INVESTIGATION ON THE PERFORMANCE GASOLINE BLENDED WITH HYDROGEN PEROXIDE AS FUEL FOR PETROL ENGINE

MUHAMMAD THAZALY BIN ZAKARIA

This report is submitted In fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering (Automotive) with Honours

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MAY 2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "Investigation On The Performance Gasoline Blended With Hydrogen Peroxide As Fuel For Petrol Engine" is the result of my own work except as cited in the references.

Signature	:	
Name	:	Muhammad Thazaly Bin Zakaria
Date	:	

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Automotive) with Honours.

Signature	:.	
Name of Supervisor	[]	Dr. Adnan Bin Roseli
Date	:	

DEDICATION

To my beloved mother, Puan Siti Hawa Binti Abdul Aziz

ABSTRACT

This report represents an experimental investigation on the performance gasoline blended with hydrogen peroxide as fuel for petrol engine. The main objective of this investigation was to identify the effects of hydrogen peroxide on engine performance when blended with gasoline. Literature reviews showed that previous studies had demonstrated better engine performance parameters with hydrogen peroxide blend. Test fuels was set with 5% and 10% of hydrogen peroxide in the fuel blends. An experiment was done to identify those fuel blend's chemical properties. For engine performance testing, each test fuel was tested at various engine speeds and loads. Data from those experiments were analysed into engine performance parameters. Then, the results of hydrogen peroxide-gasoline blend was compared with gasoline alone in terms of combustion analysis and engine performance analysis. The results showed blending off hydrogen peroxide with gasoline did improved performance of the engine when compared to gasoline alone.

ABSTRAK

Laporan ini mewakili peyiasatan ke atas prestasi petrol yang dicampur dengan hidrogen peroksida sebagai bahan bakar untuk enjin petrol. Objektif utama penyiasatan ini adalah untuk mengenal pasti kesan-kesan hidrogen peroksida pada prestasi enjin apabila dicampur dengan petrol. Kajian kesusasteraan menunjukkan bahawa kajian sebelum ini telah menunjukkan prestasi enjin yang lebih baik dengan campuran hidrogen peroksida. Bahan api ujikaji telah ditetapkan dengan 5% dan 10% kandungan hidrogen peroksida dalam campuran bahan api. Eksperimen dilakukan untuk mengenal pasti sifat-sifat kimia campuran bahan api tersebut. Untuk ujian prestasi enjin, setiap bahan api ujikaji diuji pada pelbagai kelajuan dan beban. Data-data dari eksperimen tersebut dianalisis ke dalam bentuk prestasi enjin. Kemudian, hasil analisis pembakaran dan analisis prestasi enjin untuk gabungan campuran hidrogen peroksida-petrol dibandingkan dengan petrol sahaja. Hasil dari pembandingan tersebut menunjukkan campuran hidrogen peroksida

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my supervisor Dr. Adnan Bin Roseli for giving me this opportunity to do final year project with him. He never hesitated to give me helpful advices and guidance whenever I confronted problems. I am thankful for his patience while leading me in this project.

Secondly, I would like to thank a master degree student named Lee for spending his time to guide me. He had shared his knowledge in the field of internal combustion engine with me and guided me to do the experiment. Also, I would like to thank Green Vehicle Technology laboratory assistant, Mr. Junaidi for his kindness in suggesting me the suitable time to use the laboratory and his action saved me a lot of time.

I would like to thank my Faculty of Mechanical Engineering course mates for giving me their support, patience and encouragement. Finally, I would like to thank my family for their support.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGE
	DECLARATION	ii
	APPROVAL	iii
	DEDICATION	iv
	ABSTRACT	V
	ABSTRAK	vi
	ACKNOWLEDGEMENT	vii
	TABLE OF CONTENT	viii
	LIST OF FIGURES	xi
	LIST OF TABLES	xiii
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xvi
CHAPTER 1	INTRODUCTION	1
	1.1 Background of Project	1
	1.2 Problem Statement	3
	1.3 Objectives	4
	1.4 Scope of Project	4
	1.5 General Methodology	5
CHAPTER 2	LITERATURE REVIEW	7
	2.1 Theoretical Background	7
	2.2 Engine Performance Parameter	8
	2.2.1 Work	8
	2.2.2 Torque	9

