

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF AUTOMATED KEY MANAGEMENT SYSTEM USING LABVIEW

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia MELAKA (UTeM) for the Bachelor of Electronics Engineering Technology (Industrial Electronic) with Honours

By

ANISS AZWA BINTI ADNAN B071410030 910718-03-5716

FACULTY OF ENGINEERING TECHNOLOGY

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "THE DEVELOPMENT OF AUTOMATED KEY MANAGEMENT SYSTEM USING LABVIEW" is the results of my own research except as cited in references.

Signature		
Author's Name	:	ANISS AZWA BINTI ADNAN
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Engineering Technology (Department of Electronics & Computer Engineering Technology) (Bachelor of Electronics Engineering Technology (Industrial Electronic) with Honours). The member of the supervisory is as follow

(IR. MOHAMMAD'AFIF BIN KASNO)

Abstrak

Laporan ini membincangkan tentang pengurusan kunci dan juga menghalang orang yang tidak dibenarkan mengaksesnya. Biasanya pihak pengurusan kunci perlu sentiasa memeriksa kunci jika orang yang mengakses kunci sudah memulangkan kunci atau tidak, jadi tugas ini menjadi sedikit memenatkan selepas beberapa ketika. Perkembangan Sistem Pengurusan Kunci Automatik adalah sistem untuk mengurus kunci dengan menggunakan LabVIEW. Sistem ini berguna untuk mengurangkan masa. Projek ini menyediakan data maklumat orang yang mengakses kunci ke Microsoft Excel dan menghantar E-mel kepada kakitangan pengurusan utama. Ia juga dapat memantau melalui perisian GUI. Lebihlebih lagi, lebih mudah bagi pengguna terutamanya pelajar mengakses dan mengembalikan kunci. Dengan penggunaan teknologi, projek ini menggunakan LabVIEW dihubungkan dengan Arduino untuk menjadikan sistem ini lebih mudah. Sistem ini akan mendapat maklumat apabila pengguna memasukkan kata laluan dan program dalam proses LabVIEW untuk menghantar isyarat kepada Arduino dan mengaktifkan solenoid magnetik untuk membolehkan pengguna mengambil kunci. Setiap kali pengguna mengambil dan mengembalikan kunci, akan ada e-mel yang dihantar kepada kakitangan pengurusan untuk memberitahu mereka. Antara teknologi yang dicadangkan, program LabVIEW dibincangkan secara ringkas di dalam kertas ini.

Abstract

This proposed paper aims at manage the key and also prevent the unauthorized person from access it. Usually person in charge has to regularly keep a check the keys if the person who access the key already put the key or not, so this task becomes tedious after sometime. The Development of Automated Key Management System is a system for manage key by using LabVIEW. This system is useful to reduce time. This project is providing information data of person who access the key into Microsoft Excel and send the Email to key management staff. It is also able to monitoring through GUI software. More, it is easier for the users especially students to access and return the key. With the use of technology, this project is using LabVIEW interfaced with Arduino to make this system more convenient. This system will get information when user insert the password and the program in LabVIEW process it to send the signal to Arduino and activate the magnetic solenoid for enable user to take the key. Every time user take and return the key, there would be an email sent to the management staff to inform them. Among the different technologies proposed, LabVIEW program is briefly discussed in this paper.

Dedication

I would like to dedicate this project to my supervisor, IR. MOHAMMAD'AFIF BIN KASNO that assists me develop this project. I also want to thank to my family members, lectures and friends that help me in developing this project

Acknowledgement

"In the name of Allah, the Most Gracious and the Most Merciful"

Alhamdulillah, Praise to Allah S.W.T for his blessing and guidance have helped me carry out my thesis completely. First, I would like to express my gratitude to my supervisor IR. MOHAMMAD'AFIF BIN KASNO. He gave me his support and guidance to help me in complete of my project development. He also responsible in supervise and monitor my progress of this project. I am grateful to my supervisor who always being my guidance and his kindness for accepting me as his student final year's project will be always remembered. I have learned a lot under his guidance in practically or theoretically.

