

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Development of Vertical Milling Machine Educational Kit Using Various 3D Printing Methods to Assess Rapid Prototyping Process Capability

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering Technology (Product Design) with Honours.

by

ZURAIDA BINTI MOHD NOOR B071410821 930430-04-5200

FACULTY OF ENGINEERING TECHNOLOGY 2017

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development Of Vertical Milling Machine Educational Kit Using Various 3D Printing Methods To Assess Rapid Prototyping Process Capability.

SESI PENGAJIAN: 2016/17 Semester 2

Saya ZURAIDA BINTI MOHD NOOR

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

SULIT TERHA	(Mengandung kepentingan M AKTA RAHSI/ (Mengandung AD organisasi/bac TERHAD	i maklumat yang berdarjah keselamatan atau Malaysia sebagaimana yang termaktub dalam A RASMI 1972) i maklumat TERHAD yang telah ditentukan oleh dan di mana penyelidikan dijalankan) Disahkan oleh:
Alamat Tetap: NO. 2, Jalan 22, Taman Saujana Jay 34000 Taiping, Pera	'a, ık.	Cop Rasmi:
** Jika Laporan PSM ini berkenaan dengan meny atau TERHAD.	SULIT atau TERHAD, sila /atakan sekali sebab dan te	lampirkan surat daripada pihak berkuasa/organisasi empoh laporan PSM ini perlu dikelaskan sebagai SULIT

DECLARATION

I hereby, declared this report entitled "Development of Vertical Milling Machine Educational Kit Using Various 3D Printing Methods to Assess Rapid Prototyping Process Capability." is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor Degree of Manufacturing Engineering Technology (Product Design) with Honours. The member of the supervisory is as follow:

.....

MR. MOHD RAZALI BIN MD YUNOS

(Project Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRACT

The purpose of this project is to develop a prototype of vertical milling machine educational kit. Vertical milling machine is an equipment used in machining process of using rotary cutters to remove material from a workpiece by advancing in a direction at an angle with the axis of the tool. In this project, vertical milling machine will be built by using various 3D printing methods to assess rapid prototyping process capability. Rapid Prototyping technologies have a various types that commonly used in industry. In rapid prototyping, there are many kinds of material used to produce the product or in details; to produce prototype. The methods that used to build this machine by using three methods only such as Stereolithography (SLA), Selective Laser Sintering (SLS), and Fused Deposition Modelling (FDM). The selection methods for finished part are important in order to choose the best material that should be used for 3D printing in order to get a high quality prototype and to know the capability of the 3D printing methods. The selection methods that should be known and consider such as dimensional accuracy and surface finish of each parts. Based on the study of selection material was found that it necessary in order to choose the best material to get the strong product and not fragile. Finally, the prototype of vertical milling machine are successfully being produced using the best methods and it can be function to rotate the movement of X, Y and Z axis. Then, the process of evaluating capability of the 3D printing methods has been achieved by using Surface Roughness Tester Machine and vernier caliper.

ABSTRAK

Tujuan projek ini adalah untuk membangunkan prototaip "vertical milling machine educational kit". Mesin pengilangan menegak adalah peralatan yang digunakan dalam proses pemesinan menggunakan pemotong berputar untuk mengeluarkan bahan dari bahan kerja dengan memajukan arah pada sudut dengan paksi alat. Dalam projek ini, mesin pengilangan menegak akan dibina dengan menggunakan pelbagai kaedah percetakan 3D untuk menilai keupayaan proses prototaip pantas. Teknologi prototaip pantas mempunyai pelbagai jenis yang biasa digunakan dalam industri. Dalam prototaip pantas, terdapat pelbagai jenis bahan yang digunakan untuk menghasilkan produk atau secara terperinci; untuk menghasilkan prototaip. Kaedah yang digunakan untuk membina mesin ini dengan menggunakan tiga kaedah sahaja seperti Stereolithography (SLA), Selective Laser Sintering (SLS), dan Fused Deposition Modelling (FDM). Kaedah pemilihan yang perlu diketahui dan dipertimbangkan seperti ketepatan dimensi dan kemasan permukaan setiap bahagian. Berdasarkan kajian bahan pemilihan didapati bahawa perlu untuk memilih bahan terbaik untuk mendapatkan produk yang kuat dan tidak rapuh. Akhir sekali, prototaip mesin pengilangan menegak berjaya dihasilkan menggunakan kaedah terbaik dan boleh berfungsi untuk memutar pergerakan X, Y dan Z axis. Kemudian, proses menilai keupayaan kaedah percetakan 3D telah dicapai dengan menggunakan "Surface Roughness Tester Machine" dan "vernier caliper".

