

ERGONOMICS INTERVENTION TO IMPROVE PLASTIC ROLL HANDLING PROCESS AT PRODUCTION AREA IN PLASTIC MANUFACTURING INDUSTRY

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Manufacturing Management) (Hons.)

by

LAI YAN LING B051310067 930125-01-5750

FACULTY OF MANUFACTURING ENGINEERING 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: ERGONOMICS INTERVENTION TO IMPROVE PLASTIC ROLLHANDLING PROCESS AT PRODUCTION AREA IN PLASTICMANUFACTURING INDUSTRY

Sesi Pengajian: 2016/2017 Semester 2

Saya LAI YAN LING (930125-01-5750)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
-------	---

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

 $\sqrt{1}$ TIDAK TERHAD

Disahkan oleh:

Alamat Tetap: <u>102, Jalan Mawar, Felda Sungai Sibol,</u> <u>81000 Kulai, Johor.</u> Tarikh: <u>16 JUNE 2017</u> Cop Rasmi:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Ergonomics Intervention to Improve Plastic Roll Handling Process at Production Area in Plastic Manufacturing Industry" is the result of my own research except as cited in references.

Signature:Author's Name: LAI YAN LINGDate: 16 JUNE 2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Manufacturing Management) (Hons). The member of the supervisory committee are as follow:

.....

(Dr. Isa Bin Halim)

ABSTRAK

Industri pembuatan memainkan peranan yang penting dalam ekonomi Malaysia. Pembuatan plastik adalah salah satu daripada industri di sektor pembuatan. Kebiasaannya, bahan mentah untuk produk-produk industri pembuatan plastik adalah berbentuk gegelung yang mana saiznya besar dan berat. Melaksanakan aktiviti pengendalian bahan tanpa teknik yang betul dan alat bantuan yang kurang efisien boleh membawa kepada isu risiko ergonomik yang boleh menyebabkan kesihatan pekerjaan seperti sakit belakang. Tujuan kajian ini adalah untuk mereka bentuk semula alat pengendalian plastik gulung yang sedia ada untuk memudahkan proses pengendalian plastik gulung. Isu-isu ergonomik berkaitan dengan proses pengendalian plastik gulung secara manual telah dikenal pasti melalui pemerhatian di tempat kerja dan kajian soal selidik. Faktor-faktor risiko ergonomik dalam proses pengendalian plastik gulung sedia ada dianalisis dengan menggunakan Rapid Upper Limb Assessment (RULA) dan Push-Pull Analysis. Dalam usaha untuk mereka bentuk semula alat pengendalian plastik gulung sedia ada untuk mempertingkatkan produktiviti dan kesihatan pekerja, keperluan pelanggan telah diterjemahkan ke dalam keperluan teknikal dalam House of Quality (HOQ). Tambahan pula, pelbagai konsep reka bentuk alat pengendalian plastik gulung telah dikumpul dan ditapis melalui kaedah pemilihan konsep untuk memilih reka bentuk konsep yang terbaik berdasarkan kesesuaian dan kos pengeluaran yang rendah. Analisa kos dan faedah telah digunakan untuk menganalisis keberkesanan reka bentuk yang dipilih dari segi penjimatan kos dan pulangan ke atas pelaburan untuk memenuhi keperluan keusahawanan. Kajian ini menyimpulkan bahawa reka bentuk baru alat pengendalian plastik gulung mampu memudahkan proses pengendalian plastik gulung dengan pengurangan skor RULA. Kajian ini mencadangkan bahawa fabrikasi sebenar perlu dilakukan supaya ianya dapat diguna pakai di industri untuk menperbaiki postur kerja dan mengurangkan penggunaan tenaga yang berlebihan.

