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ABSTRACT 

 

 

 

 System identification is a technique or application that aims to develop 

mathematical models for dynamical systems using measured input and output signals. 

There are 4 important steps which is the observed data, model, parameter estimation and 

validation. In this project, model structure selection is important because the objective is to 

find the effect of the error order selection on system identification. Linear model which is 

ARX and ARMAX model is used to make the simulation to investigate effect of error 

order. This project was carried out using the Graphical User Interface (GUI) in MATLAB 

application. Firstly, 3 equations were randomly created with supervisor guide and data 

acquisition was run to generate 500 data by using the MATLAB software command and 

save it into folder for next step use. After that, system identification toolbox is open and 

imports the data that generate from the equation. Next step is modelling where the data use 

ARMAX model and different sequence in error order or   .  This project result is based on 

5 performance indicator like Means Square Error (MSE), Model Output, Model Residuals, 

Akaike’s Final Prediction Error (FPE) and Parameter Values. This entire indicator will pop 

out after click on button indicator or from the data of each model. Based on result that 

acquire from this investigation, the effect or error order selection have a very small 

difference compared to the true model. This is maybe because the data was not completely 

scatter and need to bigger. So the conclusion is, there is small effect of error order selection 

in system identification.  
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ABSTRAK 

 

 

 

 Pengenalanpastian sistem adalah satu teknik atau aplikasi yang bertujuan  untuk 

membangunkan model matematik untuk sistem dinamik menggunakan isyarat input dan 

output yang diukur. Terdapat 4 langkah penting yang merupakan data yang diperhatikan, 

model, parameter anggaran dan pengesahan. Dalam projek ini, pemilihan struktur model 

adalah penting kerana tujuannya adalah untuk mencari kesan pemilihan turutan ralat 

pada pengenalpastian sistem. Model linear yang merupakan model ARX dan ARMAX 

adalah digunakan untuk membuat simulasi untuk menyiasat kesan nilai turutan ralat. 

Projek ini telah dijalankan dengan menggunakan antara muka grafik pengguna (GUI) 

dalam perisian MATLAB. Pertama, 3 persamaan diciptakan secara rawak dengan 

panduan penyelia dan perolehan data telah dijalankan untuk menjana 500 data dengan 

menggunakan arahan perisian MATLAB dan simpan ke dalam folder untuk digunakan 

langkah seterusnya. Selepas itu, toolbox pengenalpastian sistem dibuka dan mengimport 

data yang dijana membentuk persamaan. Langkah seterusnya ialah memodelkan data 

dengan menggunakan model ARMAX dan menggunakan turutan yang berbeza untuk ralat 

atau   . Hasil projek ini adalah berdasarkan kepada 5 petunjuk prestasi seperti Means 

Square Error (MSE), keluaran model, sisa model, Ramalan Ralat Akhir Akaike  (FPE) dan 

Parameter. Kesemua penunjuk akan ditunjukkan selepas klik pada penunjuk butang atau 

dari maklumat setiap model. Berdasarkan keputusan yang diperolehi daripada 

penyiasatan ini, kesan turutan ralat sangat kecil apabila dibanding dengan model sebenar. 

Ini masih boleh diterima kerana mungkin data tidak sepenuhnya berselerak dan data perlu 

lebih besar. Jadi kesimpulannya ialah, terdapat kesan kecil pada pemilihan turutan ralat 

dalam pengenalpastian sistem.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

In recent years, system identification has been discussed and gets attention from 

many universities. This is because system identification was start use in some industries. In 

the other word, system identification can be categories as the basic  necessity  in regions, 

for example, control, correspondence, power system and instrumentation for acquiring a 

model of a system of interest or another system to be produced.    

 

System identification is the art and science of building mathematical models of 

dynamic systems from observed input–output data. It can be seen as the interface between 

the real world of applications and the mathematical world of control theory and model 

abstractions. As such, it is a ubiquitous necessity for successful applications (Ljung, 2010). 

Actually system identification is a one term in control area that refers as a technique 

constructing model from observed data.  

There are four basic ingredients in system identification: 

 

1) The observed data 

2) Model structure 

3) A criterion of fit 

4) Validation 
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When formulating and solving an identification problem it is important to have the 

purpose of the identification in mind. In control problems the final goal is often to design 

control strategies for a particular system. There are, however, also situations where the 

primary interest is to analyse the properties of a system. The purpose of the identification is 

to design a control system. The character of the problem might vary widely depending on 

the nature of the control problem (Astrom, 1971). For the example, design a stable 

regulator or design a control program for optimal transition from one state to another. 

 

In this project, the main objective is to investigate the effect of error order selection 

in system identification. The error order that only occur in ARMAX model will be discuss 

to. So to make this experiment happen, this experiment will be carry out using MATLAB‘s 

system identification graphical user interface (GUI) named ‗IDENT‘ found in System 

Identification Toolbox.  

 

 

1.2 Problem Statement 

 

There are many aspects that we can discuss in system identification such as type of 

model, the techniques and many more. System identification deals with the problem of 

building mathematical models of dynamic system based on observed data from the system. 

The subject is thus part of basic scientific methodology and since dynamical system is 

abundant in our environment, the techniques of system identification have a wide 

application area (Ljung., 1987). Besides, the most important in system identification is to 

achieve model from system data and from the selection of error order will cause an 

accurate model. This experiment will discuss about vary the value of error order that 

happen to the accurate model. Since the presence of measurement error order only occur in 

ARMAX model, the discussion about why wrong selection of error order will cause the 

developed ARMAX model unable to represent system behaviour. 

 

 

 

ARMAX model are widely used in identification and are a standard tool in control 

engineering for both system description and control design. These models, however, can be 

non-realistic in many practical contexts because of the presence of measurement errors that 
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play an important role in applications like fault diagnosis and optimal filtering. ARMAX 

models can be enhanced by introducing also additive error terms on the input and output 

observations. How much the error order effects the output between the actual result and 

simulation result in ARMAX model. Besides that, we want to know what the different 

output result when the wrong selection of error order is estimate in the system. 

 

 

1.3 OBJECTIVE 

 

The objectives of this project are as follows: 

 

1. To investigate the effect of error order on performance of identification. 

2. To perform system identification using linear difference equation which is auto 

regressive moving average exogenous input (ARMAX) model. 

 

 

1.4 Scope of Project 

 

The scopes of this project are: 

 

1. Identification will be performed using GUI (Graphical User Interfaces) 

‘ident’ on MATLAB (matrix laboratory) software. 

2. Performance comparison will be made from various perspectives such as 

final prediction error and established loss function. 
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CHAPTER 2 
 

 

 

LITERATURE REVIEW 

 

 

 

2.1   System Identification 

 

System identification is the art and science of building mathematical model of 

dynamic systems from observed input-output data. It can be seen as the interface between 

the real world of application and the mathematical world of control theory and model 

(Ljung, 2010). Or in other way, system identification is the process of developing or 

improving a quantitative numerical model from a set of input and output data that 

represents the response of a dynamic system. It is necessary to use model to describe the 

relationships among the system variables. The developed model has the trademark 

performance similar like the unknown system.  

