variable differential transformer
- DR Delayed resonator
- FENE Finite extensibility elastic
- NDVA Nonlinear dynamic vibration absorber
- ODS Operating deflection shape
- SDOF Single degree of freedom
- MDOF Multiple degree of freedom

LIST OF SYMBOLS

- x_1 Deflection of primary structure
- r Ratio of primary structure natural frequency over absorber natural frequency
- m_1 Mass of primary structure
- *K*₁ Stiffness of primary structure
- *K*₂ Stiffness of absorber
- m_2 Mass of absorber
- x_2 Deflection of absorber
- F(t) Force applied to primary structure
- C Damping coefficient of absorber
- Z Relative motion of absorber
- β Optimum tuning parameter
- ζ Optimum damping ratio
- μ Mass ratio
- K_3 Nonlinear stiffness constant
- x^3 Cubic stiffness of nonlinearity
- E Young's modulus
- I Second moment of inertia
- m Mass per unit length
- L Length

- F_m Magnet restoring force
- ρ Density

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Vibration in structure is an unwanted situation because it can potentially cause damage to the structure. When the structure excited by external force at its natural frequency, a phenomenon called resonance will occur. At this frequency, damping element of structure will be at minimum and energy of structure will be at maximum. A small auxiliary mass-spring system known as dynamic vibration absorber (DVA) is normally used to mitigate the vibration of the structure. This DVA needed to be tuned to match the natural frequency of primary structure to effectively suppress the unwanted vibration of primary structure (Ji, 2011). Linear DVA can be further divided into undamped and damped DVA. In undamped DVA, there will only be auxiliary mass and spring element. In damped DVA damper will be added in parallel to the spring in the setup of DVA.

Damped DVA initially developed by Den Hartog and Ormondroyd (1928). There is a term, called optimum tuned damped DVA in damped DVA section. In this optimum tuning method, several parameter such mass, stiffness and optimum damping ration must be considered (Bekdas.G & Nigdeli.S.M, 2011). Advantage of doing this optimum tuning is that, it will provide larger suppression of resonant vibration amplitude of the primary system and will

generating wider safe operating frequencies range of the primary system. These damped and undamped DVA are called passive dynamic vibration absorber.

Then there are, semi-active and active type of dynamic vibration absorbers to effectively mitigate unwanted vibration at in primary structure. Semi-active type absorbers use smart materials control the absorbers. System parameters such as stiffness and damping element will be changed to change the dynamic response of the absorber. The system will be stable because it is constructed based on the passive DVA (Toshihiko.K, et al., 2016). In active type DVA, an actuator will be connected to the absorber. This actuator functions as control element to vary the stiffness and damper element of the absorber and adds flexibility to incorporate control theory to provide cancellation forces. (Chatterjee.S, 2010)

Although the absorber mention above which is categorized as a passive absorber is a famous and familiar device in mitigating unwanted vibration in mechanical structure, its only effective when it is precisely tuned to the frequency of a vibration mode and active and semiactive type DVA can be very complex in its development. Furthermore, the first study of nonlinear absorber by Roberson, Pipes and Arnold have attract an attention in many literature and after realizing the limitations of linear absorbers, the non-linear vibration absorber was developed for their performance ability to widen the suppression bandwidth (Kerschen.G & Viguie.R, 2010).

In this project, magnets will be used in the characterisation of wideband nonlinear vibration absorber. One magnet will be attached to absorber beam and two more magnets will be attached to magnet wall. All the magnets will be setup facing different polarity, so that they will be attracted to each other. Three types of characterisation method will be investigated in

this project. They are effect of gap between magnets, effect of level of input displacement and effect of length of absorber beam. Then, performance of absorber in mitigating vibration of primary structure will be investigated for first vibration mode of beam modelled as primary structure.

1.2 PROBLEM STATEMENT

Dynamic Vibration Absorber is an effective device used to suppress vibration in primary structures. Traditional DVA usually consist of mass and spring. DVA counteracts the motion of primary system by absorbing primary structure's vibration.

Figure 1.1: FRF for dynamic vibration absorber.

The problem with traditional undamped DVA is that it has a narrow bandwidth of operation as shown in Figure 1.1. Vibration of primary structure will be completely suppressed if the natural frequency of the absorber is perfectly tuned to the excitation frequency. In this case, it is assumed that receptance is below 1.0 is acceptable. As seen in the figure 1.1, absorber is only effective if r is between r_L and r_R because response of the system will be below 1.0 in this region. Other than the shaded region, transmissibility will be above 1.0 and it is not desired. If ω is