

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN, OPTIMIZATION AND DEVELOPMENT OF PHYLLOTAXIS PATTERN SOLAR PANEL

This report is submitted in accordance with the requirement of Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive Technology) with Honours

by

ONG QIAO YUAN B071410201 940108106086

FACULTY OF ENGINEERING TECHNOLOGY 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Design, Optimization and Development of Phyllotaxis Pattern Solar Panel

SESI PENGAJIAN: 2017/18 Semester 1

Saya ONG QIAO YUAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

TERHAD

Disahkan oleh:

Alamat Tetap:

No. 154, Jalan BS 6/7,

Cop Rasmi:

Taman Bukit Serdang,

43300 Seri Kembangan, Selangor.

Tarikh: <u>3/1/2018</u>

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menya C Universiti Teknikal Malaysia Melaka PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby declared this report entitled "Design, Optimization and Development of Phyllotaxis Pattern Solar Panel" is the result of my own research except as cited in references.

Signature	:	
Author's Name	:	ONG QIAO YUAN
Date	:	3 JANUARY 2018

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive Technology) with Honours. The member of the supervisory is as follow:

Dr. Abdul Munir Hidayat Syah Lubis

(Project Supervisor)

ABSTRAK

Tenaga solar adalah sejenis tenaga yang mengandungi ciri-ciri tenaga hijau dan tenaga yang boleh diperbaharui kerana ia tidak mengeluarkan pelepasan yang membahayakan dan cahaya matahari adalah tanpa had. Panel solar yang menggunakan corak phyllotaxis telah diperkenalkan demi menyelesaikan masalah keberatan, ruang dan mudah alih. Panel solar bercorak phyllotaxis adalah panel solar yang boleh membuka sebagai sekuntum bunga bermekar. Projek ini dijalankan demi mereka panel solar bercorak phyllotaxis, membuat panel solar bercorak phyllotaxis dan mengoptimumkan keluaran panel solar. Konsep reka adalah dipilih melalui konsep pemarkahan. Bahagian yang diperbuat dengan menggunakan proses prototaip pantas adalah perumahan moto stepper, bar bercorak sarang lebah, bar penyambung dan bilah. Moto stepper telah digunakan untuk mengawal pembukaan bilah manakala mekanisme ereksi telah dikawal oleh penggerak linear. Merujuk kepada keputusan analisa, tekanan Von Mises bar bercorak sarang lebah dan bar penghubung adalah lebih rendah daripada kekuatan tegangan Nylon 66 yang bernilai 63.6 MPA. Panel solar mempunyai maksimum keluaran voltan sebanyak 5.5V dan arus elektrik sebanyak 90mA. Demi mengoptimumkan hasil keluaran voltan solar panel untuk mengecaskan 12V bateri, sel solar telah disusun secara selari kepada 4 baris yang mengandungi 4 sel solar yang disambung secara siri. Kesimpulannya, objektif-objektif telah dicapai dengan mereka panel solar bercorak phyllotaxis, membuat panel solar bercorak phyllotaxis dan mengoptimumkan keluaran panel solar.

ABSTRACT

Solar energy is an energy that comprises both characteristics of green energy and renewable energy as it does not give out harmful emission and the sunlight from the Sun is limitless, abundant and infinite. The solar panel with phyllotaxis pattern is introduced in order to solve the portable, weight and space issues. A phyllotaxis pattern solar panel is a solar panel that can be opened in the form of blooming flower. This project was carried out in order to design phyllotaxis solar panel, fabricate the prototype of phyllotaxis solar panel and optimize the output of phyllotaxis pattern of solar panel. A final concept of phyllotaxis solar panel was chosen by using concept scoring method. The parts of the phyllotaxis pattern solar pattern which were produced by using rapid prototyping process with Nylon PA66 were stepper motor housing, honeycomb stand bar, link bar, blades and base. A stepper motor was used in opening and closing the solar panels while the erection mechanism was controlled by a linear actuator. According to the analysis result, the Von Mises stress of the honeycomb pattern stand bar and link bar were less than tensile strength of assigned material Nylon 66 which is 63.6MPa hence the design and material of the critical parts are passed for further fabrication process. The voltage output of 2 series connected solar cells doubles the voltage output of a single solar cell. The result collected for parallel connected solar cells is close to the statement that the current is the same for every component connected in series. A single solar cell has a maximum output voltage of 5.5V and maximum current of 90mA while a pair of series connected solar cell has maximum voltage output of 11V and maximum current of 40mA. In order to optimize the output voltage output of solar panel to charge a 12V battery, the solar cells are arranged in parallel into 4 rows with each row consist of 4 solar cells. In conclusion, the objectives of the project were achieved by designing, fabricating and optimizing a phyllotaxis pattern solar panel.