	2.2.3 Power	9
	2.2.4 Air-Fuel Ratio	9
	2.2.5 Specific Fuel Consumption	9
	2.2.6 Thermal Efficiency	10
	2.2.7 Volumetric Efficiency	10
	2.3 Effects of hydrogen peroxide-Diesel blend on engine	10
	performance	
	2.4 Effects of various alcohol-gasoline blend on engine	11
	performance	
	2.5 Effects of hydrogen-gasoline blend on engine	13
	performance	
	2.6 Effects of various hydrogen-alcohol blend on engine	14
	performance	
CHAPTER 3	METHODOLOGY	16
	3.1 Introduction	16
	3.2 Test Engine Specification	16
	3.3 Electric generator	17
	3.4 Data Acquisition System	18
	3.5 Fuel Blends Preparation	20
	3.6 Chemical Properties Identification of Fuel Blends	21
	3.6.1 Density Identification using Hydrometer Method	22
	3.6.2 Calorific Value Identification using Bomb Calorimeter	24
	3.7 Engine Performance Testing	25
	3.8 Experimental Project Flowchart	27
CHAPTER 4	RESULTS AND DISCUSSION	28
	4.1 Experimental Data	28
	4.1.1 Engine Testing Data	28
	4.1.2 Fuel Blends Chemical Properties	30
	4.2 Performance Analysis	31
	4.2.1 In-Cylinder Pressure	31
	4.2.2 Heat Release Rate	33

	4.2.3 Peak Pressures	34
	4.2.4 Indicated Work per Cycle	35
	4.2.5 Indicated Power	38
	4.2.6 Indicated Thermal Efficiency	39
	4.2.7 Indicated Specific Fuel Consumption	41
CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	43
	5.1 Conclusion	43
	5.2 Future Recommendations	44
	REFERENCES	45
	APPENDIX A	48
	APPENDIX B	55
	APPENDIX C	62
	APPENDIX D	64
	APPENDIX E	66
	APPENDIX F	68
	APPENDIX G	70

LIST OF FIGURES

FIGURE TITLE

PAGE

1	Schematic diagram of engine testing	5
2	Test engine with electric generator	17
3	500 W and 1 kW spotlight	18
4	Alternating current output socket	18
5	Location of pressure transducer mounted on the	
	engine head (blue cable)	19
6	Location of optical angle encoder	19
7	DEWESoft software user interface	20
8	DEWESoft DAQ hardware	20
9	CALTEX RON 95 gasoline	21
10	Hydrogen peroxide with 50% concentration	21
11	Fuel sample being blended using magnetic stirrer at	
	500 rpm	22
12	Temperature of sample being checked until it is	
	equilibrium	23
13	Glass hydrometer used to identify fuel sample's	
	density	24
14	Calorimeter bucket that will be filled with 2000 g of	
	distilled water	25
15	Head of the bomb need to be knurled to release the	
	pressure inside it	26
16	Usage of burette to measure fuel consumption	27
17	Modified fuel tank	27
18	Flowchart of engine testing experiment	28

19	In-cylinder pressure for al test fuels at 2500 rpm and 2	
	kW load	33
20	Heat release rate for all test fuels at 2500 rpm and 2	
	kW load	34
21	Variation of peak pressure at 500 W load for all test	
	fuels	35
22	Variation of peak pressure at 1 kW load for all test	
	fuels	36
23	Pressure-Volume diagram for 10% H2O2-Gasoline	
	test fuel at 2500rpm and free load	37
24	Variation of gross indicated work per cycle at free	
	load for all test fuels	37
25	Variation of gross indicated work per cycle at 2 kW	
	load for all test fuels	38
26	Variation of indicated power at free load for all test	
	fuels	39
27	Variation of indicated power at 2 kW load for all test	
	fuels	39
28	Variation of indicated thermal efficiency at free load	
	for all test fuels	41
29	Variation of indicated thermal efficiency at 2 kW load	
	for all test fuels	41
30	Variation of indicated specific fuel consumption at	
	free load for all test fuels	42
31	Variation of indicated specific fuel consumption at 2	
	kW load for all test fuels	43

LIST OF TABLES

TABLE TITLE

PAGE

1	Specifications of test engine	17
2	List of standard referred	23
3	Sample of data exported from the DAQ	30
4	Fuel consumption at 2500 rpm	30
5	Fuel consumption at 3000 rpm	31
6	Fuel consumption at 3500 rpm	31
7	Density and calorific value of test fuels	32