 

The parameter estimation step decides inside of the arrangement of models, the 

model that is the best guess or gives the best clarification of the observed data. The 

estimation of the model parameters relates to the minimization of the chosen criterion. The 

decision of basis relies on upon the accessible data about and the motivation behind the 

model. Model validation is conceivably the most vital stride in the model building 

arrangement. It is likewise a standout amongst the most disregarded. Regularly the 

approval of a model appears to comprise of simply citing the measurement from the fit 

(which measures the part of the aggregate variability in the reaction that is represented by 

the model). 
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As mention before, there are four steps in system identification which is the 

observed data, model structure, a criterion of fit and validation and the loop of this all four 

step can be determine as Figure 2.1 and will be discuss more detail in next. 

 

 
 

     Figure 2.1: Loop of System Identification Step 

 

 

 

 

2.1.1 The Observed Data  

 

If we want to build a model for a system, we should get data or information about 

it. This can be done by just watching the natural fluctuation (e.g., vibration analysis of a 

bridge that is excited by normal traffic), but most often efficient to set up dedicated 

experiments that is actively excites the system ( e.g., controlled excitation that optimize his 
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own goal (for example, minimum cost, minimum time, or minimum power consumption 

for a given measurement accuracy) within the operator constraints (e.g., the excitation 

should remain below a maximum allowable level). The quality of the final result can 

depend heavily on the choices that are made 

 

 

2.1.2 Model Structure  

 

A choice should be made within all the possible mathematical models that can be 

used to represent the system. Again a wide variety of possibilities exist, such as 

below; 

 

 Parametric versus non-parametric models 

 

In a parametric model, the system is described using a limited number of 

characteristic quantities called the parameter of the model, whereas in a non-

parametric model the system is characterized by measurements of a system 

function at a large number of points. Example of parametric models is the transfer 

function of a filter described by its poles and zeros and the motion equation of a 

piston. An example of a non-parametric model is the description of a filter by its 

impulse response at a large number of points. 

 

 Usually it is simpler to create a non-parametric model than a parametric one 

because the modeller needs less knowledge about the system itself in the former 

case. However, physical insight and concentration of information are more 

substantial for parametric models than for non-parametric ones.  

 

 

 White box models versus black box models 

 

In the construction of a model, physical laws whose availability and 

applicability depend on the insight and skills of the experimenter can be used 

(Kirchhoff’s laws, Newton’s laws, etc.) Specialized knowledge related to different 

scientific fields may be brought into this phase of the identification process. The 
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modelling of a loud speaker, for example, requires extensive understanding of 

mechanical, electrical and acoustical phenomena. The result may be a physical 

model, based on comprehensive knowledge of the internal functioning of the 

system. Such a model is called a white box model.  

 

The choice between the different methods depends on the aim of the study: 

the white box approach is better for gaining insight into the working principles of a 

system, but black box model may be sufficient if the model will be used only for 

prediction of the output. 

 

Although, as a rule of thumb, it is advisable to include as much prior 

knowledge as possible during the modelling process, it is not simple to express this 

information if the polynomial coefficients are used as parameters. 

 

 Linear models versus non-linear models. 

 

In real life, almost every system is non-linear. It is because mostly 

approximated by linear models, assuming that in the operation region the behaviour 

can be linearized. This kind of approximation makes it possible to use simple 

models without jeopardizing properties that are of importance to the modeller. This 

choice depends strongly on the intended use of the model. For example, a non-

linear model is needed to describe the distortion of an amplifier but a linear model 

will be sufficient to represent its transfer characteristics if the linear behaviour is 

dominant and is the only interest. 

   

 

 

 

 Linear in the parameter versus non-linear in the parameters 

 

A model is called linear in the parameter if there exists a linear relation 

between these parameters and the error that is minimized. This does not imply that 

the system itself is linear. For example Ԑ =   - (        ) is linear in the 

parameter    and    but describes a non-linear system.  
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                       Ԑ(  )   (  )          
       

   (  )                                      (2.1) 

 

Equation 2.1 describe a linear system but the model is non-linear in 

the    and    parameters. Linearity in the parameters is a very important aspect of 

models because it has a strong impact on the complexity of the estimators if a 

(weighted) least squares cost function is used. In that case, the problem can be 

solved analytically for models that are linear in the parameters so that an iterative 

optimization problem is avoided. 

 

 

2.1.3 Criterion Of Fit 

 

Once a model structure is chosen (e.g., a parametric function model), it should be 

matched as well as possible with the available information about the system. Mostly, this is 

done by minimizing a criterion that measures a goodness of the fits. The choice of this 

criterion is extremely important because it determines the stochastic properties of the final 

estimator. For the example like resistance, many choice are possible and each of them can 

lead to a different estimator with its owns properties. Usually, the cost function defines a 

distance between the experiment data and the model.  

 

 

 

 

 

 

 

2.1.4 Validation 

 

Finally, the validity of the selected model should be tested: does this model 

describe the available data properly or are there still indications that some of the data are 

not well modelled, indicating remaining model errors? In practice, the best model (the 

smallest errors) is always preferred. Some tools that guide the user through this process by 
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separating the remaining errors into different classes, for example, modelled linear 

dynamics and non-linear distortions. From this information, further improvement of the 

model can be proposed, if necessary. 

 

   During the validation tests it is always important to keep the application in mind. 

The model should be tested under the same conditions as it will be used later. 

Extrapolation should be avoided as much as possible. The application also determines what 

properties are critical. 

 

 

2.1.5 System Identification Step Overview 

 

This brief overview of the identification process shows that it is a complex task 

with a number of interacting choices. It is important to pay attention to all aspects of this 

procedure, from the experiment design to the model validation, in order to get the best 

results. The reader should be aware that besides these actions, other aspects are also 

important. A short inspection of the measurement setup can reveal important shortcomings 

that can jeopardize a lot of information. 

 

 Good understanding of the intended applications helps to set up good experiments, 

and is very important to make the proper simplifications during the model building 

process. Many times, choices are made that are not based on complicated theories but are 

dictated by the practical circumstances. In these cases a good theoretical understanding of 

the applied methods will help the user to be aware of the sensitive aspect of his techniques. 

This will enable him to put all his effort on the most critical decisions. Moreover, he will 

become aware of the weak points of the final model. 

 

 

2.2   Type of Model 

 
Model is a relationship between observed quantities. In loose terms, a model allows 

for prediction of properties or behaviours of the object. Typically the relationship is a 

mathematical expression, but it could also be a table or a graph. 
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Model in system identification also be known as mathematical model. Model is 

represented in mathematical terms of behavior of real device and object. Model can be 

used on various types of science and engineering such as physic, biology and electrical 

engineering. Eykhoff (1974) defined a mathematical model as a representation of the 

essential aspects of an existing system (or a system to be constructed) which presents 

knowledge of that system in usable form. Mathematical models can take many forms, 

including but not limited to dynamical systems, statistical models, differential equations, or 

game theoretic models. These and other types of models can overlap with a given model 

involving variety abstract structures. In general, mathematical model may include logic 

models, as far as logic is taken as a part of mathematics 

 

Choosing a suitable model structure is prerequisite before its estimation. The choice 

of model structure is based upon understanding of the physical systems. Three types of 

models are common in system identification that is the black-box model, grey-box model, 

and user-defined model. The black-box model assumes that systems are unknown and all 

model parameters are adjustable without considering the physical background. The grey-

box model assumes part of the information about the underlying dynamics or some of the 

physical parameters are known and the model parameters might have some constraints. 

