

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# THE OPTIMIZATION OF FRICTION STIR WELDING PARAMETER FOR ALUMINIUM 5052 BY USING FULL FACTORIAL DESIGN

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours.

By

# NOR FAIZAH BINTI ABDUL HALIM B071410102 920707025060

# FACULTY OF ENGINEERING TECHNOLOGY 2017





## UNIVERSITI TEKNIKAL MALAYSIA MELAKA ونيفرسيق تيكنيك لمليه

#### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

### TAJUK: THE OPTIMIZATION OF FRICTION STIR WELDING PARAMETER FOR ALUMINIUM 5052 BY USING FULL FACTORIAL DESIGN

SESI PENGAJIAN: 2017/2018

### Saya NOR FAIZAH BINTI ABDUL HALIM

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan ( $\checkmark$ )

| SULIT                                                                      | (Mengandungi ma<br>kepentingan Mala<br>AKTA RAHSIA R/                                   | aklumat yang berdarjah keselamatan atau<br>ysia sebagaimana yang termaktub dalam<br>ASMI 1972)               |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| TERHAD                                                                     | (Mengandungi ma<br>organisasi/badan                                                     | aklumat TERHAD yang telah ditentukan oleh<br>di mana penyelidikan dijalankan)                                |  |
| TIDAK TERH                                                                 | AD                                                                                      | Disahkan oleh:                                                                                               |  |
| Alamat Tetap:                                                              |                                                                                         | Cop Rasmi:                                                                                                   |  |
| Mukim Tebengau, 06600, Tarikh:                                             |                                                                                         |                                                                                                              |  |
| Kuala Kedah, Kedah                                                         |                                                                                         | _                                                                                                            |  |
| * Jika Laporan PSM<br>perkuasa/organisasi berk<br>niperlu dikelaskan sebag | ini SULIT atau TE<br>kenaan dengan meny<br>ai SUUT atau TERHAD<br>Universiti Teknikal I | ERHAD, sila lampirkan surat daripada pihak<br>vatakan sekali sebab dan tempoh laporan PSM<br>Malaysia Melaka |  |

# DECLARATION

I hereby, declared this project report entitled "The Optimization of Friction Stir Welding Parameter for Aluminium 5052 by using Full Factorial Design" is the results of my own research except as cited in references

Signature:Author's Name: NOR FAIZAH BINTI ABDUL HALIMDate:

C Universiti Teknikal Malaysia Melaka

# APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor in Manufacturing Engineering Technology (Process and Technology) with Honours. The member of the supervisory is as follow:

.....

(Mohd Hairizal Bin Osman)

C Universiti Teknikal Malaysia Melaka

### ABSTRAK

Mesin kimpalan geseran (FSW), adalah teknik penyambungan pepejal , yang digunakan secara meluas dengan penggabungan AI, Cu, Ti dan aloi yang sama. Proses (FSW) ini dicipta dan terbukti di The Welding Institude (TWI) di UK, pada tahun 1991, merupakan proses deskriptif yang pertama. Mesin kimpalan geseran (FSW) juga memberi manfaat dalam bidang pembuatan, seperti Aluminium, salah satunya dalam proses penyambungan utama dalam industri penerbangan. Kajian ini membentangkan proses mengoptimumkan parameter (FSW) pada Aluminium 5052 dengan menggunakan –"*Full Factorial Design*". Parameter yang digunakan adalah seperti pengumpar kimpalan dan kimpalan kadar. Hasilnya , menunjukkan bahawa parameter yang digunakan dengan menggunakan –"*Full Factorial Design*" ini dapat di analisis menggunakan (ANOVA). Ketepatan parameter yang di kaji ini , dapat dibuktikan dengan menggunakan kaedah perisian Minitab 15.