DEDICATION

To my beloved parents

Ong Sing Teck Choong Yoke Thai

Thank you for all supports, sacrifices, patient and willing to spend your time for me.

To my honoured supervisor and co supervisor,

Dr. Abdul Munir Hidayat Syah Lubis, Encik Mohd Idain Fahmy bin Rosley and all UTeM lecturers

Thank you for always show me the guidance and persistence in helping to complete this project thesis.

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Abdul Munir Hidayat Syah Lubis of the Faculty of Engineering Technology at University Technical Malaysia Malacca for the continuous support of my Bachelor study's final year project, for his patience, motivation, enthusiasm and immense knowledge. The door of Dr. Abdul Munir Hidayat Syah Lubis office was always opened whenever I ran into a trouble spot or had a question about my writing or concept design. He consistently allowed this paper to be my own work but steered me in the right direction whenever he thought I needed it. I could not have imagined having a better advisor and mentor for my Bachelor study's final year project.

Besides my advisor, I would like to thank the rest of my thesis committee: Encik Mohd Idain Fahmy bin Rosley and Encik Wan Norhisyam bin Abd Rashid for their encouragement, insightful comments and hard questions. Without their passionate participation and input, the project could not have been successfully conducted.

Moreover, I would like to express my gratitude to UTeM for funding Applied Oriented Research Grant (AORG) with serial number PJP/2017/FTK-AMC/S01562 for my project.

I would also like to acknowledge Muhammad Haziq Ilham bin Roslan of Faculty of Engineering Technology as the second reader of this thesis. I am gratefully indebted to his valuable comments on this thesis.

Finally, I express my very profound gratitude to my parents: Ong Sing Teck and Choong Yoke Thai, for giving birth to me at the first place and providing me with unfailing support and continuous encouragement throughout my years of study and through the process of designing the product and writing the thesis. The accomplishment would not have been possible without them.

TABLE OF CONTENT

Abs	trak	vi
Abs	tract	vii
Ded	ication	viii
Ack	nowledgement	ix
Tabl	le of Content	х
List	of Tables	xiii
List	of Figures	XV
List	of Abbreviations, Symbols And Nomenclature	xviii
CH	APTER 1: INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scopes	3
СН	APTER 2: LITERATURE REVIEW	4
2.1	Introduction	4
2.2	History of Solar Cell	6
2.3	Principle of Solar Cell	7
2.4	Material of Solar Cell	10
	2.4.1 Monocrystalline Silicon Solar Cell	11
	2.4.2 Polycrystalline Silicon Solar Cell	13
	2.4.3 Thin Film Solar Cell	14
	2.4.4 Dye-Sensitized Solar Cell (DSSC)	16

