'We declare that we had read this thesis and at our opinion this thesis was brilliant from the aspect of scope and quality for the purpose to be awarded Bachelor of Mechanical Engineering (Design and Innovation)'

Signature	:
Name of Coordinator I	:
Date	:

Signature	:
Name of Coordinator II	:
Date	:

THE DESIGN AND DEVELOPMENT OF WATER HEATER SYSTEM USING SOLAR THERMAL RADIATION

MOHD HELMI ZAHARUDIN

This report is submitted in accordance with requirement for the

Bachelor Degree of Mechanical Engineering

(Design & Innovation)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

APRIL 2010

C Universiti Teknikal Malaysia Melaka

This report is the result of the ever growing concern about our natural surroundings. It is time that engineers give back to mother earth. This report is hoped to be a spark that light the fire to further harness environmentally friendly and abundant energy to preserve the planet ultimately.

I dedicate this to my father for his unyielding support, my mother, my siblings and my brother, Harith.

MOHD HELMI ZAHARUDIN

Malaysia

2009

I declare that this final year project (1) report entitled "The Design and Development of Water Heater System Using Solar Thermal Radiation" is my own work except as cited in the reference.

Signature	:	
Name	:	MOHD HELMI ZAHARUDIN
I/C No.	:	871020-14-5615
Student ID	:	B040610088
Date	:	18 TH MAY 2010

ACKNOWLEDGEMENT

I would like to acknowledge Prof Ir. Abd Talib bin Din for giving me the chance to embark on a journey to obtain very useful knowledge while completing this project. Special thanks go to my father, Mr Zaharudin for his supports in obtaining various resources for me to execute the processes within this project smoothly. I would also like to thank review panels for giving me valuable opinion for my project.

I would also like to thank my fellow friends of BMCD for giving me support throughout the project by giving me resources and information regarding important matters for the project.

ABSTRACT

Solar water heaters are a common piece of technology nowadays. However it is still not as popular in Malaysia as it is at other developed countries. This is the design of a solar water heater using basic principles of thermodynamics which is thermal radiation, convection and conduction. This project is done by using proper methods of product design process such as indentifying product needs and Product Design Specifications (PDS). The project also incorporates elements of Thermodynamics. This design has specific goals where it is actually more into the solar collector efficiency and design to increase the heat taken to heat up water.

vi

ABSTRAK

Pemanas air solar adalah teknologi yang sudah biasa pada masa kini. Namun begitu, produk ini tidak mendapat sambutan di Malaysia berbanding dengan Negara membangun. Ini adalah proses merekabentuk pemanas air solar menggunakan prinsip asas termodinamik iaitu radiasi, olakan, dan konduksi. Projek ini juga menggunakan proses untuk membangunkan produk dengan mengenalpasti keperluan produk dan Spesifikasi Rekabentuk Produk. Elemen Termodinamik juga terdapat dalam projek ini. Rekabentuk ini mempunyai tujuan yang spesifik di mana rekabentuk menjurus kepada pemungut cahaya solar yang efisyen dan rekabentuk yang baik untuk meningkatkan tenaga haba yang boleh dipungut.

CONTENT

CHAPTER		TITLE	PAGE NO
		DECLARATION	ii
		ACKNOWLEDGEMENT	V
		ABSTRACT	vi
		ABSTRAK	vii
		CONTENT	viii
		LIST OF TABLE	xi
		LIST OF FIGURE	xii
		LIST OF SYMBOL	xvi
		LIST OF APPENDIX	xvii
I		INTRODUCTION	1
	1.1	Project Background	1
	1.2	Problem Statement/ Definition	2
	1.3	Objective	2
	1.4	Scope of Studies	3
п		LITERATURE REVIEW	4
	2.1	The Sun and Earth	4
	2.2	Solar Radiation	4
	2.3	Heat transfer	6
	2.3.1	Thermal Radiation	6
	2.3.2	Thermal Conduction	11
	2.4	Solar Water Heater	12

PAGE NO

2.4.1	History of Solar Water Heaters	13
2.4.2	Solar Water Heater Usage	23
2.4.3	Solar Water Heating Technique	23
2.5	Computer Aided Design	25
2.5.1	SolidWorks	25
	METHODOLOGY	29
3.1	Introduction	29
3.2	Project Outline	29
3.3	Research	32
3.4	Survey Approach	32
3.5	Product Design Specification (PDS)	33
3.5.1	Product Characteristics	33
3.5.2	Functional Requirement	33
3.5.3	Constraints	34
3.6	Functional Tree of Solar Radiation	34
	Water Heater for General Household	
	Purposes	
3.7	Functional Model Analysis	36
3.8	Concepts	37
3.8.1	Concept 1	38
3.8.2	Concept 2	39
3.8.3	Concept 3	40
3.8.4	Concept Selection	41
3.8.5	Selected Concept Design	43