ABSTRACT

Manufacturing industries play an important role in the economy of Malaysia. One of the manufacturing industries is plastic manufacturing industry. In this plastic manufacturing industry, the product which is in the form of plastic rolls are heavy and large. Basically, the transportation of plastic rolls from one location to another is carried out manually by the operators by using substandard assistive device. Performing tasks without proper technique and assistive device leads to ergonomics risk factors which may causes occupational health such as low back pain and musculoskeletal disorders (MSD). The aim of this study is to redesign the existing plastic roll handling device to ease the plastic roll handling process. The ergonomics issues related to manual plastic rolls handling tasks were determined via workplace observation and questionnaire survey. The ergonomics risk factors at the existing plastic rolls handling process were analysed by using Rapid Upper Limb Assessment (RULA) and Push-Pull Analysis. In order to redesign the existing plastic roll handling device to improve productivity and occupational health of workers, customer requirements were translated into technical requirements in House of Quality (HOQ). Furthermore, the concepts of the improved design of the plastic roll handling device were gathered and screened through concept selection method to select the best conceptual design based on the practicability and low manufacturing cost. Cost and benefit analysis (CBA) was used to analyse the effectiveness of the selected design in terms of cost saving and return on investment in order to meet the entrepreneurial requirement. This study concluded that the new design of the plastic roll handling device is able to improve plastic roll handling process with the RULA score improvement. This study suggests that the real fabrication and application should be implemented in the industry in order to improve the work posture and reduce the exertion of excessive force.

DEDICATION

Special dedication to my beloved parents, siblings and friends for giving me moral support, money, cooperation, encouragement and also understandings to complete this final year project. Thank You So Much & Love You All Forever.

ACKNOWLEDGEMENT

First and foremost, special thanks to my project supervisor, Dr. Isa Bin Halim, for providing me guidance, advices, critics and encouragement which make me complete this report on time and also his scarification in time to coach and explain to me without a word of complaint. He had dedicated to provide me useful information and comments in completing the presentations and the reports successfully without difficulty.

I would like to thank my lovely family who always supporting and motivating me to complete this final year project. Their encouragement and support help me accomplish this report. Thank you so much for giving me uncountable supports.

Besides, I would like to thank Lum Mah Plastic & Printing Sdn. Bhd. including all workers for providing me facilities, supportive information and opportunity to conduct this project at the company.

Thank and deeply indebted to all my friends whose involve in this project directly and indirectly. Their advices and comments are help me to improve the quality of this report.

Finally, I would like to thank you for those who directly or indirectly involved during this project and completion of this report. All your kindnesses are very much appreciated.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	ix
List of Figures	xi
List of Abbreviations	xiv
List of Symbols	XV

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	4
1.3	Objectives of Study	7
1.4	Scope of Study	8
1.5	Significance of Study	8
1.6	Summary of Introduction	9

CHAPTER 2: LITERATURE REVIEW

2.1	Ergon	omics Issues in Manual Materials Handling	10
	2.1.1	Ergonomics Issues	10
	2.1.2	Method to Investigate the Ergonomics Issues	13
		2.1.2.1 Workplace Observation	13
		2.1.2.2 Questionnaire Survey	13
		2.1.2.3 Interview	16
		2.1.2.4 Pilot study	18
2.2	Analy	sis of Ergonomics Risk Factors	18
	2.2.1	Ergonomics Risk Factors in Manual Material Handling	18
	2.2.2	Ergonomics Assessment Tools	20

		2.2.2.1 Rapid Upper Limb Assessment (RULA)	20
		2.2.2.2 Rapid Entire Body Assessment (REBA)	23
		2.2.2.3 Ovako Working posture Analysing System (OWAS)	26
		2.2.2.4 NIOSH Lifting Equation	27
		2.2.2.5 Snook Push/Pull Tables	29
2.3	Redes	ign Manual Handling Device to Improve Productivity and	
	Occup	ational Health	32
	2.3.1	Productivity and Occupational Health	32
	2.3.2	Method in Designing	33
		2.3.2.1 Quality Function Deployment (QFD)	33
		2.3.2.2 Concept Selection Method	34
		2.3.2.3 Cost and Benefit Analysis (CBA)	36
2.4	Differ	ences between Previous Study and Current Study	37
2.5	Summ	ary of Literature Review	38