2.5	Solar (Cell Design	18
	2.5.1	Adjustable Solar Powerer	18
	2.5.2	Closable Solar Collector	19
	2.5.3	Multi-Leaf Solar Energy Supplying Apparatus	20
	2.5.4	Solar module	22
	2.5.5	"Sunflower" Solar Power Station Based On Bionic Robot	23
2.6	Design	n of Photovoltaic System	24
2.7	Steppe	er Motor	28
СНА	PTER	3: METHODOLOGY	30
3.1	Introdu	action	30
3.2	Experi	mental Design	30
3.3	Bench	marking Design	32
	3.3.1	Adjustable Solar Powerer	32
	3.3.2	Closable Solar Collector	33
	3.3.3	Multi-Leaf Solar Energy Supplying Apparatus	34
	3.3.4	Solar Module	35
	3.3.5	"Sunflower" Solar Power Station Based On Bionic Robot	36
3.4	Conce	pt Design of Base/Foot Of Solar Panel	37
3.5	Solar Panel Concept Generation38		38
3.6	Solar Panel Erection Mechanism Concept Generation4		41
3.7	7 Concept Selection 42		42
3.8	Mecha	nism	45
3.9	Materi	al Selection	46
3.10	Circuit	t Design	48
3.11	Analys	SIS	50
3.12	12 Fabrication 52		

xi

CHA	APTER 4: RESULT AND DISCUSSION	53
4.1	Introduction	53
4.2	Concept Selection	53
4.3	Mechanism	55
	4.3.1 Open-Close Mechanism of Blade	55
	4.3.2 Erection Mechanism of Solar Panel	59
4.4	Electrical Output	61
4.5	Optimisation of Solar Cell Output	68
4.6 Stress Analysis of Solar Panel Assembly Structure		
CHA	APTER 5: CONCLUSION AND FUTURE WORK	77
5.1	Introduction	77
5.2	Conclusion	77
5.3	Future Work	78
REF	ERENCES	80
APP	ENDICES	84
A.	Gantt Chart	84
B.	Table of Weather Forecast	86
C.	General Report of Catia V5 Analysis	88
	C.1 Stand Straight Honeycomb Pattern Stand Bar	88
	C.2 Slanted Honeycomb Pattern Stand Bar	94
	C.3 Link Bar	100

LIST OF TABLES

Table 3.1: Comparison between advantage and disadvantage of adjustable powerer	solar 32
Table 3.2: Closable solar collector	33
Table 3.3: Multi-leaf solar energy supplying apparatus	34
Table 3.4: Solar module	35
Table 3.5: "Sunflower" solar power station based on bionic robot	36
Table 3.6: Sun position in Malacca according to time	37
Table 3.7: Rating scale for concept scoring	43
Table 3.8: Concept scoring for blade concept design	44
Table 3. 9: Concept scoring for erection mechanism concept design	45
Table 3. 10: Coil End Wire Pairing	47
Table 3. 11: Resistance Reading of wire pair for coil winding 1 and coil	
winding 2	47
Table 4. 1: Concept scoring for blade concept design	54
Table 4. 2: Concept scoring for erection mechanism concept design	55
C Universiti Teknikal Malaysia Melaka	xiii

Table 4. 3: Output data of a single solar cell	62
Table 4. 4: Output data of two solar cells connected in series	67
Table 4. 5 : Output data of two solar cells connected in parallel	67
Table B. 1 : Weather forecast at Seri Kembangan in 20/11/2017	866
Table B. 2: Weather forecast at Batu Berendam, Melaka in 21/11/2017	
and 22/11/2017	866
Table B. 3: Weather forecast at Melaka in 02/12/2017 and 03/12/2017	866

LIST OF FIGURES

Figure 2.1: Phyllotaxis pattern under cylindrical view	5
Figure 2.2: Phyllotaxis pattern under centric view	5
Figure 2.3: PN junction in semiconductor	8
Figure 2.4: Energy band diagram	10
Figure 2.5: Czochralski process	12
Figure 2.6: Siemen process	14
Figure 2.7: Thin film solar cell	15
Figure 2.8: Electron transfer mechanism in DSSCs	17
Figure 2.9: Adjustable solar powerer	19
Figure 2.10: Closable solar collector	20
Figure 2.11: Multi-leaf solar energy supplying apparatus	21
Figure 2.12: Solar module	22
Figure 2. 13: "Sunflower" solar power station based on bionic robot	24
Figure 2.14: Characteristic of cells connected in series	24
Figure 2.15: Characteristic of cells connected in parallel	25
Figure 2.16: Characteristics of Isc and Voc	26
Figure 2.17: 5-wire motor	28
Figure 2.18: 6-wire motor	29
Figure 2.19: 8-wire motor	29