### ABSTRACT

The Friction Stir Welding (FSW), is a solid state joining process, is widely used in the consolidation of the same AI, Cu, Ti, and alloys. This process (FSW) was created and proved at The Welding Institute (TWI) in the UK, since 1991, it was the first most descriptive process. The Friction Stir Welding (FSW) also benefits in the field of manufacturing of products, such as Aluminium, one of which is in the main connecting process in the aircraft industry. This study presents about The Process of Optimizing Parameters (FSW) on Aluminium by using Full Factorial Design. The parameters used can be optimized by using Full Factorial Design, and analyze using ANOVA and Minitab 15 software method. It can prove the parameter accuracy that is being studied by the production of the data.

### DEDICATION

The dedication I want to thanks to all people that hard to help me in complete my thesis. Special appreciation to my beloved mother Fatimah Binti Saad and my family, that always gives a moral support. Also, thanks to my friends Riduan Bin Hairus,Madiha Husna Binti Ahmad,Nur Fatihah Binti Nasrudin and Nur Fazreeha Ameelya Binti A.Fadzil. Not to forget to my supervisor Mr Mohd Hairizal Bin Osman always help me.

### ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

Alhamdulilah, I would like to thanks Allah S.W.T the Most Merciful and blessing me through all the obstacle that I faced during the work of this project. As my individual project, this project would not have been possible without considerable guidance and support. I would like to record my gratitude to my Supervisor, Mr. Mohd Hairizal Bin Osman as well as my Co-Supervisor, Mr Salleh Bin Aboo Hassan, the advice, guide me and giving me extraordinary experiences throughout the work. I gratefully acknowledge my family as they are the backbone of this project to become successful. Thank you for the contributions and helping me in my final year project. Lastly, it is a pleasure to express my gratitude whole heartedly to lecturers, classmate and friends who contributed to this project directly and indirectly.

# **TABLE OF CONTENT**

| ABSTRAK                                       | i      |
|-----------------------------------------------|--------|
| ABSTRACT                                      | ii     |
| DEDICATION                                    | 111    |
| ACKNOWLEDGEMENT                               | iv     |
| TABLE OF CONTENT                              | v-ix   |
| LIST OF TABLES                                | X      |
| LIST OF FIGURES                               | xi-xii |
| LIST ABBREVIATIONS, SYMBOLS AND NOMENCLATURES | xiii   |

### **CHAPTER 1: INTRODUCTION**

| 1.0 | Background        | 1 |
|-----|-------------------|---|
| 1.1 | Objective         | 2 |
| 1.2 | Project Scope     | 3 |
| 1.3 | Problem Statement | 4 |

### **CHAPTER 2: LITERATURE REVIEW**

| 1.0 | Introd  | Introduction 6-9                                   |       |  |
|-----|---------|----------------------------------------------------|-------|--|
| 2.1 | Full F  | Full Factorial Design Method 9-1                   |       |  |
| 2.2 | Welding |                                                    | 10-11 |  |
|     | 2.2.1   | Solid State Welding                                | 11-13 |  |
|     | 2.2.2   | Types of Welding                                   | 13-21 |  |
| 2.3 | Frictio | on Stir Welding                                    | 22-23 |  |
|     | 2.3.1   | Friction Stir Welding (FSW) Process                | 24-25 |  |
|     | 2.3.2   | Comparison of Friction Stir Welding (FSW) to other | 25    |  |
|     |         | Welding Process                                    |       |  |
|     | 2.3.3   | Welding Parameter                                  | 26-27 |  |
|     | 2.3.4   | Tool Geometry                                      | 27-28 |  |
|     | 2.3.5   | Joint Method                                       | 28-29 |  |
|     | 2.3.6   | Application of Friction Stir Welding in            | 29-30 |  |
|     |         | Industry                                           |       |  |
| 2.4 | Mater   | ial Testing Tensile Strength                       | 30-31 |  |
|     | 2.4.1   | Mechanical Properties of Material                  | 32-33 |  |

vi

| 2.5 | Analysis of Variance       | 34-37 |
|-----|----------------------------|-------|
| 2.6 | Design of Experiment (DOE) | 37    |
| 2.7 | Minitab Software           | 38-39 |