LIST OF ABBEREVATIONS

Top Dead Centre TDC BDC Bottom Dead Centre DAQ Data Acquisition System MEP Mean Effective Pressure IMEP Indicated Mean Effective Pressure BMEP Brake Mean Effective Pressure ITE Indicated Thermal Efficiency SFC Specific Fuel Consumption Indicated Specific Fuel Consumption ISFC Brake Specific Fuel Consumption **BSFC** SOC Start Of Combustion Hydrogen Peroxide H_2O_2

LIST OF SYMBOLS

τ	=	Torque
n	=	Number of revolution per cycle
Ν	=	Engine speed
m _a	=	Mass of air
m _f	=	Mass of fuel
Qin	=	Heat energy input
$\mathbf{W}_{\mathbf{i}}$	=	Indicated work per revolution cycle
$\mathbf{W}_{\mathbf{b}}$	=	Brake work per revolution cycle
$\dot{\mathbf{W}}_{i}$	=	Indicated power
\dot{W}_{b}	=	Brake power
η_m	=	Mechanical efficiency
η_{th}	=	Thermal efficiency
$\eta_{b.th}$	=	Brake thermal efficiency
ø	=	Equivalence air-fuel ratio
η_{v}		Volumetric efficiency
$\mathbf{V}_{\mathbf{d}}$	=	Displacement volume
ρ _a	=	Air density
Ap	=	Area of piston face

LIST OF APPENDINCES

APPENDIX FIGURE

PAGE

APPENDIX A	A1: In-cylinder pressure for al test fuels at 2500 rpm and	49
	free load	
	A2: In-cylinder pressure for al test fuels at 2500 rpm and 500	49
	W load	
	A3: In-cylinder pressure for al test fuels at 2500 rpm and 1	50
	kW load	
	A4: In-cylinder pressure for al test fuels at 2500 rpm and 1.5	50
	kW load	
	A5: In-cylinder pressure for al test fuels at 3000 rpm and	51
	free load	
	A6: In-cylinder pressure for al test fuels at 3000 rpm and 500	51
	Wload	
	A7: In-cylinder pressure for al test fuels at 3000 rpm and 1	52
	kW load	
	A8: In-cylinder pressure for al test fuels at 3000 rpm and 1.5	52
	kW load	
	A9: In-cylinder pressure for al test fuels at 3000 rpm and 2	53
	kw load	50
	A 10: In-cylinder pressure for al test fuels at 3500 rpm and	53
		51
	A11: In-cylinder pressure for al test fuels at 3500 rpm and	54
	500 W load	51
	A12: In-cylinder pressure for al test fuels at 3500 rpm and 1	54
	A 13: In-cylinder pressure for al test fuels at 3500 rpm and	22
	1.5 KW 1000	55
	A 14. In-cylinder pressure for al test fuels at 5500 fpm and 2	55
A DDENIDIV D	k w load	
AFFENDIA B	P1. Hast ralasse rate for all test fuels at 2500 rpm and free	56
	b1. Treat release fait for all test fuels at 2500 fpill and free	30
	Ivau D2: Haat ralaasa rata for all tost fuals at 2500 mm and 500	56
	D2. Theat release rate for all test fuels at 2500 fpill and 500	50

	W load	
	B3: Heat release rate for all test fuels at 2500 rpm and 1 kW	57
	load	
	B4: Heat release rate for all test fuels at 2500 rpm and 1.5	57
	kW load	
	B5: Heat release rate for all test fuels at 3000 rpm and free load	58
	B6: Heat release rate for all test fuels at 3000 rpm and 500 W load	58
	B7: Heat release rate for all test fuels at 3000 rpm and 1 kW load	59
	B8: Heat release rate for all test fuels at 3000 rpm and 1.5 kW load	59
	B9: Heat release rate for all test fuels at 3000 rpm and 2 kW	60
	B10: Heat release rate for all test fuels at 3500 rpm and free load	60
	B11: Heat release rate for all test fuels at 3500 rpm and 500 W load	61
	B12: Heat release rate for all test fuels at 3500 rpm and 1 kW load	61
	B13: Heat release rate for all test fuels at 3500 rpm and 1.5 kW load	62
	B14: Heat release rate for all test fuels at 3500 rpm and 2 kW load	62
APPENDIX C	KW IOUU	
	C1: Variation of peak pressure at free load for all test fuels	63
	C2: Variation of peak pressure at 1.5 kW load for all test fuels	63
	C3: Variation of peak pressure at 2 kW load for all test fuels.	64
APPENDIX D		
	D1: Variation of gross indicated work per cycle at 500 W load for all test fuels	65
	D2: Variation of gross indicated work per cycle at 1 kW load for all test fuels	65
	D3 : Variation of gross indicated work per cycle at 1.5 kW load for all test fuels	66
APPENDIX E		
	E1: Variation of indicated power at 500 W load for all test fuels	67
	E2: Variation of indicated power at 1 kW load for all test fuels	67
	E3: Variation of indicated power at 1.5 kW load for all test fuels	68