Figure 3.1: Flowchart of methodology	31
Figure 3.2: Adjustable solar powerer	32
Figure 3.3: Closable solar collector	33
Figure 3.4: Multi-leaf solar energy supplying apparatus	34
Figure 3.5: Solar module	35
Figure 3.6: "Sunflower" solar power station based on bionic robot	36
Figure 3.7: Concept 1 (3 stages of closing)	38
Figure 3.8: Concept 2 (4 stages of closing)	39
Figure 3.9: Concept 3 (3 stages of closing)	40
Figure 3.10: Concept 4 (3 stages of closing)	40
Figure 3.11: Mechanism concept 1	41
Figure 3. 12: Mechanism concept 2	42
Figure 3.13: Schematic diagram of solar cell to battery circuit	49
Figure 3. 14: Mass of blade assembly	50
Figure 3. 15: Mass of stepper motor, stepper motor housing and honeycomb	
pattern stand plate	51
Figure 3. 16: Mass of link bar	52
Figure 4. 1: Top view of fully open blade assembly	56
Figure 4. 2: Bottom view of fully open blade assembly	56
Figure 4. 3: Bottom view of Blade 1	57
Figure 4. 4: Top view of Blade 2	57
Figure 4. 5: Breadboard connection between Arduino Uno, stepper motor and	
driver L293D	58

Figure 4. 6: Isometric view of phyllotaxis solar panel	60
Figure 4. 7: Zoomed view of connection between honeycomb pattern stand plate	
rod and link bar-sliding rod	61
Figure 4. 8: Connection between acrylic honeycomb stand with link bar	61
Figure 4. 9: Method of taking output data from solar cells	62
Figure 4. 10: Graph of Temperature versus Current and Voltage	64
Figure 4. 11: Current-voltage characteristics of the shaded PV module	64
Figure 4. 12: Graph of Cloudy Percentage versus Current and Voltage	65
Figure 4. 13: Output voltage of single solar cell, series connected solar cell and	
parallel connected solar cell	68
Figure 4. 14: Output current of single solar cell, series connected solar cell and	
parallel connected solar cell	68
Figure 4. 15: Solar cell arrangement	70
Figure 4. 16: Displacement of stand straight honeycomb pattern stand plate	71
Figure 4. 17: Von Mises stress of stand straight honeycomb pattern stand plate	72
Figure 4. 18: Displacement of 29° bend honeycomb pattern stand plate	73
Figure 4. 19: Von Mises stress of 29° bend honeycomb pattern stand plate	74
Figure 4. 20: Displacement of link bar exerted with 0.045N force	75
Figure 4. 21: Von Mises stress of link bar exerted with 8.2N force	76

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

Ag	-	Silver	
Au	-	Gold	
CdTe	-	Cadmium Telluride	
CIGS	-	Copper Indium Gallium Selenide	
CH ₄	-	Methane	
CO_2	-	Carbon Dioxide	
DC	-	Direct Current	
DSSC	-	Dye-Sensitised Solar Cell	
eV	-	Electron volt	
FF	-	Fill Factor	
HF	-	Hydrofluoric Acid	
HCL	-	Hydrochloric Acid	
H_2O_2	-	Hydrogen Peroxide	
HF-HCL- H ₂ O ₂	-	Hydrofluoric Acid, Hydrochloric Acid and Hydrogen	
		Peroxide	
Ι	-	Current	
Isc	-	Short Circuit Current	
ITO/FTO	-	Indium/Fluorine Tin Oxide Glass	
$J_{L,M}$	-	Current at Maximum Power Condition	
Jo			
	-	Dark Current	
J_s	-	Dark Current Short Circuit Current	
J_{s} $J_{L,M}$	-		
_	-	Short Circuit Current	
$J_{L,M}$	-	Short Circuit Current Current At Maximum Power Condition	
J _{L,M} K	- - - -	Short Circuit Current Current At Maximum Power Condition Boltzmann Constant	
J _{L,M} K NRAs	-	Short Circuit Current Current At Maximum Power Condition Boltzmann Constant Zno Nanorod Arrays	
J _{L,M} K NRAs N2O		Short Circuit Current Current At Maximum Power Condition Boltzmann Constant Zno Nanorod Arrays Nitrous Oxide	
J _{L,M} K NRAs N ₂ O NO _x		Short Circuit Current Current At Maximum Power Condition Boltzmann Constant Zno Nanorod Arrays Nitrous Oxide Nitrogen Oxides	

