

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF THE BRAKE SYSTEM FOR AGRICULTURE SMART MOVER BY USING TOTAL DESIGN TECHNIQUE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Technology Automotive) with Honours.

by

MUHAMMAD RAFIUDDIN BIN SAMSUDIN B071410540 951024-01-7063

FACULTY OF ENGINEERING TECHNOLOGY 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN THE BRAKING SYSTEM FOR AGRICULTURE SMART MOVER USING TOTAL DESIGN TECHNIQUE

SESI PENGAJIAN: SEMESTER 1 2017/2018

Saya MUHAMMAD RAFIUDDIN BIN SAMSUDIN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
73B BATU 5 ½ JALAN BA	KRI
84000 MUAR	
JOHOR	
Tarikh:	Tarikh:
** Jika Laporan PSM ini SULIT ata berkenaan dengan menyatakan s SULIT atau TERHAD.	u TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi ekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

C Universiti Teknikal Malaysia Melaka

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Design the Braking System for Agriculture Smart Mover Using Total Design Technique" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MUHAMMAD RAFIUDDIN BIN SAMSUDIN
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor Degree of Mechanical Engineering Technology (Automotive Technology) with Honours. The member of the supervisory is as follow:

(Mr. Ahmad Zainal Taufik bin Zainal Ariffin)

ABSTRAK

Sistem brek adalah salah satu aspek penting bagi keselamatan bagi semua jenis kenderaan. Ia digunakan untuk menghentikan kenderaan atau mengurangkan kelajuan untuk mengelakkan kemalangan. Terdapat banyak jenis brek yang digunakan dalam kenderaan yang serba moden ini. Sebahagian daripada mereka mempunyai spesifikasi mereka mengikut kelajuan dan jenis kenderaan. Mengikut projek ini, Pemacu Pintar Pertanian yang diilhamkan daripada bentuk kereta sorong tidak mempunyai sistem keselamatan seperti brek. Kelajuan menjadi lebih tinggi sebaik sahaja enjin diletakkan di atasnya. Jadi projek ini adalah untuk merancang brek untuk dimasukkan ke dalam kenderaan pertanian. Projek ini menggunakan perisian CATIA untuk merekabentuk dan menganalisis struktur bahan yang digunakan.

ABSTRACT

Brake system is one of the important aspects for the safety of any vehicle. It uses to stop a vehicle or reduce the speed to avoid the accident. There are many types of brake that use in modern vehicle. For some of them, it has their specification according to the speed and types of vehicle. According to this project, the Agriculture Smart Mover which is from the base of wheelbarrow does not have safety system such as brake. The speed becomes higher once the engine is put on it. So this project is to designing a brake to put in the agriculture vehicle. This project used CATIA software to design and analyses the structure of the material used.

DEDICATION

First of all I would like to thanks to my beloved father, Encik Samsudin bin Abd Salam and my beloved mother, Puan Noormala bte Selamat who has raised me to be a good, useful, smart and successful person. They also teach me about life and did not stop support me with moral, financial and religion. They both are the people who believe my ability to have something what I have achieved today. To all my siblings, thanks for not making my life alone. Thank you for be my supportive people in my life.

A thanks to my supervisor for this project, Encik Ahmad Zainal Taufik bin Zainal Ariffin. Without his guides, this project will not successfully completed. To all the Agriculture Smart Mover members team, thank you for your cooperation to complete our project.

To all my housemates, Fikri, Zulfahmi, Firdaus, Rahmat, Fariq and Fahmi, thank you for your kindness because you all have help me to complete this project by lending an installer software and had accompany me to write a report in the middle of the night until the dawn.

Thank you!

ACKNOWLEDGEMENT

Alhamdulillah, all praise to Allah for provide me health, physical and mental strength and perseverance to enable me completing this project thesis. The project also will not complete without the support from people surround me. I would like to express my deepest gratitude to those whom have helped in completing this report. A special thanks to Encik Ahmad Zainal Taufik bin Zainal Ariffin for giving the idea of this project. To my co-supervisor, Professor Madya Dr. Muhammad Zahir bin Hassan, thank you for guiding us to write a report thesis. To all the Agriculture Smart Mover members team, thank you for your cooperation to complete our project.