DEDICATION

To my beloved parents,

MR. MOHD NOOR BIN ABDULLAH

MRS. UMI HAFIZAH BINTI HJ. MASRI

To my respectful supervisor and co-supervisor,

MR. MOHD RAZALI BIN MD YUNOS

MR. MOHD NAZRI BIN AHMAD

To my all dear friends

ACKNOWLEDGEMENT

First of all, praises to Allah god almighty for His guidance and bless. I would like to express my gratitude upon every individual who helped me in developing this project. I would like to thank my highest appreciation to my supportive academic supervisor, Mr. Mohd Razali Bin Md Yunos who has guided me and give me a lot of knowledge along this whole semester. The supervision and supports from him is truly helping in the progress of my project.

Next, I would like to dedicate my thankfulness to the helpful of Mr. Mohd Nazri Bin Ahmad, as my second supervisor for his support and supervision for this project. Also thank you to my beloved family especially my father, Mr. Mohd Noor Bin Abdullah and my mother, Mrs. Umi Hafizah Binti Hj. Masri for continuous support and encouragement, I am strong enough to go through the obstacles come to me.

Last but not least, I would like to thanks all my best friends who have helped me in every possible and different way to finish this project. Also thanks to the staff of Faculty of Engineering Technology who directly and in directly helped me in developing this project.

TABLE OF CONTENT

Abstr	act	i
Abstr	ak	ii
Dedic	cation	iii
Ackno	owledgement	iv
Table	Of Content	V - X
List o	f Tables	xi
List o	fFigures	xii - xvii
List o	f Symbols and Abbreviations	xviii
CHA	PTER 1 : INTRODUCTION	1
1.1	Background	1 – 2
1.2	Problem Statement	2-3
1.3	Objectives	3
1.4	Scope	3 – 4
1.5	Expected Result	4
CHA	PTER 2 : LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Product Development	5 - 6
2.3	An Overview of Rapid Prototyping	6 – 7
2.4	Rapid Prototyping Process	8

2.5	Advanta Techno	ages and Dis logy	advantages of Rapid Prototyping	9
2.6	Classifi	cation of Ra	pid Prototyping Technology	10
	2.6.1	Liquid-Ba	ased Technologies	10
		2.6.1.1	Stereolithography (SLA)	10 – 11
		2.6.1.2	Process of Stereolithography (SLA)	11 – 12
		2.6.1.3	Principle of Stereolithography	13
	2.6.2	Solid-Bas	ed Technologies	14
		2.6.2.1	Laminated Object Manufacturing (LOM)	14
		2.6.2.2	Process of Laminated Object Manufacturing	14 – 15
		2.6.2.3	Fused Deposition Modelling (FDM)	16
		2.6.2.4	Process of Fused Deposition Modelling	16 – 17
		2.6.2.5	Principle of FDM	17
	2.6.3	Powder-E	Based Technologies	18
		2.6.3.1	Selective Laser Sintering (SLS)	18
		2.6.3.2	Process of Selective Laser Sintering	18 – 19
		2.6.3.3	Principle of Selective Laser Sintering	19
		2.6.3.4	3D Printer (3DP)	20
		2.6.3.5	Process of 3D Printer	20
2.7	Rapid P	rototyping F	Process Evaluated	21 – 22
2.8	SLA (Pr	rojet™ 1000	machine)	22 – 23
2.9	SLA (Pr	rojet HD 350	00 machine)	24 – 25
2.10	3D Prin	ter (Projet 4	60 plus machine)	25 – 26