CHAPTER 3: METHODOLOGY

3.1	Invest	tigation of Ergonomics Issues related to Manual Plastic	
	Rolls	Handling in a Plastic Manufacturing Industry	39
	3.1.1	Workplace Observation	39
	3.1.2	Questionnaire Survey	43
3.2	Analy	rsis of Ergonomics Risk Factors at the Existing Plastic	
	Rolls	Handling Process	47
	3.2.1	Stage 1: Plastic Roll Handling Process	47
	3.2.2	Stage 2: Collecting Data for Ergonomic Analysis	50
	3.2.3	Stage 3: Drawing of Existing Condition	51
	3.2.4	Stage 4: Ergonomics Analysis	51
	3.2.5	Stage 5: Statistical Analysis	52
	3.2.6	Push-Pull Analysis	52
3.3	Redes	ign of Existing Plastic Roll Handling Device	55
	3.3.1	Quality Function Deployment	56
	3.3.2	Concept Selection Method (Pugh Method)	57
	3.3.3	Cost and Benefit Analysis (CBA)	59
3.4	Sumn	nary of Methodology	60

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Ergon	omics Issues related to Manual Plastic Rolls Handling Tasks	61
	4.1.1	Workplace Observation	61
	4.1.2	Respondents' Feedbacks through Questionnaire Survey	63
		4.1.2.1 Cronbach's Alpha Test results	63
		4.1.2.2 Respondents' Demographic Information	63
		4.1.2.3 Problems and Root Causes in Plastic Roll Handling Tasks	65
		4.1.2.4 Impact of the Current Plastic Roll Handling to Health and	68
		Comfort	
4.2	Assess	sment of Ergonomics Risk Factors at the Existing Plastic Rolls	69
	Handl	ing Process	
	4.2.1	Postural Assessment	69
		4.2.1.1 Checkpoint 1: Operator pulls the manual lift table by	
		using one hand	70
		4.2.1.2 Checkpoint 2: Operator transferring the heavy and large	
		plastic roll from pallet to the manual lift table	71
		4.2.1.3 Checkpoint 3: Operator pushes the manual lift table with	
		the heavy and large plastic roll to the extrusion machine	72
		4.2.1.4 Checkpoint 4: Operator installing the plastic roll into the	
		extrusion machine	74
	4.2.2	Push-Pull Analysis	75
4.3	Redes	ign of Existing Plastic Roll Handling Device	78
	4.3.1	Design requirements on Plastic Roll Handling Device	78
	4.3.2	Quality Function Deployment	80
	4.3.3	Concept Selection Method (Pugh Method)	83
	4.3.4	Ergonomics Assessment when using Redesigned Plastic Rolls	
		Handling Device	88
		4.3.4.1 Postural Assessment	89
	4.3.5	Cost and Benefit Analysis (CBA)	94
CHA	PTER 5	5: CONCLUSIONS AND RECOMMENDATIONS	
5.1	Ergon	omics Issues Related to Manual Plastic Rolls Handling	97
5.2	Assess	sment of Ergonomics Risk Factors at the Existing Plastic Rolls	
	Handl	ing Process	97

5.3	Redesign of Existing Plastic Roll Handling Device	98
5.4	Recommendations for Future Works	98
5.5	Sustainable Design Development	99

100

REFERENCES

APPENDICES

- A Questionnaire Survey Form
- B Ergonomics Observation Worksheets

LIST OF TABLES

2.1	Reliability coefficient	15
2.2	RULA grand scores, action levels and indications conducted	23
2.3	REBA action levels in terms of risk level	25
2.4	OWAS percentage of agreement, Kappa measurement and	
	indications	27
2.5	The differences between previous study and current study	37
3.1	Example of data sheet for anthropometry data of the operator	50
3.2	Key to interrelationships matrix symbols	56
3.3	Concept selection matrix	58
3.4	Scales in rating the concepts	58
3.5	Return on investment after ergonomic intervention	60
4.1	Cronbach's alpha of questionnaire	63
4.2	Designation and gender of respondents	63
4.3	Age Group	64
4.4	Nationality	64
4.5	Height of respondents	64
4.6	Weight of respondents	64
4.7	Working experience in plastic manufacturing industry	65
4.8	Education level of respondents	65
4.9	Frequency and level of discomfort of operators	68
4.10	Risk-threshold ranges	76
4.11	Comparison of actual initial force, actual sustained force and	
	maximum force in pushing of plastic roll	76
4.12	Comparison of actual initial force, actual sustained force and	
	maximum force in pulling of plastic roll	77
4.13	Design requirements to improve the existing manual lift table	78
4.14	Importance rating of customer requirements	80