C Universiti Teknikal Malaysia Melaka

III

CHAPTER		TITLE	PAGE NO
IV		FABRICATION	43
	4.1	Materials list	43
	4.2	Fabrication process	44
	4.2.1	Sheet metal fabrication	44
	4.2.2	Copper tube fabrication	48
	4.2.3	Storage Tank and Water Pipe Plumbing Works	52
	4.3.4	Final Installation	56
	4.4	Process Flow Diagram	56
V		EXPERIMENTATION AND RESULT	58
	5.1	CAD Drawing	58
	5.2	Experimental Data	62
	5.2.1	Experiment 1: Solar Collector (Without	63
		Casing)	
	5.2.2	Experiment 2: Solar Collector (Complete With	65
		Casing)	
		NAGUAGION	50
VI		DISCUSSION	68
	6.1	Results of Experiment	68
	6.2	Problems Faced During Project	69
	6.2.1	Leakage	69
	6.2.2	Thermosyphonic circulation	70
	6.3	Final Design and Recommendation	72
X711		CONCLUSION	72
V 11	71	Conclusion	15
	/.1	Conclusion	13

APPENDIX

LIST OF TABLE

NO.	TITLE	PAGE NO	
2.1	Temperature relation to color (Source:	8	
	http://cc.oulu.fi/~kempmp/colours.html)		
2.2	List of constants	11	
3.1	Functional model analysis	36	
3.2	Criterion for Concept Scoring Matrix	41	
3.3	Concept Scoring Matrix		
5.1	Experiment 1: Solar Collector without casing	64	
5.2	Solar Collector complete with casing		

LIST OF FIGURES

NO.	TITLE	PAGE
		NO
2.1	Solar Radiation in Malaysia (Source: Kementerian Kaji Cuaca, 2009)	5
2.2	Wein's Displacement Law table shows the relation of frequency (visible) to temperature	7
2.3	A cross-section of a hot box. Eighteenth- and nineteenth-century scientists used the hot box to test how much sun heat glass-covered enclosures could (Source: http://www.californiasolarcenter.org/trap. history_solarthermal.html)	14
2.4	The first solar water heaters were bare metal tanks painted black containing water and tilted to face the sun. (Source: http://www.californiasolarcenter.org/ history_solarthermal.html)	15
2.5	Advertisement for the Climax Solar-Water Heater, the world's first commercial solar water heater, patented in 1891. (Source: http://www.californiasolarcenter.org/ history_solarthermal.html)	16
2.6	The home of Walter van Rossem, overlooking the Pasadena Rose Bowl. In 1896, the van Rossem home had a Climax Solar Water Heater placed on the roof. (Source: http://www.californiasolarcenter.org/ history_solarthermal.html)	16
2.8	Workman installing solar water heater on the roof of the laundry room in a Florida subdivision going up in the 1930s. Like most housing in Florida, every house in this tract used solar energy to heat its water. (Source: http://www.californiasolarcenter.org/ history_solarthermal.html)	18

NO. TITLE

PAGE

NO

2.9	Cylindrically shaped metal water tanks, placed in glass-covered	19
	boxes, covered the roofs of almost four million Japanese homes by	
	1969. (Source: http://www.californiasolarcenter.org/	
	history_solarthermal.html)	
2.10	Solahart, the leading Australian manufacturer of solar water heaters,	21
	chose in the 1970s an integral collector-tank configuration for easy	
	installation on pitched roofs commonly found in Australia. The new	
	design also saved money by eliminating extensive piping and the	
	need for a heavy storage tank in the attic. (Source:	
	http://www.californiasolarcenter.org/ history_solarthermal.html)	
2.11	Levi Yissar, who brought solar water heating to Israel, stands next	22
	to his prototype. It closely resembled the type introduced in	
	California in the first decade of the twentieth century with heating	
	and storage separated. The headline in this 1953 issue of Israel's	
	principle newspaper, Maariv, reads, "Heating Water by the Sun	
	Begins." (Source: http://www.californiasolarcenter.org/	
	history_solarthermal.html)	
2.12	Screen shot captured from a SolidWorks top-down design	26
	approach. (Source: http://en.wikipedia.org/wiki/Solidworks)	
3.1	Project Outline Flowchart	31
3.2	Overall functional diagram of radiation water heater for general	35
	household purposes	
3.3	Concept No. 1	38
3.4	Concept No. 2	39
3.5	Concept No.3	40
3.6	Selected Concept Design: Concept No. 3 (need further	43
	improvement)	
4.1	Sheet metal are measured according to drawing	45