SLG	-	Soda Lime Glass
SO_2	-	Sulphur Dioxide
Т	-	Temperature at Kelvin
TCOs	-	Transparent Conductive Oxides
TiO	-	Titanium Dioxide
USB	-	Universal Serial Bus
Voc	-	Voltage Open Circuit
V _m	-	Voltage at Maximum Power
ZnO	-	Zinc Oxide
η	-	Efficiency
eo	-	Charge of an Electron

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Project Background

There are uncountable cases of pollution happened in past 10 years. Pollution are categorised into different types for example sound pollution, air pollution, water pollution and etc. but all of them are threats to the Earth. If the issues are not taken care carefully, habitats of human, flora and fauna will be damaged and the future generation might going to live in a poor environment.

Electricity is first discovered by Benjamin Franklin. Electricity can be generated using different types of energy and these energy are also categorised into non-renewable energy and renewable energy. During the old times, electricity were generated mostly using non-renewable energy and it is still using now. The production of non-renewable energy uses the sources or materials that will be finished after use for example natural gas, coal, petroleum and diesel. Hence, the production of nonrenewable energy requires tons of raw material which majority of the materials are obtained underneath the Earth surface.

In order to reduce and minimise the pollution, renewable and green energy are the preferable energy used to generating electricity. Renewable energy is different from green energy; renewable energy is a type of energy that can be produced continuously using an infinite resource while the green energy is an energy produced that does not give out any emission that harms the environment. Solar energy is an energy that comprises both characteristics of green energy and renewable energy as it does not give out harmful emission and the sunlight from the Sun is limitless, abundant and infinite.

Solar panel with phyllotaxis pattern is designed and fabricated to achieve the objective of this project. The main reason of applying phyllotaxis pattern concept into the design is to enable the solar panel to be opened and closed in the form of bloom flower so that the user can carry it along easily. The solar panel can be folded up and kept in a storage space to ease in transportation. The solar panel also designed to come with a USB port so that the user can connect the solar panel to other device easily.

1.2 Problem Statement

The common method used to generate electricity is by using fossil fuel either petroleum or diesel. Both types of fuel gives harmful emission to the environment. The generation of electricity that uses fossil fuel gives out greenhouse gases such as carbon dioxide (CO_2), nitrous oxide (N_2O) and methane (CH_4) other than air pollutants such as sulphur dioxide (SO_2) and nitrogen oxides (NO_x).

Besides, Mitsos said that concentrated thermal solar energy requires tremendous spaces (Chu, 2012), so a lot of rooms are going to be taken up to generate corresponding electricity. Another issue faced by solar panel is the weight of the solar panel, heavy solar panel will be difficult to be carried along. In addition, mobility is also an issue facing by the solar panel product available in the market. Users cannot bring along the solar panel when they are travelling away from their home. It is hard to search for the plug or power supply in outdoors.

1.3 Objectives

The objectives of this project are as follows:

- i. To design phyllotaxis pattern solar panel.
- ii. To fabricate prototype of phyllotaxis pattern solar panel.
- iii. To optimize the output of phyllotaxis pattern solar panel.