4.15	Absolute importance of technical requirements	80
4.16	Concept Selection Matrix	87
4.17	RULA action level improvement for each checkpoints.	94
4.18	Return on investment after ergonomic intervention	95
4.19	Medical costs before ergonomic intervention	95
4.20	Medical costs after ergonomic intervention	96
4.21	Costs of ergonomic intervention	96

LIST OF FIGURES

1.1	Handling of a heavy plastic roll using substandard assistive device	
	in awkward bending posture	3
1.2	Worker performs the plastic roll handling task in bending posture	6
1.3	Handling excessive loads by using a substandard assistive device	6
1.4	Limited clearance and accessibility at the work area	7
2.1	Eight criteria in designing the workstation	11
2.2	Nordic Questionnaire	16
2.3	Example of RULA employee assessment worksheet	20
2.4	The posture scores for body part group A, upper arm, lower arm,	
	wrist and wrist twist	21
2.5	The posture scores for body part group B, neck, trunk and legs	22
2.6	RULA scoring sheet	22
2.7	Group A and B body part REBA diagram	24
2.8	REBA score sheet example	25
2.9	REBA employee assessment worksheet	26
2.10	The percentage of agreement and the kappa from inter-observer	
	and intra-observers	27
2.11	Representation of the task variables	29
2.12	Maximum acceptable forces of push task for male (kg)	30
2.13	Maximum acceptable forces of push task for female (kg)	31
2.14	Maximum acceptable forces of pull task for male (kg)	31
2.15	Maximum acceptable forces of pull task for female (kg)	32
2.16	House of Quality template and benefits	34
2.17	Example of completed Pugh Matrix	35
3.1	Warehouse of raw materials	40
3.2	Operator handles a large plastic roll with substandard assistive device	40
3.3	Operator works in bending posture	41

3.4	Sample of ergonomics observation worksheet	42
3.5	Flow chart of the workplace observation	42
3.6	Conducting questionnaire survey with the operator	43
3.7	Flow chart of preparation of questionnaire survey	46
3.8	Working posture of the operator who pulling the manual lift table	
	with no load	48
3.9	Working posture of the operator when pulling the plastic roll to manual	
	lift table	48
3.10	Working posture of the operator when pushing the manual lift table	
	and load	49
3.11	Working posture of the operator when installing the plastic roll to	
	machine holder	49
3.12	Measuring the anthropometry data of the operator	50
3.13	Process flow in analyzing ergonomic risk factors	52
3.14	Posture for maximum push force	53
3.15	Posture for maximum pull force	53
3.16	Posture for actual initial push force and the reading of weight scale	54
3.17	Posture for actual sustained push force	55
3.18	Process flow of the development of house of quality	57
3.19	Process flow of the development of concept selection method	59
4.1	Problems in plastic roll handling tasks	65
4.2	Root causes for the problems (1)	66
4.3	Root causes for the problems (2)	67
4.4	RULA analysis on checkpoint 1 for right body side	70
4.5	RULA analysis on checkpoint 1 for left body side	70
4.6	RULA analysis on checkpoint 2 for right body side	71
4.7	RULA analysis on checkpoint 2 for left body side	72
4.8	RULA analysis on checkpoint 3 for right body side	73
4.9	RULA analysis on checkpoint 3 for left body side	73
4.10	RULA analysis on checkpoint 4 for right body side	74
4.11	RULA analysis on checkpoint 4 for left body side	74
4.12	House of Quality (HOQ) for the redesigning of manual lift table	82

4.13	Concept 1	83
4.14	Concept 2	84
4.15	Concept 3	84
4.16	Concept 4	85
4.17	Concept 5	85
4.18	New design of manual lift table	88
4.19	New RULA analysis at checkpoint 1 for right body side	89
4.20	New RULA analysis at checkpoint 1 for left body side	90
4.21	New RULA analysis at checkpoint 2 for right body side	91
4.22	New RULA analysis at checkpoint 2 for left body side	91
4.23	New RULA analysis at checkpoint 3 for right body side	92
4.24	New RULA analysis at checkpoint 3 for left body side	92
4.25	New RULA analysis at checkpoint 4 for right body side	93
4.26	New RULA analysis on checkpoint 4 for left body side	93