### **CHAPTER 3: METHODOLOGY**

| 3.0 | Introduction                                         |       |  |
|-----|------------------------------------------------------|-------|--|
| 3.1 | Flow of Project Methodology                          | 41-42 |  |
| 3.2 | Selection of Machine and Material                    | 43    |  |
|     | 3.2.1 Selection of Material                          | 43    |  |
|     | 3.2.2 Aluminium                                      | 44    |  |
|     | 3.2.3 Weld Tool Designs                              | 45-46 |  |
|     | 3.2.4 Cutting Machine                                | 47-49 |  |
|     | 3.2.5 Friction Stir Machine                          | 43    |  |
|     | 3.2.6 Specification of Friction Stir Welding Machine | 51    |  |
| 3.3 | Universal Testing Machine (UTM) 52                   |       |  |
| 3.4 | Specimen Preparation                                 |       |  |
| 3.5 | Joint Preparation 54                                 |       |  |
| 3.6 | Full Factorial Design Method Analyze55-              |       |  |

### **CHAPTER 4: RESULT AND DISCUSSION**

| APPE            | NDICS                                                                  | 83    |  |  |
|-----------------|------------------------------------------------------------------------|-------|--|--|
| REFERENCES 79-8 |                                                                        | 79-82 |  |  |
| 5.4             | Recommendation                                                         | 78    |  |  |
| 5.3             | Achievement of Research Objective                                      | 77    |  |  |
| 5.2             | Challenging of Project                                                 | 77    |  |  |
| 5.1             | Summary of Research                                                    | 76-77 |  |  |
| 5.0             | Introduction                                                           | 76    |  |  |
| СНАР            | <b>CHAPTER 5: CONCLUSION AND RECOMMENDATION</b>                        |       |  |  |
| 4.5             | Confirmation Test                                                      | 74-75 |  |  |
| 4.4             | Analysis of Variance                                                   | 72-74 |  |  |
| 4.3             | Result of effect of two factors are investigated in a Factorial Design | 70-71 |  |  |
| 4.2             | Analyze Data by using Full Factorial Design                            | 68-69 |  |  |
| 4.1             | Result                                                                 | 57-68 |  |  |
| 4.0             | Introduction                                                           | 57    |  |  |

# LIST OF TABLES

| 2.1 | Main Process Parameter of Friction Stir Welding | 26 |
|-----|-------------------------------------------------|----|
| 3.1 | Characteristic of Material                      | 42 |
| 3.2 | Weld Tool Dimensions                            | 46 |
| 3.3 | Specification of Friction Stir Welding          | 51 |
| 3.4 | Full Factorial Design                           | 56 |
| 4.1 | The Parameter of Trial 1                        | 58 |
| 4.2 | The Parameter of Trial 2                        | 60 |
| 4.3 | The Parameter of Trial 3                        | 62 |
| 4.4 | The Parameter of Trial 4                        | 64 |
| 4.5 | The Parameter of Trial 5                        | 66 |
| 4.6 | Result of Trial                                 | 69 |
| 4.7 | Result of ANOVA                                 | 73 |
| 4.8 | Result of Trial Test                            | 74 |
| 4.9 | Result of Confirmation Test                     | 75 |