TABLE OF CONTENT

Table	e of Content	ii	
List of Figures		v	
List c	of Tables	vii	
List c	of Abbreviations, Symbols and Nomenclature	viii	
СНА	PTER 1: INTRODUCTION	1	
1.0	Introduction	1	
1.1	Problem Statement	1	
1.2	2 Objective		
1.3	Workscope	3	
СНА	PTER 2: LITERATURE REVIEW	4	
2.0	Introduction	4	
2.1	Brake	4	
	2.1.1 History of Bicycle Brake	8	
	2.1.2 History of Motorcycle Brake	11	
2.2	Wheelbarrow	15	
	2.2.1 Material	17	
2.3	Palm Oil Plantation 19		

СНА	PTER 3: METHODOLOGY	22
3.0	Introduction	22
3.1	Flow Chart of Method	23
3.2	Software of Designing Method	24
	3.2.1 CATIA V5 Software	24
3.3	Benchmarking of Brake	25
3.4	Product Design Specification	26
3.5	Selection Method	32
	3.5.1 Concept Generation	32
	3.5.2 Concept Screening	33
	3.5.3 Scoring Method	34
	3.5.4 House of Quality	35
СНА	PTER 4: RESULT & DISCUSSION	36
4.0	Introduction	36
4.1	Brake Part Design	36
4.2	Analysis of the Product	43
	4.2.1 Brake Disc	43
	4.2.2 U-lock	45
	4.2.3 Shaft	47
4.3	Final Product	49
	4.3.1 Assembly Design	49
	4.3.2 Actual Product	50
4.4	3D Printing Process	52

СНА	PTER 5: CONCLUSION & FUTURE WORK	54
5.0	Introduction	54
5.1	Conclusion	54
5.2	Future Work	55
REFI	ERENCES	56
APPI	ENDICES	58

LIST OF FIGURE

Figure 2.1a: The simulation result without and with PID Controller	6
Figure 2.1b: Hydraulic Braking System	6
Figure 2.1.1a: Pivot Brake	8
Figure 2.1.1b: Spoon Brake	9
Figure 2.1.1c: Side Pull Caliper Brake	10
Figure 2.1.1d: Duck Brake	10
Figure 2.1.2a: Band Brake	12
Figure 2.1.2b: Drum Brake on Motorcycle	12
Figure 2.1.2c: Disc Brake	13
Figure 2.1.2d: ABS Sensor in BMW K100	14
Figure 2.2a: One Wheel Chinese Wheelbarrow	16
Figure 2.2b: Two Wheels Chinese Wheelbarrow	16
Figure 2.2c: One Wheel Europe Wheelbarrow	16
Figure 2.2.1: Modern Era Wheelbarrow	18
Figure 2.3a: Oil Palm Plantation	20
Figure 2.3b: Oil Palm Fruit	21
Figure 2.3c: Oil Palm Fruit	21
Figure 3.4a: Design Idea #1	27
Figure 3.4b: Design Idea #2	28
Figure 3.4c: Design Idea #3	29
Figure 3.4d: Design Idea #4	30

Figure 3.4e: Design Idea #5	31
Figure 4.1a: Part Drawing of Brake Disc	37
Figure 4.1b: Part Drawing of Brake Caliper	38
Figure 4.1c: Part Drawing of Brake Lever	39
Figure 4.1d: Part Drawing of Shaft	40
Figure 4.1e: Part Drawing of Brake Lever Stand	41
Figure 4.1f: Part Drawing of U-lock	42
Figure 4.2.1a: Von Misses Stress of Brake Disc	43
Figure 4.2.1b: Displacement of Brake Disc	43
Figure 4.2.1c: Stress Principle of Brake Disc	44
Figure 4.2.2a: Von Misses Stress of U-lock	45
Figure 4.2.2b: Displacement of U-lock	45
Figure 4.2.2c: Stress Principle of U-lock	46
Figure 4.2.3a: Von Misses Stress of Shaft	47
Figure 4.2.3b: Displacement of Shaft	47
Figure 4.2.3c: Stress Principle of Shaft	48
Figure 4.3.1a: Design of Brake System	49
Figure 4.3.1b: Detailed Drawing of Agriculture Smart Mover	49
Figure 4.3.2a: Brake Lever, Lever Stand and U-lock	50
Figure 4.3.2b: Brake Disc, Brake Caliper and Shaft	51
Figure 4.3.2c: Agriculture Smart Mover	51
Figure 4.4.1: 3D Printing Slicing Process	52
Figure 4.4.2: 3D Printer	52
Figure 4.4.3: 3D Product	53