The user-defined model assumes commonly used parametric models that cannot represent 

the model that one wants to estimate. 

 

 

2.2.1 ARX 
 

Autoregressive regressive model with exogenous inputs (ARX) is often used for 

modelling of controlled systems especially in self-tuning control. Popularity of ARX 

models stems mainly from plausibility of least squares (LS) for estimating its parameters. 

The ARX model therefore is preferable, especially when the model order is high. 

 (Vincent, 2005) define ARX model has been proposed as a representation of the 

speech production process and combined with the RK (Rosenberg-Klatt) glottal source 

model. However, this method has to cope with a very difficult optimization problem for 

which no practical satisfactory solution has been given. 

The ARX model structure shown in equation 2.2: 
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y(t)+   y(t−1)+...+    y(t−  )=   u(t−  )+...+    u(t−  −  +1)+e(t)              (2.2) 

The parameters    and   are the orders of the ARX model and    is the delay. 

 

 y(t)— Output at time t. 

na — Number of poles. 

nb — Number of zeroes plus 1. 

nk — Number of input samples that occur before the input affects the output, also called 

the dead time in the system. 

y(t−1)…y(t−na) — Previous outputs on which the current output depends. 

u(t−nk)…u(t−nk−nb+1) — Previous and delayed inputs on which the current output 

depends. 

e(t) — White-noise disturbance value. 

A more compact way to write the difference equation is 

A(q)y(t)=B(q)u(t−nk)+e(t) 

q is the delay operator. Specifically, 

A(q)=1+      +…+    
    

B(q)=  +     +…+    
     

 

 

 

 

 

2.2.2 ARMAX 

 

ARMAX (auto regressive moving average exogenous input) model in particular, 

can lead to reliable estimates of the dynamic characteristics of a structure even in the 

presence of strong measurement noise. ARMAX models have been used extensively to 

represent the relationship of the system output with system input in the presence of noise in 
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many linear dynamic systems. The parameters are usually estimated by means of the 

recursive extended least square (RELS) method (Fung, 2003). 

 

ARMAX model structure is: 

y(t)+a1y(t−1)+…+anay(t−na)=b1u(t−nk)+…+bnbu(t−nk−nb+1)+ c1e(t−1)+….+cnce(t−nc)

+e(t)                  

A more compact way to write the difference equation is: 

A(q)y(t)=B(q)u(t−nk)+C(q)e(t) 

where, 

y(t)— Output at time t. 

na — Number of poles. 

nb — Number of zeroes plus 1. 

nc — Number of error order. 

nk — Number of input samples that occur before the input affects the output, also called 

the dead time in the system. 

y(t−1)…y(t−na) — Previous outputs on which the current output depends. 

u(t−nk)…u(t−nk−nb+1) — Previous and delayed inputs on which the current output 

depends. 

e(t−1)…e(t−nc) — White-noise disturbance value. 

 

 

 

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is the 

delay. q is the delay operator. Specifically, 

A(q)=1+     +…+    
    

B(q)=b1+     +…+    
      

C(q)=1+     +…+    
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If data is a time series that has no input channels and one output channel, then ARMAX 

calculates an ARMA model for the time series 

A(q)y(t)=C(q)e(t) 

 

 

2.3   Error Order 

 

Error order only occurs in ARMAX model and it can be known as    in the 

equation. Besides that, it can be a number of model’s parameter in the C vector. 

    must be zero if want to estimating a model using frequency domain data. As we can 

see, the objective of this investigate is to find the effect of error order, so ARMAX model 

will be used to perform the simulation and discuss what the effect is. 

 

 

2.4   Parameter Estimation 

 

Simultaneous with the development of increased need of parameter estimation, 

computers have been built that make parameter estimation practicable for great array of 

application. Estimation was first extensively discussed by Legendre in 1806 and Gauss in 

1809 (V.Beck, 1977).The problem of identifying a dynamic process has received 

considerable attention in recent years.  

 

The various techniques developed for input-output data collection and evaluation 

range from the simplest form of the deterministic procedures to elegant numerical and 

statistical methods based on results of optimal estimation theory. It may be stressed that in 

the field of parameter estimation, the least squares technique has reached a significant level 

of popularity and perfection (Strejc, 1980). 

 

The least squares method is a statistical means for finding a line or curve of “best” 

fit for a set of observed measurements. When the collected data are plotted as points on a 

graph and appear to fall near some line drawn through the midst of them, the distance of 

the points from the line varies with the line chosen. The average of the squares of these 
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distances is taken as a measure of “goodness of fit” of the line. The “best-fit” line is that 

one for which this mean square deviation is minimal. It can be shown that the desired line 

must pass through the arithmetic mean ( ̅, ̅) of the array. The least squares method can be 

extended to find a second-degree curve to fit a given set of data and generalized to other 

curve. 

 

For the black-box model, deciding the delay and model order for the parametric 

model is commonly an experimentation process. The accompanying is an arrangement of 

steps that can prompt a suitable model.  

 

1. Obtain helpful data about the model request by watching the quantity of    

reverberation tops in the nonparametric recurrence reaction capacity. 

Ordinarily, the quantity of tops in the size reaction breaks even with a large 

portion of the order. 

 

2. Obtain a sensible evaluation of postponement utilizing relationship 

examination and/or by testing sensible qualities in a medium size ARX 

model. Pick the postponement that gives the best model fit in prediction 

error or other fit rule. 

 

3. Test different ARX model requests with this deferral picking those that give 

the best fit. 

 

4. Since the ARX model portrays both the system flow and commotion 

properties utilizing the same arrangement of posts, the subsequent model 

may be pointlessly high all together. By plotting the zeros and posts (with 

the vulnerability interims) and searching for cancelations you can decrease 

the model request. The subsequent request of the posts and zeros are a 

decent beginning stage for ARMAX, OE and/or BJ models with these 

requests utilized as the B(q) and F(q) model parameters and first or second 

request models for the commotion qualities. 
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5. If a suitable model is not got as of right now endeavour to figure out 

whether there are extra flags that may impact the output. Estimations of 

these signals can be joined as additional input signs. 

.  
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CHAPTER 3 

 

 

 

METHODOLOGY 

 

 

 

3.1   Introduction 

 

This chapter describes the methodology used in this project to investigate the effect 

of error order selection in system identification. The flow chart of the project is shown in 

Figure 3.1. This project starts by studying system modelling; only two types of model are 

chosen that is auto regressive with exogenous input (ARX) and auto regressive moving 

average with exogenous (ARMAX) model. 

 

 For this investigation, MATLAB software is used to achieve the objective. For the 

early step, only familiarization on the software like try follows some tutorial and video to 

make sure there are no problem and error during running the research. Trial run and data 

simulation is the most important part because from this process, data will be found and 

some analysis will be makes to find the result. 