My special appreciation and thanks to my family especially my lovely parents ADNAN BIN AB. MALEK and JAMILAH BINTI KADIR who always give the support and encourage me to give the best. Their full support and encouragement were always give me strength to undergo this period.

Lastly, I would like to thank all my friends for their invaluable assistance towards this project. Without support all of them, it was impossible for me to complete this project.

Table of Contents

Abst	trak		vi
Abst	tract		vii
Ded	ication.		viii
Ack	nowledg	gement	ix
Tabl	e of Co	ntents	X
List	of Tabl	es	xiii
List	of Figu	res	xiv
List	of Abbi	reviation, Symbol and Nomenclature	. xvii
CHA	APTER	1: INTRODUCTION	1
1.0	Backg	round	1
1.1	Projec	t Objectives	2
1.2	Proble	em Statement	2
1.3	Projec	et Scope	4
CHA	APTER	2 : LITERATURE REVIEWS	5
2.0		uction	
2.1		round History	
2.2	Relate	ed Project/Journal	9
	2.2.1	Patient Data Management System in Intensive Care Unit (ICU) Using	
		LabVIEW. ^[7]	9
	2.2.2	Low Cost Smart Phone Controlled Car Security System. [8]	12
	2.2.3	Real Multi-Level Security for Automotive –RFID Based Technology	
		LabVIEW Implementation. ^[9]	15
	2.2.4	Real time Google map and Arduino based vehicle tracking system. ^[10]	[]] 18

2.3	Comparison of Related Research Technology	21
CHA	APTER 3 : METHODOLOGY	23
3.0	Introduction	23
3.1	Project Implementation	23
3.2	Work Flow to Implement Project	25
	3.2.1 Explanation of Flow Chart	26
3.3	Flow chart of Automated Key Management System using LabVIEW	27
	3.3.1 Explanation of Flow Chart	28
3.4	Block diagram of Automated Key Management System using LabVIEW	29
3.5	Software Development	30
	3.5.1 LabVIEW Interface for Arduino	30
	3.5.1.1 LabVIEW Interface for Arduino Init. VI	31
	3.5.1.2 Set Digital Pin Mode VI	31
	3.5.1.3 Digital Write Pin VI	32
	3.5.1.4 LabVIEW Interface for Arduino Close VI	32
	3.5.2 Data Storage Design	32
	3.5.2.1 Open/Create/Replace File Function	33
	3.5.2.2 Write to Text File Function	33
	3.5.2.3 Set File Position Function	34
	3.5.2.4 Concatenate String Function	34
	3.5.2.5 Close File Function	34
	3.5.3 Condition Design	35
	3.5.3.1 Case Structure	35
	3.5.3.2 Format Date/Time String Purpose	36
	3.5.3.3 Wait (ms) Purpose	36
	3.5.3.4 Local Variable	
	3.5.3.5 One Button Dialog	37
	3.5.4 Email Design	37
	3.5.4.1 Constructor Node Function	38
	3.5.4.2 Property Node Function	39

	3.	5.4.3 Invoke Node Function	
	3.	5.4.4 Expected Result	40
3.6	Hardw	/are Development	41
	3.6.1	Push-Pull Open Frame Solenoid Electric Magnet	41
	3.6.2	Relay 12V	42
	3.6.3	IC ULN2003A	42
	3.6.4	Arduino mega 2560	43
CH	APTER	4 : RESULTS AND DISCUSSION	44
4.0	Introd	uction	44
4.1	GUI S	oftware	44
4.2	Hardw	/are	47
4.3	Analy	sis	49
	4.3.1	Time	49
	4.	3.1.1 Manual Procedures	49
	4.	3.1.2 Automated Key Management Using LabVIEW	55
	4.3.2	Accuracy	
	4.3.3	Satisfaction	61
CH	APTER	5 : CONCLUSION AND FUTURE RECOMMENDATION	63
5.1	Conclu	usion	63
5.2	Future	Recommendation	64
REI	FEREN	CES	65
APF	PENDIC	CES	