LIST OF TABLE

Table 2.1: Brake Component and Its Function	7
Table 3.3: Brake Benchmarking	25
Table 3.4: Product Design Specification	26
Table 3.5.1: Concept Generation	32
Table 3.5.2: Concept Screening	33
Table 3.5.3: Scoring Method	34
Table 3.5.4: House of Quality	35
Table 4.2.1: Comparison of Brake Disc Result	44
Table 4.2.2: Comparison of U-lock Result	46
Table 4.2.3: Comparison of Shaft Result	48

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ABS	-	Anti-lock Braking System
CAE	-	Computer-Aided Engineering
CAD	-	Computer-Aided Design
CAM	-	Computer-Aided Manufacturing
CATIA	-	Computer-Aided 3-Dimension Interactive Application
cm	-	Centimetre
CO2-eq	-	Equivalent Carbon Dioxide
ESC	-	Electronic Stability Control
FTK	-	Fakulti Teknologi Kejuruteraan
HOQ	-	House of Quality
kg	-	Kilogram
Km/h	-	Kilometre per Hour
kN	-	Kilo Newton
MATLAB	-	Matrix Laboratory
mm	-	milimetre
MPa	-	Mega Pascal
Ν	-	Nitrogen
N2O	-	Nitrogen Oxide
PDF	-	Portable Document Format
PDS	_	Product Design Specification

PID	-	Proportional Integral Derivative
RM	-	Malaysia Ringgit
TCS	-	Traction Control System
UTeM	-	Universiti Teknikal Malaysia Melaka
2D	-	Two Dimension
3D	-	Three Dimension
Σ	-	Total

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

This section will briefing about the objective, problem statement and work scope of the project. This project is about improving a wheelbarrow with a system that ease the users especially in the palm oil industry. Wheelbarrow is much easier to use when there is has force or power such as engine or motor to move it. The vehicle that will be built in this project is called Agriculture Smart Mover. It can reduce time of collecting the palm oil fruit and save the energy of worker. The aim of this project is to design the brake system for Agriculture Smart Mover by using CATIA software. Brake system is very important to every moving vehicle because it is the most efficient medium to slow down or stop the vehicles.

1.1 PROBLEM STATEMENT

Brake system is one of the important aspects for the safety of any vehicle. It uses to stop a vehicle or reduce the speed to avoid the accident. There are many types of brake that use in modern vehicle. For some of them, it has their specification according to the speed and types of vehicle. According to this project, the agriculture smart mover which is from the base of wheelbarrow does not have safety system such as brake. The speed becomes higher once the engine is put on it. So this project is to designing a brake to put in the agriculture vehicle. Besides that, the design of the vehicle body should have an appearance to attract the people who see every parts of design in terms of creativity. Therefore, the wheelbarrow must have the criteria for the market.

Palm oil is one of the most important vegetable oils in the world and it is also the main export supplies in our country. The important role of this industry to the Malaysian's economy is not only because Malaysia depends greatly on oil palm for its foreign exchange earnings, but also because palm oil is used a development tool in poverty relief program for the past three decades. But, there are some types of problems that cannot be separated with the development of the palm oil industry as much use of labor to produce palm oil. Salaries of employees also increased its workforce in great numbers. There are many steps that have been taken by the farmers and entrepreneurs to implement a strategic plan to facilitate the work and transport of oil better.