4.2	Sheet metal cut to shape using straight hand snips	45
4.3	Sheet metal were bent using bending machine (BendPak Bending	46
	Machine- FKM) and manual methods using rubber mallet	
4.4	Sheet metal folded to prevent injuries from cuts	46
4.5	Sheet metal are drilled to fit the blind rivets	46
4.6	Sheet metals are riveted using hand riveter to secure the shape	47
4.7	Glass are placed on the top half of the solar panel case	47
4.8	Glass are secured using sealant on the top and bottom	47
4.9	Finished- panel case, upper half and lower half	47
4.10	Copper tube (3/8") are straightened to form a straight pipe	48
4.11	Copper tube measured to desired length	48
4.12	Figure 4.12 Copper tube is bent using pipe bender	49
4.13	90° bend and 180° bend are formed to complete the pipe	49
4.14	Finished- copper tube bending process	49
4.15	Insert flare nut into the tube before setting up to form flare	50
4.16	Select the right size of tube to fit the tube clamp to the tube	50
4.17	Clamp down the tip of the tube using tube clamp, providing	50
	clearance to form flare	
4.18	Using a special puller, flare is formed by clamping the puller to the	51
	tube clamp and rotating the handle to form a flare	
4.19	Completed- flare	51
4.20	1/2" adapter is put on the flare nut	52
4.21	Storage tank drilled using 1/2" hole drill bit	52
4.22	Finished drill	53
4.23	1/2" PVC pipe sanded to roughen the surface	53
4.24	PVC Solvent Cement applied to pipe to secure with fitting	53
4.27	Finished tank fitting on one side	54
4.26	Fitting are glued together after joined by pipe	54
4.25	Glued pipe cut using hand saw	54
4.28	Tank fitting finished- Both sides	55
4.29	Top view after mini ball valve and flexible hose fitted	55

4.30	Water Test- Done to ensure no leakage	55
4.31	Final installation	56
4.32	Finished product	56
4.32	Assembly Process Flow Chart	57
5.1	Main Panel Case	58
5.2	Top Panel Case	59
5.3	Glass panel	59
5.4	Copper Tubing	59
5.5	Flare Nut	60
5.6	Storage Tank	60
5.7	Storage tank lid	60
5.8	Tank connector	61
5.9	90° elbow fitting	61
5.10	Reflector Pipe	61
5.11	Panel Case Assembly	62
5.12	Experiment 1: Solar Collector without casing	63
5.13	Recorded temperature: 42°C	63
5.14	Experimental graph on Experiment 1	65
5.15	Experiment 2: Solar Collector (Complete With Casing)	65
5.16	Recorded Temperature: 70.7°C	66
5.19	Comparison of Experiment 1 and Experiment 2	67
5.17	Experimental graph on Experiment 2	67
6.1	Leakage occurring at the copper fitting	69
6.2	Leakage occurring at the transition fitting (PE nipple)	70
6.3	Storage tank connectors on the same level	71
6.4	Storage tank connectors with different level	71

LIST OF SYMBOLS

λ	=	wavelength
σ	=	Stefan–Boltzmann constant
α	=	Spectral absorption factor
ρ	=	Spectral reflection factor
τ	=	Spectral transmission factor
3	=	emissivity constant
ν	=	Unit of frequency
Δ	=	Total sum
Т	=	Temperature
b	=	Wien's displacement constant
А	=	Area
W	=	Power
h	=	Planck's constant

c = Speed of light

LIST OF APPENDIX

NO.		TITLE	PAGE NO
А	PSM flow chart		72
В	PSM Gantt Chart		73
С	Assembly Drawing		75
D	Exploded Drawing		76

CHAPTER I

INTRODUCTION

1.1 Project Background

Water heater is one of the most basic home appliances that are vital for the people throughout the world over. From burning wood and logs to the usage of coal, the hot water businesses were never clean in a sense of the energy options. The fact that the most abundant energy in the world is not the most used energy.

The ever arising awareness of energy efficient and environmentally friendly products nowadays leads to the discovery of renewable energy. This leads to the most basic of energy since the dawn of Earth, the Sun.

Solar radiation water heater is the answer of greener technology and energy efficiency. It comprises of a solar energy collector to heat up water for home appliances. This eliminates the need to use burners that uses fossil fuels or electrical sap of energy. Using this product, users enjoy a cut of electric bills and a chance to give back to nature too.