List of Tables

1	Comparison of Related Research Technology	22
2	LabVIEW Interface for Arduino Init.vi	31
3	Set Digital Pin Mode VI	31
4	Digital Write Pin VI	32
5	LabVIEW Interface for Arduino Close VI	32
6	Open/Create/Replace File Function	33
7	Write to Text File Function	33
8	Set File Position Function	34
9	Concatenate String Function	34
10	Close File Function	34
11	Case Structure	35
12	Format Date/Time String Purpose	36
13	Wait (ms) Purpose	36
14	Local Variable Function	36
15	One Button Dialog	37
16	Constructor Node Function	38
17	Property Node Function	39
18	Invoke Node Function	39

List of Figures

1.2 (a)	Accident at Universiti Malaysia Perlis (UniMAP)	3	
2.1 (a)	Locks and keys Ancient Greece	6	
2.1 (u) 2.1 (b)	Example the type of key	6	
2.1 (c) 2.1 (c)		7	
2.1 (c) 2.1 (d)	Keys are stored in a simple box.		
2.1 (d) 2.1 (e)	Example of hook key rack which is normally people use. Key Storage Lock Box	7 8	
2.1 (c) 2.2.1 (a)	Synchronization and Collection of Physiological Data from	10	
2.2.1 (d)	Monitoring System	10	
2.2.1 (b)	Data Presentation	10	
2.2.1 (c)	Block Diagram of Data Acquisition Module Generated by	11	
222()		10	
2.2.2 (a)	Digit 1 for Unlock	12	
2.2.2 (b)	Digit 2 for Lock	13	
2.2.2 (c)	System testing for locking and unlocking of the car	14	
2.2.3 (a)	Front Panel of RFID Module	15	
2.2.3 (b)	Block Diagram of the System	16	
2.3.3 (c)	Block Diagram of RFID	17	
2.2.4 (a)	The experimental set up of the vehicle tracking system	18	
2.2.4 (b)	Hardware of The Project	18	
2.2.4 (c)	Example of snapshot of text SMS received by hand phone.	20	
3.1	Methodology of Project	24	
3.2	Flow chart of Project Implementation	25	
3.3	Flow chart of whole process of the system	27	
3.4	Block Diagram of Automated Key Management System	29	
3.5.1	LabVIEW interface for Arduino Block Diagram	30	

3.5.2	Data Storage Design	33		
3.5.3	The Block Diagram of Password Process System			
3.5.4(a)	The Block Diagram of Email 1			
3.5.4(b)	The Block Diagram of Email 2 3			
3.5.4.4	Expected Result Microsoft Excel 4			
3.6	The Schematic Diagram	41		
3.6.1	Push-Pull Open Frame Solenoid Electric Magnet	41		
3.6.2	Relay 12V SPDT	42		
3.6.3	IC ULN2003A	42		
3.6.4	Arduino Mega 2560	43		
4.1(a)	Front Panel (Initial Condition)	44		
4.1(b)	Front Panel (Password Incorrect)	45		
4.1(c)	Front Panel (Alarm for incorrect password)	45		
4.1 (d)	Front Panel (The right password entered)	46		
4.1 (e)	Front Panel (Email Status)	46		
4.1(f)	Front Panel (green LED Key indicate how many keys are not	47		
	return)			
4.2(a)	Key Box Storage	47		
4.2(b)	The connection relay circuit with the electric solenoid	48		
4.2(c)	The connection key box with the laptop (Hardware to	48		
	Software)			
4.3.1.1(a)	Record of Key Management	50		
4.3.1.1(b)	Record of Key Management for November 2017	50		
4.3.1.1(c)	Record of Key Management for 2 November 2017	51		
4.3.1.1(d)	Record of Key Management for November 2017 (Manual	52		
	Procedure)			
4.3.1.1(e)	Record of Key Management for 2 November 2017	53		
4.3.1.1(f)	Time Taken from Record of Key Management (November	54		
	2017)			

4.3.1.2(a)	The Time (second) Taken for The Project of Automated Key	
	Management.	
4.3.1.2(b)	Comparison of Time between Manual and Automated Key	56
	Management System	
4.3.2(a)	The Email from Automated Key Management System	57
4.3.2(b)	The information also been saved in Excel.CSV	58
4.3.2(c)	The information of key usage from UTeM College	59
4.3.2(d)	The Front Panel of Automated Key Management System	59
4.3.2(e)	The Hardware of Automated Key Management System	60
4.3.3(a)	The survey form	61
4.3.3(b)	The Response about Automated Key Management System	62