APPENDIX F

	F1: Variation of indicated thermal efficiency at 500 W load	69
	for all test fuels	
	F2: Variation of indicated thermal efficiency at 1 kW load	69
	for all test fuels	
	F3: Variation of indicated thermal efficiency at 1.5 kW load	70
	for all test fuels	
APPENDIX G		
	G1: : Variation of indicated specific fuel consumption at 500	71
	W load for all test fuels	
	G2: Variation of indicated specific fuel consumption at 1 kW	71
	load for all test fuels	
	G3: Variation of indicated specific fuel consumption at 1.5	72
	kW load for all test fuels	

CHAPTER 1

INTRODUCTION

1.1 Background of Project

Decreasing supplies of fossil fuels and steadily rising concentrations of atmospheric carbon dioxide concentrations and levels of atmospheric pollutants are some of major challenges to the modern society (Kumar & Rao, 2013). An attempt to replace fossil fuels with cleaner and renewable sources of energy is proposed to overcome these problem. The biomass-based fuels were indicated to be the best option according to the conducted research because they do not require changes in the existing technologies in use. Probably then, the best alcohol that can be an alternative to petroleum is ethanol.

A study was done by Melo, et al (2012) and the main propose is to study combustion effects on existing internal combustion engines with no modifications to existing injection and ignition systems, when the engine is applied with various fuel mixtures including gasoline, ethanol, and oxy-hydrogen gas, stabilized hydrogen peroxide, and offer the optimal fuel mixture (Kumar & Rao, 2013).

Hydrogen peroxide-gasoline blended is now considered as the alternative fuel for internal combustion engine. Unfortunately, not many investigation has been carried out yet. Hydrogen peroxide is a strong oxidizing agent and a weak acid in water solution. Since it is an oxidizing agent, it oxygenates hence adds oxygen to the reaction when it burns (Brain, 2002). Although it does not boost the octane number of gasoline like MTBE

did in the past, ideally hydrogen peroxide reduces the amount of unburned hydrocarbons and carbons monoxide in the exhaust. In case of performance, addition of oxygen will cause a leaner combustion and reduce the unburned hydrocarbon. This will affect the performance of engine.

Hydrogen peroxide is known as the simplest form of peroxide compound which consists of an oxygen-oxygen single bond. It is a colourless liquid with a sharp odour also a weak acid and strong oxidizing agent. The specific gravity of hydrogen peroxide is 1.135. Hydrogen peroxide is soluble in water and it is a polar solution. So it is slightly unstable and will decompose at a reasonably slow rate.

$2 \operatorname{H}_2\operatorname{O}_2 \longrightarrow 2 \operatorname{H}_2\operatorname{O} + \operatorname{O}_2$

During the decomposition of hydrogen peroxide, one volume of hydrogen peroxide is able to release 10 volumes of oxygen. Due to this characteristic, hydrogen peroxide is currently utilized as rocket propellant fuel.

A research was conducted and found that brake thermal efficiency, $\eta_{b.th}$ of diesel engine increased when hydrogen peroxide is blended with the fuel. This lead to the finding that additional oxygen molecule released by hydrogen peroxide has led to better combustion (Nagaprasad & Madhu, 2012).