 

 Since the main objective is to find the error order made effect, so the simulation 

needed to be stressed and tried many times to achieve the effect of error order on model 

selection. Finally some research discussion with supervisor will be held based on the result 

that is obtained from the simulation. 
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Figure 3.1: Flow chart of the methodology. 
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3.2   Familiarization With MATLAB 

 

MATLAB is software that uses high performance language for technical computing 

that developed by Math Works. It is one interactive system whose basic data element is an 

array that does not require dimensioning. This allows you one solve many technical 

computing problems, especially those with matrix and vector formulations, in a fraction of 

the time it would take to write a program in a scalar non-interactive language. It also 

integrates computation, visualization and programming to the user. Some function of 

MATLAB is:  

 

 Math and computation 

 Algorithm development 

 Modelling, simulation, and prototyping 

 Data analysis, exploration, and visualization 

 Scientific and engineering graphics 

 Application development, including Graphical User Interface building 

Like other language program, MATLAB also provide many varieties of extension 

and program libraries to ease the user. Or in other word, it is call toolbox and it is define as 

a collection of routines that are designed to do common things. This toolbox is more 

involved than the simple one-lines and normal programming syntax that the base 

MATLAB has.  

MATLAB toolbox that is used in this investigation is system identification toolbox, 

it provides identification techniques such as maximum likelihood, prediction-error 

minimization (PEM), and subspace system identification. To represent nonlinear system 

dynamics, one can estimate Hammerstein-Wiener models and nonlinear ARX models with 

wavelet network, tree-partition, and sigmoid network nonlinearities.  
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System identification toolbox can do work such as: 

 Model Identification From Data 

 Linear Model Identification 

 Non-Linear Model Identification 

 Parameter Estimation in User-Defined Models  

 Online Parameter Estimation 

 Time-Series Data Modelling 

 

 

3.3   Trial Run  

 

 This section will show about all step of first trial run with the MATLAB with 

following the interactive demo of system identification tool guide that system 

identification tool window provided. Below are step by step to fulfil the first trial run as 

mention on methodology flow chart.  

 

First step, type ―ident” in the MATLAB command window as Figure 3.2. This action 

opens the System Identification application. A GUI for the toolbox will appear as Figure 

3.3. 

 

 
Figure 3.2: Command Window 
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Figure 3.3: System Identification Toolbox 

 

To Import data, just write load dryer2 in command window as Figure 3.4 

 

 
Figure 3.4: Import Data Command Window 

 

 

 



 
 

21 
 

In system identification tool, press the pop up menu Import Data and select Time Domain 

Data like Figure 3.5 and dialog box will open, and then edit the input, output, sampling 

interval and data name like Figure 3.6. 

 

 
Figure 3.5: System Identification Dialog Box 

 
Figure 3.6: Import Data Dialog 
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After click import button on import data dialog, data will present on data board in system 

identification like Figure 3.7. 

 

 
Figure 3.7: Appear data on data board  

 

Time plot figure will shows like Figure 3.8 after click on time plot for examination 

purpose. 

 
Figure 3.8: Time Plot  
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Select remove mean from preprocess popup menu like Figure 3.9 for insert new data set 

that has zero mean and new data will appear like Figure 3.10. The data is also 

automatically inserted in time plot figure. 

 

 
Figure 3.9: Remove means on preprocess popup menu 

 

 
Figure 3.10: New data that has zero mean. 
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Drag and drop the data ‘dryd’ from data board onto Working Data icon like Figure 3.11. 

After that, click Select Range on Preprocess popup menu. Select range window will out 

and select the graph from 1 to 50 with curser or key in number in Time Span like Figure 

3.12. 

 
Figure 3.11: Move data ‘dryd’ to Working Data icon

 
Figure 3.12: Select Range from 1 to 50 
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After click insert in Select Range, new data named ‘dryde’ will appear like Figure 3.13.  

 

 
Figure 3.13: Data ‘dryde’ insert on data board 

 

Same like before, but this time selects range from 50 to final like Figure 3.14 for validation 

data set. After click insert new data v will appear like Figure 3.15 

 

 
Figure 3.14: Select Range from 50 to final 
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Figure 3.15: Data ‘drydv’ appear on data board 

 

Drag data ‘dryde’ onto Working Data and data ‘drydv’ onto Validation Data like Figure 

3.16 

 

 
Figure 3.16: Drag data ‘dryde’ and data ‘drydv’  
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Click Correlation Model on popup menu of Estimation like Figure 3.17 and Correlation 

Model window will pop out like Figure 3.18 

 

 
Figure 3.17: Click Correlation Model  

 

 
Figure 3.18: Correlation Model Window 
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Just click Estimate on Correlation Model Window and a correlation model will appear in 

model board like Figure 3.19. 

 

 
Figure 3.19: New Model appear on Model Board 

To open Spectral Model window like Figure 3.21, just click Spectral Model on popup 

Estimate menu like Figure 3.20. 

 
Figure 3.20: Click Spectral Model 
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Figure 3.21: Spectral Model Window 

 

After click Estimate on Spectral Model window, spectral model will appear on model 

board like Figure 3.22. 

 

 
Figure 3.22: Spectral model appear on model board 
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Click Polynomial Model on popup Estimate menu like Figure 3.23 and Polynomial Model 

window will open like Figure 3.24. 

 

 
Figure 3.23: Click Polynomial Model  

 

 
Figure 3.24: Polynomial Model Window 
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After click Estimate on Polynomial Model window, the new model will insert and appear 

on model board like Figure 3.25. 

 
Figure 3.25: Polynomial Model With Order [4 4 1] Appear on Model Board 

 

On Polynomial Model window, click Order Editor and select the order   =2,   =2 and 

  =3 like Figure 3.26. 

 

 
Figure 3.26: Order Editor Window 
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Click estimate on Polynomial Model window and model with new order will appear like 

Figure 3.27. 

Figure 3.27: Polynomial Model With Order [2 2 3] 

Click the Order Selection as shown in Figure 3.28, after that click estimate to know what 

the good order is. 

Figure 3.28: Click Order Selection 



 
 

33 
 

3.4   Result Based On Trial Run 

 

All these result are getting from the trial run in 3.3 that been discussed before. 

There are 6 result that will be discussed which is frequency response, model output , 

residual analysis, noise spectrum, transient response and lastly zero and pole. 

 

 

3.4.1 Frequency Response 

 

 
Figure 3.29: Frequency Response Graph 

 

Figure 3.29 shown the example frequency responds graph. ’Bode(sys)’  creates a 

Bode plot of the frequency response of a dynamic system model ‘sys’. The plot displays 

the magnitude (in dB) and phase (in degrees) of the system response as a function of 

frequency. When ‘sys’ is a multi-input, multi-output (MIMO) model,’ bode’ produces an 

array of Bode plots, each plot showing the frequency response of one I/O pair. 

‘Bode’ automatically determines the plot frequency range based on system dynamics. 