C Universiti Teknikal Malaysia Melaka

List of Abbreviation, Symbol and Nomenclature

CSV	-	comma separated values
DAQ	-	data acquisition
GSM	-	global system for mobile
GUI	-	graphical user interface
IC	-	integrated circuit
IoT	-	internet
LCD	-	liquid crystal display
LED	-	light emitting diode
LIFA	-	LabVIEW interface for Arduino
PC	-	personal computer
RFID	-	radio frequency identification
USB	-	universal serial bus

🔘 Universiti Teknikal Malaysia Melaka

CHAPTER 1 INTRODUCTION

1.0 Background

The motivation of Development of Automated Key Management System is to provides a system to the user in easy way to keep a record of keys. There is a problem regarding the manual key management system in the hostel, whereby the key has been carried in bulky and it is not convenient. It also difficult to manage and often lost. Usually user has to regularly keep a check the keys if the person who access the key already put the key or not, so this task becomes tedious after sometime. The other problem may occur when someone lost their key or left at somewhere, they have to find solution to unlock the key which is sometimes contribute some dangerous accident to happened. This system allows for keys to be stored in a smart storage cabinet that records for each user by their passcode, time and date. Keys are physically secured and only released to the users. The system keeps a track of keys by using ARDUINO and LABVIEW. Its will obtain the data using connection of hardware that connect to ARDUINO and then sends it to LABVIEW. When user want to take key, user have to enter their passcode to be able to access the required key. If user take the wrong key, an alarm will trigger. Every single of key has the specific information of user include the passcode so that when user enter the passcode, the key which is have same passcode can be access. Hence, the user will always know who is in possession of each key as they are provided with an email contains information which key was taken.

1.1 **Project Objectives**

The Objective of this development are:

- a) To study of solution for efficiency of key management by taking example from UTeM College.
- b) To develop an Automated Key Management System using LabVIEW.
- c) To analyse the performance of Automated Key Management System by refer to UTeM College (Sri Utama) Management procedures.

1.2 Problem Statement

There is a problem regarding the manual key management system in the hostel, whereby the key has been carried in bulky and it is not convenient. Locks and keys also allow us to secure the building, but when keys are lost or stolen, the inconvenience and expense of changing locks and re-issuing keys can be considerable. It also difficult to manage and often lost. Usually user has to regularly keep a check the keys if the person who access the key already put the key or not, so this task becomes tedious after sometime. The other problem may occur when someone lost their key or left at somewhere else, so they have to find solution to unlock the key.

For example, recently a terrible accident happened at Universiti Malaysia Perlis (UniMAP) which a 21-year-old student has died after falling from the seventh floor of the Uniciti campus hostel at 2.50pm, Wednesday 19 April 2017. Goh Xin Xi, a first-year student with UniMAP's engineering faculty, slipped and fell when he tried to get into his hostel through a window after forgetting to take his keys. ^[1]

Figure 1.2 (a): Accident at Universiti Malaysia Perlis (UniMAP)

Based on the problem, we can see without of good key management, a terrible accident can happen. So from the problem statement, Development of Automated Key Management System Using Labview is created to help the user to monitor the keys and able to access it with the passcode.

1.3 Project Scope

The scope of this project are the overview concept of monitoring data system by using LabVIEW, by understanding it operation and knowledge, we can create an automated key management in order to keep track purpose. Sometimes, student want to access key around 3 am. In order to access the required key, they have to wake up the warden. Using concept of vending machine – can access in 24 hours. By using Automated Key Management System, the student can access the required key anytime by insert their passcode.

- a) Study the development of Automated Key Management System for UTeM College (Sri Utama)
- b) Design the prototype of Key Management System Using LabVIEW.
- c) Analyse the Key Management System performance following the procedures for UTeM College (Sri Utama).