1.2 Problem Statement/ Definition

The use of electric or burner as the energy option for water heater has increasingly been causing the pollution and power shortage in the past. A greener world is now the dream of the people because of the natural threat of Global Warming phenomenon.

- a. Environmentally friendly options are there in the market but the option seem too expensive. A cheap solar powered water heater designed for everyday use need to be designed.
- b. This device is a variation of enhancement from the existing market.

1.3 Objective

The objective that needed to be achieved in this project is:

- To study and design a water heating system for home appliances using Solar Thermal Radiation
- b. To optimize the heating capacity of the new design

To achieve the above objective, a solar radiation water heater is to be fabricated to show that it would work. Data and information are gathered and used as reference in the development of this design. Product refinements are repeatedly done using simulations in CAD to perfect the end product and solve the problems faced in the process.

1.4 Scope of Studies

The following are the scope of study for solar radiation water heater:

- i. Literature/ Background Study
- ii. Theoretical Study
- iii. Concept Development
- iv. Study and Confirm Simulation Data
- v. Prototype Fabrication
- vi. Final Report Writing

CHAPTER 2

LITERATURE REVIEW

2.1 The Sun and Earth

The Sun is the star at the center of the Solar System. The Earth and other matter orbit the Sun. The mean distance of the Sun from the Earth is approximately 149.6 million kilometers, and its light travels this distance in 8 minutes and 19 seconds. The Sun is the one and only source of energy to earth. Thanks to the Sun, the Earth is able to flourish to be the Blue Planet it is today.

2.2 Solar Radiation

Solar Radiation is commonly known as Sunlight. It is the total spectrum of the electromagnetic radiation given off by the Sun. Solar radiation on Earth is filtered through the atmosphere, and is obvious at daylight when the Sun is above the horizon. Near the poles in summer, the days are longer and the nights are shorter or non-existent. In the winter at the poles the nights are longer and for some periods of time, sunlight may not occur at all. Sunshine is experienced as a combination of bright light and heat when the direct radiation is not blocked by clouds. Radiant heat directly produced by the radiation of the sun is different from the increase in atmospheric temperature due to the

radiative heating of the atmosphere by the sun's radiation. Sunlight is recorded by using a Pyranometer or Pyrheliometer. The World Meteorological Organization defines sunshine as "direct irradiance from the Sun measured on the ground of at least 120 watts per square meters". Direct sunlight has a luminous efficacy of about 93 lumens per watt of radiant flux, which includes infrared (heat), visible, and ultra-violet light.

Most places in Malaysia recorded normal to slight above normal solar radiation with some areas in southern Pahang recorded slight above normal solar radiation. In Figure 2.1 as shown, areas in Malaysian Peninsula received 16 to 20 MJm⁻² of daily solar radiation while areas in East Malaysia recorded 14 to 17 MJm⁻² of solar radiation per day. Sarawak had the lowest solar radiation throughout this period ranged from 14.0 to 16.0 MJm⁻². On the other hand, higher solar radiation was recorded in Penang, Perlis, Kedah, Central and Northern Kelantan and also Northern Terengganu with more than 20.0 MJm⁻² of solar radiation per day.

(Source:_www.kjc.gov.my/english/publication/10ab_2.htm)

FIGURE 2.1: Solar Radiation in Malaysia (Source: Kementerian Kaji Cuaca, 2009)

5

2.3 Heat transfer

Heat can be transferred in three different ways. It is conduction, convection and radiation. Ideally, all modes of heat transfer require the existence of temperature difference, and all modes of heat transfer are from the high temperature medium to a lower one. (Thermodynamics, An Engineering Approach Sixth Edition)

2.3.1 Thermal Radiation

Thermal radiation is electromagnetic radiation emitted from the surface of an object which is due to the object's temperature. An example of thermal radiation is the infrared radiation emitted by a common household radiator or electric heater. A person near a campfire will feel the radiated heat of the fire, even if the surrounding air is very cold. Thermal radiation is generated when heat from the movement of charged particles within atoms is converted to electromagnetic radiation. Solar radiation heats the earth during the day, while at night the earth re-radiates some heat back into space.

If the object is a black body, the radiation is termed black-body radiation. The emitted wave frequency of the thermal radiation is a probability distribution depending only on temperature and for a genuine black body is given by Planck's law of radiation. Wien's law gives the most likely frequency of the emitted radiation, and the Stefan-Boltzmann law gives the heat intensity. (Wikipedia, 2009)

There are three main properties that characterize thermal radiation:

• Thermal radiation occurs at a wide range of frequencies, even at a single temperature. The amount of frequency is given by Planck's law of radiation (for idealized materials).