LIST OF ABBREVIATIONS

ASEAN	-	Association of Southeast Asian Nations	
CATIA	-	Computer Aided Three-Dimensional Interactive	
		Application	
CBA	-	Cost and Benefit Analysis	
GDP	-	Gross Domestic Product	
HOQ	-	House of Quality	
LBP	-	Low Back Pain	
LI	-	Lifting Index	
LMPP	-	Lum Mah Plastic & Printing	
MMH	-	Manual Materials Handling	
MSDs	-	Musculoskeletal Disorders	
MVC	-	Maximum Voluntary Contraction	
NLE	-	NIOSH Lifting Equation	
OPP	-	Oriented Polypropylene	
OSHA	-	Occupational Safety and Health Administration	
OWAS	-	Ovako Working posture Analysing System	
PE	-	Polyethylene	
PP	-	Polypropylene	
QFD	-	Quality Function Deployment	
REBA	-	Rapid Entire Body Assessment	
RULA	-	Rapid Upper Limb Assessment	
RWL	-	Recommended Weight Limit	
SOCSO	-	Social Security Organization of Malaysia	
SPSS	-	Statistical Package for the Social Sciences	

LIST OF SYMBOLS

α	-	Alpha
cm	-	Centimetre
m	-	Metre
%	-	Percent
kg	-	Kilograms
Ν	-	Newton

CHAPTER 1 INTRODUCTION

This chapter introduces the background of study which focuses to manual materials handling at a plastic manufacturing industry in Malaysia. In addition, this chapter describes the problem statements, objective of study, scope and limitations of study as well as significance of study.

1.1 Background of Study

In this era of competitive world, manufacturing industry plays an important role to increase Malaysian economy. Malaysia was recognized as one of the most active countries in reforming their investment in manufacturing market among the Association of Southeast Asian Nations (ASEAN), especially during the 1980s and 1990s. According to the Department of Statistics Malaysia, manufacturing sector increased by 5 percent year-on-year in 2015, represent Malaysia's total economic growth of 5 percent (Lai Wan, 2016). Among several sectors that contributing to Malaysia economy, manufacturing sector is identified as the second largest sector that provides 24.7 percent to Gross Domestic Product (GDP) (Malaysia Productivity Corporation, 2015). Besides that, rubber and plastic products sector contributed 7.6% to the added value in GDP 2014, represent the important of plastic product manufacturing as a source of income to Malaysia and contribute to economic growth (Malaysia Productivity Corporation, 2015).

There are many types of industry under manufacturing sector in Malaysia such as food processing, pharmaceuticals, chemicals, woodworking, electrical and electronics, metalworking

and plastic product manufacturing. In the plastic manufacturing industry, there are several manufacturing processes. The plastic rolls manufacturing process is start with printing process which print the image or text of desired design on the plastic rolls. Second, the plastic rolls either will go to the extrusion process or dry lamination process depend on the specification of the materials needed. The function of both processes is to increase the thickness and strength of the plastic rolls by adding another plastic layer on them. Plastic rolls with Oriented Polypropylene (OPP) or Polypropylene (PP) materials will go through extrusion process while other materials such as nylon and Polyethylene (PE) will go through dry lamination process. The final process is slitting whereby the plastic rolls are formed into roll or bag types. Transportation of plastic rolls from one location to another is carried out manually by the operators. Manual materials handling (MMH) involved activities such as lifting, pulling, pushing, lowering, carrying, holding, and transferring.

MMH activities such as manual lifting of load is still a prevalent choice and commonly practiced in plastic manufacturing industries despite the fact that the automation technology has been well developed and advanced, and associated with mechanized and automated equipment. Manual lifting can be performed whether in a symmetric or asymmetric posture. There are two types of lifting techniques that are commonly applied by the industrial workers: stoop lifting and squat lifting. The stoop lifting technique is practiced when the workers bend the upper torso forward and downward from an erect position, meanwhile stoop lifting is crouching in low position with the legs drawn up closely to the body (Hsiang et al., 1997). The workers may be exposed to high chance for occupational injuries such as back pain if they perform the MMH activities in bending posture and heavy load, as illustrated in Figure 1.1. The Social Security Organization of Malaysia (SOCSO) reported 2,011 cases of back pain in 2013, the highest injury occurred in workplace (SOCSO, 2013).