 

 

 

https://www.mathworks.com/help/ident/ref/bode.html#inputarg_sys
https://www.mathworks.com/help/ident/ug/dynamic-system-models.html
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 ‘Bode’ computes the frequency response using these steps: 

1. Computes the zero-pole-gain (zpk) representation of the dynamic system. 

2. Evaluates the gain and phase of the frequency response based on the zero, pole, and 

gain data for each input/output channel of the system. 

a. For continuous-time systems, bode evaluates the frequency response on the 

imaginary axis s = jω and considers only positive frequencies. 

b. For discrete-time systems, bode evaluates the frequency response on the 

unit circle. To facilitate interpretation, the command parameterizes the 

upper half of the unit circle as equation 3.1. 

                                                  z=      0≤ω≤  =  
  

,                                                  (3.1) 

where Ts is the sample time. ωN is the Nyquist frequency. The equivalent 

continuous-time frequency ω is then used as the x-axis variable. 

Because H(ejω  ) is periodic and has a period 2 ωN, ‘bode’ plots the 

response only up to the Nyquist frequency ωN. If you do not specify a 

sample time, bode uses Ts = 1. 

 

 

3.4.2 Model Output 

 

 
Figure 3.30: Model Output 

https://www.mathworks.com/help/control/ref/zpk.html
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Figure 3.30 model output plots for time domain validation data shows 

simulated or predicted model output. At the right side of the plot shows Best Fit 

that show which model is the best. A higher number means a better model. 100% 

corresponds to a perfect fit and the worst fit is close to 0%. 

 

3.4.3 Residual Analysis 

 

 
Figure 3.31: Residual Analysis 

 

In Figure 3.31 Model Residual plot shows a residual analysis of the selected models. For 

time-domain validation data, the plot shows two graphs:  

 

i. Top graph shows autocorrelation function of the residuals for the output.  

ii. Bottom graph shows cross-correlation between the input and the residuals for 

each input-output pair 

iii. The horizontal dashed lines on the plot represent the confidence interval of the 

corresponding estimates. 
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A good model should have residuals uncorrelated with past inputs (independence test). 

Evidence of correlation indicates that the model does not describe how the output is 

formed from the corresponding input. 

 

 

3.4.4 Noise Spectrum 

 

 
Figure 3.32: Noise Spectrum 

 

Noise spectrum in Figure 3.32 curve displays a confidence interval on the plot. 

The confidence interval corresponds to the range of power-spectrum values with a specific 

probability of being the actual noise spectrum of the system. The toolbox uses the 

estimated uncertainty in the model parameters to calculate confidence intervals and 

assumes the estimates have a Gaussian distribution. 
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3.4.5 Transient Response  

 

 
Figure 3.33: Transient Response 

 

Figure 3.33 show Transient Response shape how the closed-loop system responds to a 

specific input signal when using Control System Tuner. In this case, a step input is 

assumed. Use a reference model to specify the desired transient response. 
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3.4.6 Zero And Pole 

 

 
Figure 3.34: Zeros and Poles 

        

The general equation of a linear dynamic system  as shown in equation 3.2: 

                                         y(t)=G(z)u(t)+v(t)                                                                                                (3.2) 

In this equation, G is an operator that takes the input to the output and captures the system 

dynamics, and v is the additive noise term. 

The poles of a linear system are the roots of the denominator of the transfer function G. 

The poles have a direct influence on the dynamic properties of the system. The zeros are 

the roots of the numerator of G. If you estimated a noise model H in addition to the 

dynamic model G, you can also view the poles and zeros of the noise model. 

Zeros and the poles as shown in Figure 3.34 are equivalent ways of describing the 

coefficients of a linear difference equation, such as the ARX model. Poles are associated 

with the output side of the difference equation, and zeros are associated with the input side 

of the equation. The number of poles is equal to the number of sampling intervals between 

the most-delayed and least-delayed output. The number of zeros is equal to the number of 

sampling intervals between the most-delayed and least-delayed input. 
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3.5   Data Acquisition 

 

For data program in this project there are three different equations. The three 

equations are as follows:  

 

i)   y(t) = 0.2y(t -1)-0.6y(t-3)+0.5u(t-2)+u(t-6)+e(t)                                                         (3.3) 

ii)  y(t) = -0.3y(t-3)+0.4y(t-4)+u(t-3)+0.3u(t-4)+0.7e(t)-0.9e(t-3)                                   (3.4) 

iii) y(t) =0.1y(t-2)-0.3y(t-5)-0.4u(t-1)+0.3e(t-5)                                                              (3.5) 

 

These equation represent ARX and ARMAX model equation, first equation is is 

ARX model and another two is ARMAX . After some calculation, will find value na=3 

nb=5 and nk=2 for first equation. For second equation, will find na=4 nb=2 nk=3 and 

nc=3. For last equation, the value of order na,nb,nc and nk are 5,2,5 and 3 respectively. 

After that, open the file to modified the program with change the equation in line number 

13, make sure the folder path that want to be save also be edit like Figure 3.35. 

 

 
Figure 3.35: Editor Window 
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After the program was run , the data was generate as shown in Figure 3.36 and 

ready to be perform in system identification 

 

 
Figure 3.36: Command Window 

 

 

3.6   Performance Indicator 

 

Before this, we had discussed about the variation of model in system identification. 

So, to choose the best model between the bunches of model, we will use the performance 

indicator. The performance indicator that we use for this project is loss function, model 

output, model residuals akaike’s final prediction Error and parameter value. Next we will 

discuss about this entire performance indicator one by one for the more detail. 

 

 

 



 
 

41 
 

3.6.1 Loss function 

 

The system identification toolbox software estimates model parameters by 

minimizing the error between the model output and the measured response. This error, 

called loss function or cost function, is a positive function of prediction errors e(t). In 

general, this function is a weighted sum of squares of the errors. For a model with   -

outputs, the loss function V(θ) has the following general form: 

 

                        V (θ) =  
 

 ∑        
   (t,θ) W(θ) e(t,θ)                                                         (3.3) 

 

where: 

 

 N is the number of data samples. 

 e(t,θ) is   -by-1 error vector at a given time t, parameterized by the parameter 

vector θ. 

 W(θ) is the weighting matrix, specified as a positive semi definite matrix. If W is a 

diagonal matrix, you can think of it as a way to control the relative importance of 

outputs during multi-output estimations. When W is a fixed or known weight, it 

does not depend on θ. 

 

The software determines the parameter values by minimizing V(θ) with respect to θ. 

For notational convenience, V(θ) is expressed in its matrix form: 

 

                 V (θ) =  
 
 trace (   (θ) E(θ) W(θ))                                             (3.4) 

 

E(θ) is the error matrix of size N-by-  . The i:th row of E(θ) represents the error value at 

time t = i. 

The exact form of V(θ) depends on the following factors: 

 Model structure. For example, whether the model that you want to estimate is an 

ARX or a state-space model. 