C Universiti Teknikal Malaysia Melaka

CHAPTER 2 LITERATURE REVIEWS

2.0 Introduction

This chapter will discuss about finding and analysis of previous project that related with Development of Automated Key Management System. All the detail is taken from several resources such as journal, thesis, book and valid websites. Usually keys been stored in a storage box that have a hooks that can put the keys hang to it. Automated Key Management System is a system that give access to the electronic key box and to individual keys is under user complete control. User can access required key by insert the passcode, with the communications capability, the user always know who removed any key and when it was taken. This give a great advantage for user such as more value, more storage and more convenient accessibility.

2.1 Background History

Today, keys are the most common manufactured metal object in world, it made us to live in the cutting edge progress which are have many of the feature of security and locked behind of millions of locks. It is easy to carry because of it is in small size. They are also easy to manufacture and offer intuitive way of operating mass produced lock that guard our physical properties such as cars, structure, doors, safes and more ^[2]. The definition of key is a device that used for operate a lock which to lock or unlock it. A normal key consists of a small piece of metal consisting of two parts, the blade, which slides into the keyway of the lock and distinguishes between different keys, and the bow, so that torque be applied by the user which is left protruding.

Figure 2.1 (a): Locks and keys Ancient Greece

Figure 2.1 (b): Example the type of key

C Universiti Teknikal Malaysia Melaka

Figure 2.1 (c): Keys are stored in a simple box.

Linus Yale, Jr. was inspired by the original 1840s pin-tumbler lock designed by his father in 1861, thus creating and patenting a smaller flat key with serrated edges as well as pins of varying lengths within the lock itself, still remains in use today which is the same design of the pin-tumbler lock ^[2].

Figure 2.1 (d): Example of hook key rack which is normally people use.

Based on Steven Kurutz, in this age of rapid transformation, the house key has been surprisingly resistant to change. Mostly switched to key fobs is car. As for the pass card, hotels and office building are using it ^[3]. In order to keep save the keys, a storage box is designed to store all the key to avoid lost it. A storage box or key safe is a simple storage that can store a set of keys. A set of keys hang at hook in the storage box. An example of storage box is Supra lockbox. Over 55 years ago, first key lockbox was invented by Delbert Williams, Supra's Founder.

Delbert is a real estate professional. He need to chased down the keys in order to show homes to the clients. He crafted a key box from a Yale® bicycle lock and a sand-cast aluminum container. The lockbox served its purpose well which is eliminating the need for agents to search for listing keys in order to get into houses for sale. ^[4]

Figure 2.1 (e): Key Storage Lock Box

In order to maintain the communications of security, keys must be stored securely. Security is important and there are many ways to do so. Basically, an encryption application manages keys for the user and to control use of the key must be depended on access password. Sargent lock state that key control is an organized and formal security system which addresses control of master keys within a building or facility. To avoid unauthorized access by using documentation management and status of reporting of critical elements in the master key system is key control. ^[5]

Based on Fernando Pires, the reliable and cost-effective methods to improve security are key control and asset management by ensuring the facility keys are legitimately managed with regard to access, storage and tracking. For effectively addressing the safety and security of building occupants and the security of the building assets by using key control and management systems have become a tool of higher level management. To ensure a safe and secure, the information of the identity of authorized key holder such as which keys they take or have access to and when the key been used are important. ^[6]

More, open protocols and technological developments have made it possible to key control with get to control and other security systems as a component of a facility's organized security system. Presently, a user who has taken a particular key can be denied egress from the facility until the key is returned, and chosen administration can be alerted by email if a key has not been returned on time.^[6]

2.2 Related Project/Journal

2.2.1 Patient Data Management System in Intensive Care Unit (ICU) Using LabVIEW.^[7]

Amritjot Kaur, Shimi S. L proposes a system that use the advantages from data flow technology. The goal is to obtain the data from monitoring system in the intensive care unit (ICU) and save the data for further analysis. Medicinal staff can be accessible to analyze data and take the suitable medication for patients. In fact, large amount of data quickly and continuously provides by this monitoring system in intensive care unit. Lots of units operate with a limited storage capacity which make the information access for temporarily.