In plastic manufacturing industry, transportation of plastic rolls is highly depending on the operator. Usually, the operators used a lift table trolley to transfer large and heavy plastic rolls to the production area. This study observed that the operators practiced improper loads handling in their work activities due to lack of MMH training. This can be seen at the start point of the handling process whereby an operator needs to take large and heavy plastic rolls from the warehouse without support of a co-worker. After taking the plastic rolls, the operator needs to install the plastic rolls into the machine in awkward work posture. This an excessive manual handling can cause occupational injuries such as muscle fatigue and back pain.

Besides potential for occupational injuries, improper manual materials handling techniques may affect the productivity of the industry. Performing tasks with improper technique leads to ergonomics risk factors such as awkward work posture. Working in awkward postures results in reduced strength, less accuracy and increased fatigue. When the operators are fatigued, their movement might be slow and concentration becomes lesser, thus hinder productivity. Figure 1.1 below shows worker handling a heavy plastic roll using substandard assistive device in awkward bending posture.

Figure 1.1: Handling of a heavy plastic roll using substandard assistive device in awkward bending posture

Many efforts such as researches and guidelines have been made to improve productivity and occupational health of worker who involved in MMH. Among them are educating the workers with ergonomics knowledge and awareness to practice proper MMH technique (Deros et al., 2015); development of NIOSH Lifting Equation 1991 to estimate the recommended weight limit for a worker in performing manual lifting tasks (Dempsey, 2002); lifting guidelines and training on safe manual lifting (Health and Safety Executive, 2013); experimental study to find an optimum lifting height, load mass, container size, and lifting frequency (Singh et al., 2012); and redesign the manual handling device (Mohammadi et al., 2013). However, the numbers of accidents related to MMH in Malaysia are still high which were 15754 cases from the year 2012 to 2014 (SOCSO Annual Report 2012-2014). This is because workers ergonomic awareness's level on safety and health at workplace were very low (Durishah *et al.*, 2004). Furthermore, incorrect in manual materials handling techniques will cause in spinal and muscle injuries due to the high strength and energy used (Muslimah et al., 2006).

The aim of this study is to redesign the existing materials handling device used for plastic roll transferring process in a plastic manufacturing industry. Ergonomics design principles are applied to the design of the materials handling device to improve productivity and occupational health of workers.

1.2 Problem Statement

This study performed workplace observation and questionnaire survey to investigate the problems faced by the workers who involved in plastic rolls handling task in a plastic manufacturing industry located in Ayer Keroh Industrial Estate, Melaka. Based on the workplace observation and questionnaire survey, this study revealed that the problems faced by the industry are:

a) Poor occupational health

Almost all workers which are 17 out of 19 complained occupational health problems such as back pain, shoulder pain, and muscle pain. They visited medical practitioners and obtained at least 3 medical certificates per year. They suffered from the pains because of performing the plastic rolls handling task in awkward posture (Figure 1.2), forceful exertion (Figure 1.3), and repetitive task in long work duration. Performing the forceful task in awkward posture and

repetitive loading require workers to exert high physical effort, thus lead to faster fatigue rate. Additionally, forceful exertion can cause irritation, inflammation, strains and tear of the muscles, tendons and ligaments. Workers who were exposed to continual or repeated risk factors in manual materials handling over a long time will lead to injuries to hands, back, shoulders or other parts of body. Injuries caused by the improper manual materials handling known as musculoskeletal disorders (MSDs), (OSHA, 2007).

b) Low productivity

The production rate of the plastic rolls in the company is considered very low. The company has decided production target is 15 plastic rolls per day in the extrusion department, however, the workers managed to obtain 11 plastic rolls per day. This is due to workers have to perform the plastic rolls handling in improper technique due to limited workplace clearance and accessibility (Figure 1.4). Lack of clearance and accessibility negatively affect movements of the workers when transferring and maneuvering the plastics rolls. Additionally, the workers used a substandard mechanical assistive device to transfer the plastic rolls from one area to another point (Figure 1.3). Lack of clearance and accessibility, and substandard mechanical assistive device can hinder the productivity.