 Estimator and estimation options. For example, whether you are using n4sid or 

ssest estimator and specifying options such as ‘Focus’ and ‘OutputWeight'.  
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3.6.2 Model output 

 
The Model output window is opened by checking the corresponding check box in the 

‘ident‘ window. The plots show the simulated (predicted) outputs of selected models. The 

models are fed with inputs from the Validation Data set. The plot takes somewhat different 

forms depending on the character of the validation data. This could be:  

 Time domain data  

The simulated or predicted model output is shown together with the measured 

validation data.  

 Frequency domain data  

The amplitude of the (complex-valued) model output is shown together with the 

measured output's amplitude.   

 Frequency Function data  

The amplitude curves of the data's and the models' frequency responses are shown.  

In all the cases, the percentage of the output variations that is reproduced by the 

model is displayed at the side of the plot. A higher number means a better model. The 

precise definition of the fit shown in equation (3.5) 

                                  (  )  (   √
∑(   ̂) 

∑(   ̅) 
     x 100%                                                    (3.5) 

Where is the measured output and it is the stimulated/predicted model output. The 

time span over which the fit is measured can be changed under the Options sub-menu 

Customized time span for fit. There are sub-menus under the Options menu, which allows 

one to choose between simulated and predicted model output. There are also options to 

show measured and model outputs together or to show the difference between them. 
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3.6.3 Akaike’s Final Prediction Error 

 

From the prediction error standpoint, the higher the order of the model is, the better 

the model fits the data because the model has more degrees of freedom. However, you 

need more computation time and memory for higher orders. The parsimony principle says 

to choose the model with the smallest degree of freedom, or number of parameters, if all 

the models fit the data well and pass the verification test. The criteria to assess the model 

order therefore not only must rely on the prediction error but also must incorporate a 

penalty when the order increases. Akaike's Information Criterion (AIC), Final Prediction 

Error Criterion (FPE), and the Minimum Description Length Criterion (MDL) are criteria 

one can use to estimate the model order. 

 

Akaike's Final Prediction Error (FPE) criterion provides a measure of model quality 

by simulating the situation where the model is tested on a different data set. After 

computing several different models, you can compare them using this criterion. According 

to Akaike's theory, the most accurate model has the smallest FPE. 

 

If you use the same data set for both model estimation and validation, the fit always 

improves as you increase the model order and, therefore, the flexibility of the model 

structure. Akaike's Final Prediction Error (FPE) is defined by the following equation: 

  

                  FPE = det( 
 
∑  (   ̂ ) ( (   ̂ ))

  

 
) (

   
 

 

   
 

 

)                                   (3.6) 

where: 

 N is the number of values in the estimation data set. 

 e(t) is a   by-1 vector of prediction errors. 

  ̂  represents the estimated parameters. 

 d is the number of estimated parameters. 

  

If number of parameters exceeds the number of samples, FPE is not computed when model 

estimation is performed (model.Report.FPE is empty). The fpe command returns NaN 

 

 

 

http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/parameters_for_pe/#Akaikes_Information_Criterion
http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/parameters_for_pe/#Final_Prediction_Error_Criterion
http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/parameters_for_pe/#Final_Prediction_Error_Criterion
http://zone.ni.com/reference/en-XX/help/372458D-01/lvsysidconcepts/parameters_for_pe/#Minimum_Description_Length_Criterion
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3.6.4 Parameter Value 

 

In the context of block diagram when representing system, blocks have numeric 

parameters that determine how they calculate output values. To control the calculations 

that blocks perform, one can specify parameter values. For example, a ‘Gain’ block has 

a Gain parameter, and a ‘Transfer Fcn’ block has multiple parameters that represent the 

transfer function coefficients. 

 

One can use numbers, variables, and expressions to set block parameter values. Choose 

a technique based on your modelling goals. For example, you can: 

 

 Share parameter values between blocks and models by creating variables. 

 Control parameter characteristics such as data type and dimensions by creating 

parameter objects. 

 Model an algorithm as code by using mathematical expressions. 
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CHAPTER 4 

 

 

 

RESULT AND ANALYSIS 

 

 

 

4.1.   Introduction 

 

  In this chapter, the results that were obtained from the simulation will be 

discussed in detail one by one for the three equations that were tested before. The result 

that want be discuss and analyse is based on MSE (Mean Squared Error, Model Output, 

FPE (Final Prediction Error), Residual Analysis and Parameter Values. For the last part 

in this chapter, overall discussion about all this result will be state. 

 

 

4.2.   Mean Square Error 

 

    MSE is a network performance function. It measures the network's 

performance according to the mean of squared errors. It can be set to any value between 

0 and 1. The greater the regularization value, the more squared weights and biases are 

included in the performance calculation relative to errors. The default is 0, 

corresponding to no regularization.  It ensures that the relative accuracy of output 

elements with differing target value ranges are treated as equally important, instead of 

prioritizing the relative accuracy of the output element with the largest target value 

range. 
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4.2.1.   Equation 1 

 

   For the MSE data that show in Table 4.1, the left column shows the model 

order and for the right column shows the MSE data. From the table one graph is 

creating as shows in Figure 4.1. The highest MSE is a model name AMX3501 which 

is having 0.0001301 and the lowest MSE is model name AMX3591 that have   3.012e-

5 means that model AMX3591 is the best model. 

 

Model MSE 

Amx3501 0.0001301 

Amx3511 0.00013 

Amx3521 0.00013 

Amx3531 0.0001296 

Amx3541 0.0001299 

Amx3551 0.0001298 

Amx3561 3.096e-05 

Amx3571 3.067e-05 

Amx3581 3.289e-05 

Amx3591 3.012e-05 

Table 4.1: MSE for Equation 1 

 
Figure 4.1: Graph Error Order against MSE for Equation 1 
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4.2.2.   Equation 2 

 

   For the MSE data that show in Table 4.2, the left column shows the model 

order and for the right column shows the MSE data. From this table, one graph is 

created to make comparison between all models as shows in Figure 4.2. The highest 

MSE is a model name AMX4213 which is having 0.000909 and the lowest MSE is 

model name AMX4273 that have 6.044e-05. This is a proof that the best model is 

AMX4273. 

Model MSE 

amx4203 0.0009076 

amx4213 0.000909 

amx4223 0.0004986 

amx4233 0.0004986 

amx4243 0.0004907 

amx4253 0.0004835 

amx4263 0.0003557 

amx4273 6.044e-05 

amx4283 6.184e-05 

amx4293 5.887e-05 

Table 4.2: MSE for Equation 2 

 
Figure 4.2: Graph Error Order against MSE for Equation 2 
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4.2.3.   Equation 3 

 

For the MSE data that show in Table 4.3, the left column shows the model 

order and for the right column shows the MSE data. From the table, graph is created to 

better vision during the comparison as shows in Figure 4.3. The highest MSE is a 

model name AMX5201 which is having 6.222e-05 and the lowest MSE is model name 

AMX5291 that have 5.813e-06. According this, we can say that the model AMX5291 

is the best model. 