Before that, effects of alcohol-gasoline blends such as ethanol-gasoline blends on the performance engine have been investigated by many researchers. Palmer (1986) showed when 10% of ethanol with constant concentration is added to gasoline, the engine power improved by 5%. Next, Cowart et al. (1995) proved that the engine torque and power increased by 4% respectively when blended fuels were used. Al-Hasan (2003) found that by using ethanol as fuel additive to unleaded gasoline, engine performance can be boost. Also, increment by about 8.3%, 9.0%, 7% and 5.7% mean average values in brake power, brake thermal efficiency, volumetric efficiency and fuel consumption respectively was noticed. Then, he concluded that the best results of the engine performance is when 20% ethanol fuel blend was used. Engine performance is evaluated by some parameters. The parameters are work done, torque, power, fuel consumption and engine efficiencies. Engine torque measured with dynamometer is known as brake torque, τ_b while power delivered by the engine and absorbed by the dynamometer is known as brake power, \dot{W}_b . Brake mean effective pressure (BMEP) can be determine from dynamometer or water pump pressure. Fuel consumption is defined as the flow rate or mass flow of fuel per unit time while specific fuel consumption is the rate of fuel flow per unit power output. There are indicated specific fuel consumption (ISFC) and brake specific fuel consumption (BSFC). Then, the thermal efficiency, η_{th} of engine is the conversion of the heat energy stored in the liquid fuel into mechanical energy. While mechanical efficiency, η_m is the ratio of brake power, \dot{W}_b delivered by the engine to the indicated power, \dot{W}_i produced in cylinders (Pulkrabek, 2004).

Based on early literatures, the use of hydrogen peroxide-gasoline blended fuels is not very clearly whether it improved or unimproved the engine performance compared to gasoline alone. In this project, the performance of petrol engine using the hydrogen peroxide-gasoline blend will be investigated and the results will be compared when using gasoline alone.

1.2 Problem Statement

Everyday amount of gasoline is consumed in cars, light trucks, motorcycles, small aircraft, boats, watercraft, also in landscaping and construction equipment. Major problem with gasoline when it is burned, it produces substances like carbon monoxide, nitrogen oxides, unburned hydrocarbons and some particular matter. These substances contribute to air pollution.

On performance matters, usage of gasoline alone does not improve the engine performance. Alternative fuels beside are needed petroleum, so blending of gasoline with some additives like ethanol and methanol was discovered. These blend give a leaner combustion thus better performance and lesser fuel consumption. However currently, the new alternative fuel is begin to arise. It is hydrogen peroxide-gasoline blend. Lately, consumers began to question if the hydrogen peroxide is the best blending with gasoline which could boost engine performance. Besides the price of hydrogen peroxide in the market is considerably expensive.

Hence, for this project, blending off hydrogen peroxide with gasoline as fuel for petrol engine with different percentage of hydrogen peroxide should be boosting the engine performance in order to overcome those problem.

1.3 Objective

The objectives of this project are as follows:

- 1. To study the effects of hydrogen peroxide on engine performance parameter.
- 2. To compare the results between hydrogen peroxide-gasoline blends with gasoline alone.
- 3. To study which blend percentage that give best performance to the engine.
- 4. To study the percentage of hydrogen peroxide for optimum performance.

1.4 Scope of Project

The scopes of this project are experimental data and analysed results such as calculations, table, graph and effects of different composition of blends on engine performance are presented in this report. The emission of engine at different blends is not covered.

1.5 General Methodology

Throughout this project, several of methodologies will be carried out in order to achieve those objectives. The first methodology will be literature review. Journals, articles, technical papers or any materials regarding this project need to be gathered as much as possible and then be reviewed. Outcomes from literature reviews will be a help regarding this project. As example, with the literature reviews, outcome of this project can be predicted before carrying out the experiment.

Experiments are the next methodology that will be carried out in this project. Several experiments like chemical properties determination and engine performance testing experiment will be carried out at the respective laboratories. For engine performance testing, the setup is shown in **Figure 1**. In order to study the effect of blending off hydrogen peroxide with gasoline to engine performance, the percentage of hydrogen peroxide in the fuel blend will be varied. Other parameters like engine specification, gasoline properties, air and fuel temperature will be constant in this project. Generator will be used to supply load. Experimental data will be collected through data acquisition system.

Figure 1: Schematic diagram of engine testing

Data analysis are the methodology that will be presented up after conducting the experiments. Based on each fuel blends tested on the engine, the raw data will be calculated, tabulated and analysed based on various performance parameters. Result at the end of the analysis will be concluded according to the objectives of this project.

Last but not least, the last methodology that will be report writing. A thesis, progress reports and draft reports on this project will be produced and submitted along the project's duration. Report writing is important such as progress report means to show and update project's progress while draft report is to ensure that the mistakes are corrected before submitting the thesis.