1.4 Scopes

- i. Design phyllotaxis pattern solar panel using CATIA design software.
- ii. Develop the electrical circuit as output of solar panel by modifying the circuit.
- iii. Fabricate the prototype and analyse electrical output of the prototype.
- iv. Optimize the output of phyllotaxis pattern solar panel by rearranging the electrical circuit.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Phyllotaxis is the form that plant's organs such as petal and leaf are arranged around the stem. Phyllotaxis form is not necessary to be the floret and leaf arrangement but it also can be the arrangement of fruitlets on pineapple, sunflower seeds on sunflower and the scales on pine cones (Korn, 2008). This kind of form has attracted numbers of botanist, biologist and mathematician to carry out studies towards it. Even Charles Darwin was frustrated to solve the mystery of the phyllotaxis arrangement in terms of the divergence angle of the plant's organ with respect to its neighbour ones (Darwin, 1861).

Phyllotaxis arrangement can be characterised geometrically into centric view and cylindrical view in which that centric view is the top view while cylindrical view represents side view (Korn, 2008). Phyllotaxis pattern can be observed in sunflower seed arrangement under centric view; fruitlet arrangement on pineapple shows phyllotaxis pattern when it is observed under cylindrical view as shown in Figure 2.1 and Figure 2.2. The arrangement might be winded in anticlockwise or clockwise direction.

Figure 2.1: Phyllotaxis pattern under cylindrical view (Seewald, 2017)

Figure 2.2: Phyllotaxis pattern under centric view (Retrieved from http://produto.mercadolivre.stfi.re/MLB-695832344-20-sementes-suculenta-agavemix-cactos-flor-p-mudas-planta-_JM?sf=ngwjzbe#aa)

Leaf arrangement obeys the Fibonacci sequence during the growth of the plant however surprisingly (Okabe, 2015) discovered that the divergence angle remains the same in 137.5° which is called as the golden angle. Golden angle enables leaf or flower to be arranged effectively along the spiral (Seewald, 2017). Another interesting fact of golden angle is that the arrangement of leaf or petal around the stem will not overlap completely (Valladares & Brites, 2004) thereby optimizes the sunlight absorption and enhances photosynthesis process to obtain sufficient carbon (King et al., 2004). A minor change in divergence angle in leaf arrangement results in diverse arrangement pattern; for example with the difference of 2.5° divergence angle (from 135° to 137.5°), the first divergence angle of 135° had 8 leaves shoot by light while divergence angle of 137.5° had more leaves (85) shoot by light (Valladares & Brites, 2004). Phyllotaxis arrangement is an amazing creation from God as it maximises sunlight absorption with no overlapping of leaves with each other and hence enhances the photosynthesis process. These unique characteristics can be substituted into a solar panel arrangement design and helps in optimizes sunlight absorption and hence increases the energy conversion efficiency.

2.2 History of Solar Cell

Solar energy, the energy in the form of radiation from the Sun, is the most abundant, limitless and infinite energy. Solar energy as the precious gift from the Sun is used since ages to convert solar energy into various form of energy such as heat energy and recently, electricity (Silvi, 2008). Solar energy is said to be one of the favourable renewable energy in the world due to its emission-free characteristic, long lifetime of 20 to 30 years with low operation cost and little maintenance (Bagher, 2015). It is completely environmentally friendly form of energy hence a lot of studies and researches were carried out to maximize solar energy harvesting as the alternative solution to electricity generation using fossil fuel that produces waste products and lead to environmental pollution.

In 1839, photovoltaic effect was observed by Alexandro Edmond Becquerel that claimed electricity can be generated by solar energy. Later in early 1880s, Charles Fritts invented the first ever solar cell by using selenium as the top layer on metal plate coated with gold leaf. The solar cell showed the possibility of generating more electricity when it is placed under sunlight. Although this invention had only about 1% efficiency, it is the most important milestone in solar cell technology and it opened the journey for the scientists to discover materials or method in producing higher efficiency photovoltaic cell.