# **LIST OF FIGURES**

| 2.1  | Resistance of Friction Stir Welding                                   | 7  |
|------|-----------------------------------------------------------------------|----|
| 2.2  | Friction Stir Welding Process                                         | 9  |
|      | ( R.S Mishra, Z.Y.Ma, 2005)                                           |    |
| 2.3  | The Welding Process                                                   | 11 |
| 2.4  | Three-stage Mechanistic Model of Diffusion Welding                    | 12 |
| 2.5  | Plastic Deformation through Rolling                                   | 12 |
| 2.6  | Process of Forge Welding                                              | 14 |
| 2.7  | Making Electrical Connection                                          | 15 |
| 2.8  | Roll Welding                                                          | 15 |
| 2.9  | Application of Roll Welding of Bimetallic                             | 16 |
|      | Strips for Thermostat                                                 |    |
| 2.10 | Diffusion Welding of Metal and Ceramic                                | 17 |
| 2.11 | Setup in Parallel Configuration                                       | 19 |
| 2.12 | During Detonation of the Explosive Charge                             | 19 |
| 2.13 | (1)Rotating part, no contact; (2)Part brought into contact            | 20 |
|      | to generate friction heat ;(3),Rotation stopped                       |    |
|      | and axial pressure applied; and (4) weld create                       |    |
| 2.14 | Friction Stir Welding                                                 | 21 |
| 2.15 | Wire Terminations and splicing in Electrical and Electronics Industry | 21 |
| 2.16 | Friction Stir Butt Weld                                               | 23 |

| 2.17 | Friction Stir Welding Principle of operation                                 | 25 |
|------|------------------------------------------------------------------------------|----|
| 2.18 | Parameter of Friction Stir Welding Machine                                   | 27 |
| 2.19 | Tool Geometry (Tarun Kuril et al,2015)                                       | 28 |
| 2.20 | Typical Connections with Butt Weld                                           | 29 |
|      | (Prof. S.R.Satish Kumar et al,2016)                                          |    |
| 2.21 | Shipbuilding                                                                 | 30 |
| 2.22 | Take-off during the first test flight of an Eclipse 500 Friction Stir Welded | 31 |
|      | Business Jet                                                                 |    |
| 2.23 | Tensile Test graph                                                           | 33 |
| 2.24 | F- Distribution Graph                                                        | 36 |
| 2.25 | Example of ANOVA                                                             | 37 |
| 2.26 | Logo of Minitab Software                                                     | 39 |
| 3.1  | Flowchart of Methodology                                                     | 42 |
| 3.2  | Aluminium 5052                                                               | 44 |
| 3.3  | Weld Tool Dimensions                                                         | 45 |
| 3.4  | Laser Cut Machine                                                            | 47 |
| 3.5  | Standard Specification of Sample Dimension                                   | 48 |
| 3.6  | Specimen Dimension Measurement of ASTM Standard                              | 49 |
| 3.7  | The Specimen are Cutting by Machine                                          | 49 |
| 3.8  | Friction Stir Machine                                                        | 50 |
| 3.9  | Tensile Machine (INSTRON 5669)                                               | 52 |
| 3.10 | Tensile Shear Test Specimen                                                  | 53 |
| 3.11 | Geometry of Tensile Specimen Dimension in (mm)                               | 53 |
| 3.12 | Aluminium 5052 Specimen Test                                                 | 54 |

| 3.13 | Close Square Butt Joint                                          | 55 |
|------|------------------------------------------------------------------|----|
| 4.1  | Specimen Trial 1                                                 | 58 |
| 4.2  | Ultimate Tensile Strength Data from INSTRON Machine of Trial 1   | 59 |
| 4.3  | Specimen Trial 2                                                 | 60 |
| 4.4  | Ultimate Tensile Strength Data from INSTRON Machine of Trial 2   | 61 |
| 4.5  | Specimen Trial 3                                                 | 62 |
| 4.6  | Ultimate Tensile Strength Data from INSTRON Machine of Trial 3   | 63 |
| 4.7  | Specimen Trial 4                                                 | 64 |
| 4.8  | Ultimate Tensile Strength Data from INSTRON Machine of Trial 4   | 65 |
| 4.9  | Specimen Trial 5                                                 | 66 |
| 4.10 | Ultimate Tensile Strength Data from INSTRON Machine of Trial 5   | 67 |
| 4.11 | Data Obtained from (FSW) and Ultimate (FSW) and Ultimate Tensile | 69 |
|      | Strength Testing                                                 |    |
| 4.12 | Main Effected Plots For Means                                    | 70 |
| 4.13 | Interaction Plots for Means                                      | 71 |
| 4.14 | The Calculation of Percentage Error                              | 75 |