Model MSE 

amx5201 6.222e-05 

amx5211 4.237e-05 

amx5221 4.193e-05 

amx5231 4.193e-05 

amx5241 4.187e-05 

amx5251 4.186e-05 

amx5261 4.359e-05 

amx5271 5.979e-06 

amx5281 5.819e-06 

amx5291 5.813e-06 
Table 4.3: MSE for Equation 3 

 
Figure 4.2: Graph Order against MSE for Equation 3 
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4.3.   Model Output 

 

4.3.1.   Equation 1 

 

  Figure 4.3 show the model output dialog for the first equation. From this 

figure, the best fit for this run is model AMX3562 follow by AMX3582, AMX3572, 

AMX35923,   AMX5023, AMX5123, AMX3532, AMX3522, AMX3552 and 

AMX3542. As we can see on the figure, the model AMX3562, AMX3582, AMX3572 

and AMX3592 share the same value of the best fit and we can say that this all 4 model 

is the best model. 

 
Figure 4.3: Model Output Percentage for Equation 1 
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4.3.2. Equation 2  

 

  Figure 4.4 show the model output dialog for the second equation. From this 

figure, the best fit for this run is model AMX4273 follow by AMX4283, AMX4293, 

AMX4263,   AMX4253, AMX4213, AMX4203, AMX4233, AMX4223 and 

AMX4243. The model AMX4273 that hold 98.78 is the only best model since it the 

only model that have a best fit result. 

 
Figure 4.4: Model Output Percentage for Equation 2 
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4.3.3. Equation 3 

   

  Figure 4.4 show the model output dialog for the third equation. From this 

figure, the best fit for this run is model AMX5281 follow by AMX5291, AMX5271, 

AMX5261,   AMX5201, AMX5221, AMX5241, AMX5231, AMX5251 and 

AMX5211. This result quite similar as the equation 1 result since the 3 model have the 

same  99.68 best fit which is model AMX5281, AMX5291 and AMX5271. So we can 

state that the best model for the equation 3 it is all of this 3 models. 

 

 
Figure 4.5: Model Output Percentage for Equation 3 
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4.4.   Model Residuals 

 

  The top axes show the autocorrelation of residuals for the output (whiteness 

test). The horizontal scale is the number of lags, which is the time difference (in 

samples) between the signals at which the correlation is estimated. The horizontal 

dashed lines on the plot represent the confidence interval of the corresponding 

estimates. Any fluctuations within the confidence interval are considered to be 

insignificant.  

  A good model should have a residual autocorrelation function within the 

confidence interval, indicating that the residuals are uncorrelated. The bottom axes 

show the cross-correlation of the residuals with the input. A good model should have 

residuals uncorrelated with past inputs (independence test). Evidence of correlation 

indicates that the model does not describe how the output is formed from the 

corresponding input.  

  For the equation 1, as we can see on figure 4.6 proof that  all model show 

line between the interval confident and we can say that all model is accepted models.  

 

Figure 4.6: Best Model on Residual Analysis for Equation 1 



53

For equation 2, there is only one model that fulfil the criteria of the best 

model which is model AMX4263 that show on Figure 4.7. And the other model which is 

model AMX4203, AMX4213, AMX4223, AMX4233, AMX4243, AMX4253, AMX4273 

,AMX4283 and AMX4293 it is not good because the graph of all model is not between the 

confidence interval as shown on Figure 4.8. 

Figure 4.7: Best Model on Residual Analysis for Equation 2 

Figure 4.8: Rejected Model on Residual Analysis for Equation 2 
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  For the equation 3, the good model is the AMX5211, AMX5221, 

AMX5231, AMX5241, AMX5251 and AMX5261 as shown on Figure 4.8. Besides that, 

for another model which is model AMX5201, AMX5271, AMX5281 and AMX5291 

shows on Figure 4.9 proof it is  not good model because not fit the criteria of accepted 

model. 

 
Figure 4.8: Best Model on Residual Analysis for Equation 3 

 
Figure 4.9: Rejected Model on Residual Analysis for Equation 3 
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4.5.   Akaike’s Final Prediction Error 
 

  All FPE data were taken from every data model by click the model name 

and the model data will pop up. All data that take was fill in one table and convert to 

one graph for every equation to make the comparison and analyse easier. To recognize 

the best model in this section, the models that have smallest FPE value is the best 

model. 

 
 

4.5.1.   Equation 1 

 

  Table 4.4 shows the value of final prediction error for the first equation. The 

first column is the name of the models that have been test. The second column is the 

value of the final prediction error for each model. From the Figure 4.10, the line graph 

show the best model is the model AMX3591 because it has the smallest value. 

Model Final Prediction Error 

AMX3501 3.304e-05 

AMX3511 3.297e-05 

AMX3521 3.31e-05 

AMX3531 3.309e-05 

AMX3541 3.319e-05 

AMX3551 3.33e-05 

AMX3561 3.31e-05 

AMX3571 3.292e-05 

AMX3581 3.289e-05 

AMX3591 3.284e-05 
                   

                  Table 4.4: Final Prediction Error for Equation 1 
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Figure 4.10: Graph of FPE against Error Order for Equation 1 

 

4.5.2. Equation 2 

 

  Table 4.5 shows the value of final prediction error for the first equation. As 

we can see at the Figure 4.11, the graph shows that model AMX4273 is the best model 

because it has small value. 

Model Final Prediction Error 

amx4203 0.000937 

amx4213 0.0009339 

amx4223 0.0004194 

amx4233 0.0004199 

amx4243 0.0001437 

amx4253 0.0001248 

amx4263 0.0001136 

amx4273 6.5889e-05 

amx4283 8.127e-05 

amx4293 6.653e-05 
                  Table 4.5: Final Prediction Error for Equation 2 
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Figure 4.11: Graph of FPE against Error Order for Equation 2 

4.5.3. Equation 3 

 

  Table 4.6 shows the value of final prediction error for the first equation. The 

first column is the name of the models that have been test. The second column is the 

value of the final prediction error for each model. Based on Figure 14.2 proof that the 

model AMX5201 has the smallest value it is the best model. 

Model Final Prediction Error 

AMX5201 6.544e-0.5 

AMX5211 4.484e-05 

AMX5221 4.482e-05 

AMX5231 4.491e-05 

AMX5241 4.512e-05 

AMX5251 4.538e-05 

AMX5261 1.157e-05 

AMX5271 6.905e-06 

AMX5281 6.808e-06 

AMX5291 6.792e-06 
                  Table 4.6: Final Prediction Error for Equation 2 
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Figure 4.12: Graph of FPE against Error Order for Equation 3 

4.6. Parameter Values 

For the parameter value, table were made to make the comparison with the 

true value that take from the equation and the result of each value of the all model is 

obtaines from the data of model. 