2.11	FDM (Up Plus 3D printer machine)	26 – 27
2.12	Surface Finish	28
2.13	Measurement	28
2.14	Comparison between Different Rapid Prototyping Technologies	29 - 32

CHAPTER 3 : METHODOLOGY

3.1	Introdu	ction	33 - 34
3.2	Identify	ying problems	35
3.3	Gather	the information about 3D printing	35
3.4	Design	Concept	35
	3.4.1	Design Concept 1	36
	3.4.2	Design Concept 2	36
	3.4.3	Design Concept 3	37
3.5	Best De	esign for Milling Machine	37
	3.5.1	Pugh's Methods	37 – 39
3.6	Detail D	Design	40
	3.6.1	Vertical Milling Machine Part Design	40-42
	3.6.2	Vertical Milling Machine Final Assembly	43
3.7	Method	ls and Material Selection	44
3.8	Machin	ne and Equipment Used	45
	3.8.1	Oven	45
	3.8.2	Projet [™] Curing System	45 - 46
	3.8.3	Surface Roughness Tester Machine	46

33

	3.8.4	Sandpaper		46 – 47
	3.8.5	Ruler		47
	3.8.6	Measuring ta	ape	47
	3.8.7	Vernier calip	ber	48
3.9	Fabricat	tion Process Se	election	48
	3.9.1	Process of	f Building the Vertical Milling Machine	49 - 50
	3.9.2	Process Fl	low of SLA (Projet [™] 1000)	50
		3.9.2.1	Pre-Processing a parts (main slide)	51 - 52
		3.9.2.2	Post Processing a parts (main slide)	52 - 54
	3.9.3	Process Fl	low of SLA (Projet HD 3500)	54
		3.9.3.1	Pre-Processing a part	55 - 56
		3.9.3.2	Post Processing a part	56 - 57
	3.9.4	Process Fl	low of FDM (Up Plus 3D Printer)	58
		3.9.4.1	Pre-Processing a part	58 - 60
		3.9.4.2	Post Processing a part	60 - 61
	3.9.5	Process Fl	low of 3DP (Projet 460 plus)	61
		3.9.5.1	Pre-Processing a part	61 - 62
		3.9.5.2	Post Processing a part	62 - 64
3.10	Checkin	ng the Capabili	ity of parts	64
	3.10.1	Standard of Tester	Procedure (SOP) of Surface Roughness	64 – 65
	3.10.2	Dimension	Accuracy	65 - 66
3.11	Assemb	ly Milling Ma	chine	66 – 69

СНАР	CHAPTER 4 : RESULTS AND DISCUSSIONS		
4.1	Analysi	s about the Selection Methods	70
	4.1.1	SLA Methods (Projet 460 Plus)	70
	4.1.2	SLS Methods (Projet 1000)	71
	4.1.3	SLS Methods (Projet HD 3500)	72
	4.1.4	FDM (Up Plus 3D Printer)	73 – 74
	4.1.5	Purchased Item	75
	4.1.6	Milling Machine Final Assembly	76
4.3	Analysi	s Result	77
	4.3.1	Surface Finish Analysis	77 – 79
	4.3.2	Comparison Between Different Methods of RP due to Surface Finish	79 – 80
	4.3.3	Measurement Analysis	80
	4.3.4	FDM (Up Plus 3D Printer)	81
	4.3.5	SLA (Projet TM 1000)	82
	4.3.6	SLA (Projet HD 3500)	83
	4.3.7	3DP (Projet 460 plus)	84
	4.3.8	Comparison Between Different Methods of RP Due to Dimension Accuracy	85