# LIST OF ABBEVIATIONS, SYMBOLS AND NOMENCLATURE

| AI         | - | Aluminium                                     |
|------------|---|-----------------------------------------------|
| ANOVA      | - | Analysis of Variance                          |
| AA         | - | Aluminium Alloys                              |
| FSW        | - | Friction Stir Welding                         |
| TWI        | - | The Welding Institude                         |
| AWS        | - | American Welding Society                      |
| ASTM       | - | American Society for Testing and Materials    |
| UTS        | - | Ultimate Tensile Strength                     |
| RS         | - | Rotational Speed                              |
| TS         | - | Transverse Speed                              |
| DOE        | - | Design of Experiment                          |
| DF         | - | Degrees of Freedom                            |
| Seq SS     | - | Sequential Sums of Squares                    |
| Adj SS     | - | Adjusted Sums of Squares                      |
| Adj MS     | - | Adjusted Mean Squares                         |
| F          | - | F-value                                       |
| Р          | - | P-value                                       |
| % of Total | - | Percentage of the Total Variance Contribution |

### **CHAPTER 1**

### INTRODUCTION

#### 1.0 Background

Friction stir welding (FSW) is a solid state joining process that uses a nonconsumable device two confronting work piece without dissolving the work piece material. Heat is generated by friction between the rotating tool and the work piece material, which leads to a softened region near the FSW tool. While the devise is traversed along the joint line, it mechanically intermixes the two pieces of metal and produce the hot and softened metal by the mechanical pressure, which is applied by the tool, much like joining clay, or mixture. It is essential utilized on expelled aluminium and especially for structures which require high weld quality.

A rotating cylindrical tool which a profiled probe is fed into a butt joint between two clamped work pieces until the shoulder, which has a bigger width than the pin, touches the surface of the work pieces the probe is slightly shorter than the weld depth required, with the tool shoulder riding a best the work surface. After a short dwell time, the tool is pushed ahead along the joint line at the pre-set welding speed. This procedure of the tool navigating along the weld line in a plasticized tubular shaft of metal outcomes in solid state deformation including dynamic recrystallized of the base material. Friction Stir Welding is a process which produces welds of high quality in hard to weld materials, for example as aluminium and is fast becoming the process of choice for assembling lightweight transport structures such as boats, trains and aeroplanes.

Friction Stir Welding (FSW) can be utilized on several welding configuration techniques which include butt joints, lap joints, T joints and fillet joints (R.S.Mishra and Z.Y.Ma, 2005). Friction Stir Welding (FSW) consumes non-consumable rotating tool consists of a pin probe and a plunge shoulder. High speed of rotating tool generates frictional heat between the tool shoulder and two plate surfaces. There are two stir welding parameter factors to be considered names tool rotational speed and welding speed. Full Factorial is design of experiment is selected in this study due to their simplicity.

### 1.1 Objective

The objectives of this project are mainly focus:

- 1. To determine the significant factor affecting the parameter process on tensile by using Friction Stir Welding.
- To optimize of the tensile strength of material Aluminium 5052 by using Friction Stir Welding
- To determine the most significant level of parameter using the Taguchi and ANOVA method

#### 1.2 Project Scope

Scopes for this project is based on objectives that have stated and there are the several scopes considered in this study.

The research has focused on the Optimization Friction Stir Welding (FSW) parameter for Aluminium 5052 by using Full Factorial Design. There are, two types of process parameter were used. There are spindle speed and weld rate. Material used is Aluminium 5052 with thickness 2mm .The machining process was conducted by using Friction Stir Welding (FSW) machine. This research applied design of experiment under Full Factorial Design approach by Full Factorial Design method, it have to find the optimum cutting condition by using Minitab 15 software. At the end, all the data and result analysis were discussed accordingly.