Nowadays, demand for oil has increased drastically. The workers of the industry mostly have face the problem with time consuming and the require energy, especially in agriculture such as palm oil industry. Furthermore, there are palm oil worker that still using the old method to collect the palm oil fruit which is by using wheelbarrow. To move from one place to another, they need energy to push the wheelbarrow. This will affect the time to finish the work because of lack of energy. Therefore, this will increase the number of workers and also will lead into increasing cost.

1.2 OBJECTIVE

The objectives of this project are as follows:

- i. To create a house of quality method to find the suitable brake that used for Agriculture Smart Mover.
- ii. To design and optimize the brake system for Agriculture Smart Mover by using CATIA.
- iii. To analyse the brake system using CATIA V5 Software.

1.3 WORKSCOPE

There are two workscopes of this project. The first one is to choose the best and suitable design of the braking system for the Agriculture Smart Mover. The software used in designing is CATIA software. The second one is to analysis the efficiency of the brake system by using same software which is CATIA.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This section is about the review of the articles and journals that the author has been research about the project. Basically, there are three types of big topic that author has separated. They are about the history, definition and environment of brakes, palm oil plantation and wheelbarrow.

2.1 Brake

According to Jeremy Laukkonen (2017), "some auto brake systems can prevent collisions altogether, but most are designed to reduce the speed of the vehicle before it sparks".

According to D. Andrikov in the article Design of Flat Wheel Braking Control System with Three Modes of Motion: Rolling, Sliding, Locking (2016), "the fundamental of brake work is to moderate or stop the development of the vehicle, bikes, trains or airplane. Physical braking process is the change of dynamic vitality into heat".

(Surblys & Sokolovskij, 2016) said "a stopping mechanism is a standout amongst the most critical dynamic wellbeing methods for a vehicle. Brakes are constantly being enhanced and supplemented with electronic frameworks that are useful in controlling the vehicle under braking. " Brake is defined as a mechanical process that prevents motion by absorbing energy from a moving system. It is used for decelerating or stopping a moving vehicle, wheel, and axle or to prevent its motion by means of friction. Most brakes commonly convert the kinetic energy of moving object into heat energy by using the friction of pressing between two surfaces.

Next, the other method of energy conversion is working such as from electrical energy to kinetic energy and then to heat energy. The example of this brake is Eddy current brakes that use magnetic fields to convert the kinetic energy into electric current in the brake disc and then convert directly to heat energy. Other example of converting energy in the form of brake is regenerative braking that converts much of energy to electrical energy that can be stored for later use.

Basically, in the modern era of the technology, the brake system is improving day by day. All of this happen is because to provide the safety for the user and drivers. The combination between mechanical and electric electronics makes the brake system more powerful and more helpful to control the vehicle under braking. The system that are using the combinations are anti-lock braking system (ABS), traction control system (TCS), electronic stability control system (ESC) and so on.

In order to continue the efficiency of the brake technology, the calculation can be finding from the analysis and design. The most popular and effective software to analyse the ABS system of brake is MATLAB software. There are two types of controller can be used which is braking with PID controller and braking without PID controller. The result of simulation is as shown in the figure below.

Figure 2.1a: The simulation result without (left) and with (right) PID Controller

Framework with PID controller in the slowing mechanism can diminish the braking distance (the separation from the beginning of braking to stop the vehicle). Along these lines, it makes a chance to evade a mishap or only a crisis circumstance that requires prompt ceasing of the vehicle. Use of PID will stop the auto viably, to keep away from encourage results of the mischance (Andrikov, Andrikov, & Mecapeu, 2017)

To complete the brake system, other component must combine together such as brake lever, cable, master pump, rail, vacuum, and many more. Basically, there are two types of brake that use which is by hydraulic and by cable. The hydraulic is more expensive than cable. The maintenance also is higher than cable. For the vehicle that has four wheels such as car and lorry, it has two system of brake hydraulic which is diagonal split system and front rear hydraulic split system.

Figure 2.1b: Hydraulic Braking System