4.6.1. Equation 1 

From the Table 4.7, we can see that the parameter value for  all model and 

true value. To proof which model is the best, the parameter must be same or close to 

the true value. All the same or close value with the true value of the model, the value 

is bold to make the comparison. For equation 1, the best is model AMX3502 because 

the y(t-1) and y(t-3) is close to the value, also for the u(t-2) and u(t-1) has the same 

value.  
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Table 4.7: Parameter Value for Equation 1  

Model y(t-1) y(t-3) u(t-2) u(t-6) 
True Value 0.2 0.6 0.5 1 
AMX3502 0.2002 0.5994 0.5 1 
AMX3512 0.2002 0.5994 0.5001 1 
AMX3522 0.2002 0.5994 0.5001 1 
AMX3532 0.2003 0.5994 0.5001 1 
AMX3542 0.2003 0.5994 0.5001 1 
AMX3552 0.2003 0.5994 0.5001 1 
AMX3562 0.2003 0.5993 0.5 0.9995 
AMX3572 0.2002 0.5993 0.5001 0.9994 
AMX3582 0.2002 0.5993 0.5001 0.9995 
AMX3592 0.2002 0.5993 0.5001 0.9994 

 

 

 

4.6.2. Equation 2 

 

  For the Equation 2, from the Table 4.8 we can say that the AMX4243 is the 

best model because it has 3 value that same and close to the true value which is y(t-4), 

u(t-3) and u(t-4).  Besides that, the close value for the data y(t-3) is model AMX4263 

and AMX4273 that has same value. 

Table 4.8: Parameter Value for Equation 2   

Model y(t-3) y(t-4) u(t-3) u(t-4) 
True Value 0.3 0.4 1 0.3 
AMX4203 0.3006 0.3981 0.995 0.314 
AMX4213 0.3006 0.3991 0.9953 0.3118 
AMX4223 0.3009 0.3991 0.998 0.3052 
AMX4233 0.3011 0.399 0.9979 0.3058 
AMX4243 0.3012 0.4 0.9988 0.3003 
AMX4253 0.2997 0.3983 0.9988 0.2989 
AMX4263 0.2998 0.3989 0.9986 0.2976 
AMX4273 0.2998 0.4011 0.9985 0.2987 
AMX4283 0.2991 0.4004 0.9994 0.298 
AMX4293 0.2996 0.4003 1 0.2985 
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4.6.3. Equation 3 

 

  The best model is AMX5271, AMX5281 and AMX5291 that share the 

same all 4 parameter value. As we can see based on Table 4.9, the value y(t-2) and  

y(t-5) are pretty close with the true value while the value for u(t-1) and  y(t-2) is same 

to the true value. 

                          Table 4.9: Parameter Value for Equation 3 

Model y(t-2) y(t-5) u(t-1) y(t-2) 
True Value 0.1 0.3 0.4 1 
AMX5201 0.1003 0.3799 0.399 1 
AMX5211 0.1003 0.3799 0.3996 1 
AMX5221 0.1003 0.3799 0.3995 1 
AMX5231 0.1003 0.3799 0.3995 1 
AMX5241 0.1003 0.3799 0.3995 1 
AMX5251 0.1003 0.3798 0.3995 1 
AMX5261 0.1003 0.3797 0.4 1 
AMX5271 0.1002 0.3799 0.4 1 
AMX5281 0.1002 0.3799 0.4 1 
AMX5291 0.1002 0.3799 0.4 1 

 

 

4.7.   Overall Discussion 

 

  Theoretically, the best model should be AMX3502 for equation 1, 

AMX4233 for equation 2 and AMX5251 for equation 3. This all best model was get 

from calculate the  ,   ,    and nk for each equation. For the indicator which is name 

MSE and FPE, the result shows that the best model is not the same with the theoretical 

model for the all three equation. It is because more terms will cause more accurate for 

the model.  

 

Same with the model output indicator, the result show the best model not 

same as with the theoretical. It shows the best model is other model it not should not be 

the best model. This happen to all 3 equation results because there might be 

coincidence in the simulated error term.  
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For the model residual, the equation 1 result show the all model are best 

because the graph line are between the confidence interval. But for equation 2, it 

supposed to model AMX4233 to be best model but the result show the best model is 

AMX4263, This may due to ill-conditioning problem. Ill-conditioning happens when 

the residuals are correlated. This is because the variable is too large. If the condition 

number is large, then the matrix is said to be ill-conditioned. However, the second 

graph for both models shows that the residual lies at confidence lines and shows no 

correlation between the residuals and input. For the equation 3, the result is good 

because one of the best model is a true model which is model AMX5251. 

 

  For the parameter value, the equation 1 show that the only one model is the 

best model, it is AMX3502 and it same with the true model. But in equation 2, the 

result show the best model is AMX4243, the result should show the model AMX4233 

as the best model. And also, for equation 3, the result still shows the wrong model as 

the best model. However, Amx5251 which is the true model is not for from expectation  

 

  The accuracy of a measurement system is the degree of closeness of 

measurements of a quantity to that quantity‘s true value. Increasing the number of 

terms or samples lead to greater confidence in calculating an accurate average 

measurement and to eliminate the error. Moreover, repeating the experiment more than 

once helps determine if the data was a fluke or represents the normal case. 
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CHAPTER 5 

 

 

 
CONCLUSION AND RECOMMENDERATION 

 

 

4.1.   Conclusion 
 

  For this project, the objective is to investigate the effect of error order in 

system identification that performs by using linear difference equation model. Model 

ARX and ARMAX was applied throughout this investigation. In the beginning of 

project, much research through book and internet was made to make sure, the 

understanding about all system identification application and process flow. After that, 

before performing the experiment, GUI familiarization was made by read some 

information on internet and journal. 

To perform this project, three equations was randomly create in two model 

which is one ARX model and two another is ARMAX model. From this equation, we 

place it into a coding program and it will create five hundred data to be performed in 

system identification. The coding was modified with the supervisor guide and 

discussions, the program must be perfectly run to create the data and the explanation 

was being discussed in data acquisition on chapter 3. 

System identification was performing with the created data and obtained the result 

with the different performance indicator. For the result, even it not show the good 

result compare to the theoretical but it can still consider it which in term to investigate 

the effect. It still show that equation supposed to be the best result is near to the true 

result.  
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4.2. Recommendation 

Last but not least, recommendation for future work is the data need to be 

more scattered for a better result. It is because the data play the important which is to 

maximize the accuracy of the data and to minimize the error so that one can draw 

accurate conclusion. In this investigation we can state that the data maybe not scatter, 

so the probability to get a good result is low.  

Besides, another recommendation is increasing sample size is a standout 

amongst the most well-known approaches to lessen the experimental error. Essentially, 

the larger the sample size in a test, the more likelihood to detect effects from changing 

a variable. If the sample size is larger, we can get the more precise result compare to 

the small sample size. 

` 
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APPENDIX 

Program Coding Equation 1 
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Program Coding Equation 2 

 

Program Coding Equation 3 
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PSM 1 Gantt Chart 

Task 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
1.0 Collect Information 
1.1  Find Journal, Book, Internet 
1.3  Study About SI 
2.0  Familiarization 
2.1  Information About MATLAB 
2.2  Explore MATLAB 
3.0  Trial Run 
3.1  Try Demo GUI 
3.2  Preliminary Result 
3.3  Result Discussion 
4.0  Conclusion 

PSM 2 Gantt Chart 

Task 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1.0  PSM 1 Report Correction 
1.1  Chapter 1 
1.2  Chapter 2 
1.3  Chapter 3 
2.0  Methodology 
2.1  Data Acquisition 
2.2  Perform SI 
3.0  Result 
4.0  Discussion 
5.0  Conclusion 