#### 1.3 Problem Statement

High quality precipitation hardening high-strength low-alloy, for example AI 5052 is utilized broadly in aerospace industry. Aluminium alloy 5052 contains nominally 2.5%, magnesium and 0.25% chromium. It has good workability, medium static strength, high fatigue strength, good weldability and good corrosion resistance. The AA 5052 series alloy a warmth treble with ultimate tensile strength of 28,000psi. There is the increase strength of quality aluminium combination. The alloys are frequently utilized as a part of high application, for example automotive and aerospace industry. One of the significant concerns regarding to this type of solid state welding in industries because this process has a lot of variables and parameter conditions that can affect the quality of a weld joint. The nature of fusion welding is great when contrasted with the other combination welding procedure. A much discussed inquiry is whether the fundamental impact parameter in Friction Stir Welding (FSW) process is rotational speed welding navigating velocity and dive profundity connected against the joint.

#### 1.4 Summary of project flow

#### **Chapter 1:**

Based on this chapter, it is describes the introduction of the project starting with the project background, objective, project scope, problem statement, and summary of this project. The objective is focuses to solve the problem solving

#### Chapter 2:

This chapter is cover on the literature review. It is describes the related research from the journal, website, article and book. This chapter is starting with introduction, Full Factorial Design Method, Welding, Friction Stir Welding, Universal Testing Machine (UTM), and Analysis of Variance

#### Chapter 3:

This chapter based on the methodology. It was explaining the method and process that are required to be following to complete this project. It is also detailed report that is study to achieve the aim objective of this project and the explanation of the procedure of current development of the project.

#### Chapter 4:

This chapter presents the results and the findings of the study, the result from the experiments that are presented in tables, figures and graphs and are discussed elaborately in the chapter. Several observations are also projected from the findings.

### Chapter 5:

This chapter summarizes the outcomes of this experiment. The chapter also outlines several recommendations for further development and improvement on the design. Suggestions for future inventor are also provided within the chapter.

C Universiti Teknikal Malaysia Melaka

### **CHAPTER 2**

### LITERATURE REVIEW

#### 2.0 Introduction

In this chapter will be discussing about journal that are linked about this project. Resistance welding process in which combination of faying surfaces of a butt joint is accomplished at one area by restricting of hardware. Generally used in mass production of automotive components and aerospace. As the aerospace industry produces new and more efficient airframes, the need to provide high-strength, lightweight alloys that meet the aggressive design objectives for mechanical performance, manufacturability and service life arises (C. Hamilton, S. Dymek, 2011).

The research of the Optimization of Friction Stir Welding Parameter for Aluminium 5052 by using Full Factorial Design. A Full Factorial Design experimental usually can develop performance and optimize welding parameter of Friction Stir Welding. Generally a suitable welding parameter has the potential to increase a tensile shear strength of the joint. In this studies, the parameter that be highlighted is spindle speed, weld rate. and weld length. Figure 2.1 shows the resistance of Friction Stir Welding (FSW).



Figure 2. 1: Resistance Friction Stir Welding

Research has been done about, the study Friction Stir Welding (FSW) of welding Al 5052 with Al 6061. In this study, about the Friction Stir Welding of two aluminium alloys is AA5052 and AA6061 was carried out at various combinations of tool rotation speeds and tool traverse speeds. The traverse cross-section of the weld was used for optical as well as electron microscopy observations. Then, the microstructural studies were used to get indication of the extent of material mixing both at the macro and microscales. It was observed that, at the interface region both a material exhibited similar texture despite the non-rigorous mixing of mixing of the materials in the nugget (N.T.Kumbhar.2012) .Based on previous research, about the effect of tool rotation speed and tool traverse speed on the stirring action and friction heat during Friction Stir Welding (FSW) experiments on dissimilar Al alloys AA5052-O and AA6061-T6 (J.C.Park and S.J.Kim,2010).