CHAPTER 5 : CONCLUSION

5.1	Conclusion	86
5.2	Recommendations	87

86

REFERENCES

APPENDICES

88 - 90

LIST OF TABLES

2.5	Advantages and Disadvantages of Rapid Prototyping Technology	9
2.6	Classification of Rapid Prototyping Technology	10
2.4	Visual Model	21
2.8	Functional model in a polymer	22
2.6	Specification of Projet [™] 1000	23
3.7	Specification of Projet HD 3500	25
2.8	Specification of Projet 460 plus	26
2.9	Specification of Up Plus 3D printer	27
2.10	Comparison between Different Rapid Prototyping Technologies	29 – 32
3.1	Pugh selection method of vertical milling machine	29
3.2	Methods and Material Selection	44
4.1	Surface Roughness Tester Machine (Ra Reading)	80
4.2	Comparison value of actual and after print for table part	83
4.3	Comparison value of actual and after print for table part	84
4.4	Comparison value of actual and after print for table part	85
4.5	Comparison value of actual and after print for table part	86

LIST OF FIGURES

2.1	Rapid Prototyping Principle	7
2.2	Rapid Prototyping Process	8
2.3	Process of Stereolithography (SLA)	12
2.4	Principle of stereolithography	13
2.5	Process of Laminated Object Manufacturing	15
2.6	Process of Fused Deposition Modelling	17
2.7	Process of Selective Laser Sintering	19
2.8	Process of 3D Printing	20
2.9	SLA (Projet [™] 1000 machine)	23
2.10	Projet HD 3500 machine	24
2.11	3D Printer (Projet 460 plus machine)	25
2.12	Up Plus 3D printer machine	27
3.1	Methodology Flow Chart	34
3.2	Design Concept 1	36
3.3	Design Concept 2	36
3.4	Design Concept 3	37
3.5	Base 1	40
3.6	Base 2	40
3.7	Base 2 (part 1)	40

3.8	Table	40
3.9	Table (part 1)	41
3.10	Slide (part 1)	41
3.11	Tower (part 1)	41
3.12	Tower top	41
3.13	Cover screw	41
3.14	Block screw	41
3.15	Slide (part 2)	41
3.16	Slide (part 3)	41
3.17	Main slide	42
3.18	Tower	42
3.19	Bolt	42
3.20	Nut	42
3.21	Base milling machine	42
3.22	Tool kit grinder	42
3.23	Top view	43
3.24	Front view	43
3.25	Isometric view	43
3.26	Oven	45
3.26	Projet [™] Curing System	46
3.27	Surface Roughness Tester Machine	46
3.28	Sandpaper	47

3.29	Ruler	47		
3.30	Measuring tape	47		
3.31	Vernier caliper			
3.32	Assembly in Solidworks software			
3.33	Save STL file			
3.34	Projet [™] 1000	50		
3.35	Projet HD 3500	50		
3.36	Projet 460 Plus	50		
3.37	Up plus 3D Printer	50		
3.38	Projet TM Client software	51		
3.39	Import part to software	51		
3.40	Support structure are high-lighted red	52		
3.41	Approximate build time for main slide	52		
3.42	Part are finished print	53		
3.43	Remove part from platform	53		
3.44	Cut the support plates	53		
3.45	Clean process	54		
3.46	Drying process	54		
3.47	Client Manager Software	55		
3.48	STL file imported	55		
3.49	Approximate build time	56		
3.50	Finishing part	56		

3.51	Melted process			
3.52	Part produced			
3.53	Up Plus 3D Printer software			
3.54	Tower part			
3.55	Nozzle height detect			
3.56	Insert value of nozzle height detect			
3.57	Layer resolutions			
3.58	Printing process	60		
3.59	Printing are finished	60		
3.60	Removed part	61		
3.61	Printing are finished	61		
3.62	Tower top	62		
3.63	Printing layer by layer	62		
3.64	Removed part	63		
3.65	Vacuum process	63		
3.66	ColorBond	63		
3.67	Part produced	64		
3.68	Surface roughness tester	64		
3.69	Measure surface for base 1	65		
3.70	Result for base 1	65		
3.71	Process measured the dimension of base 1	66		
4.1	Tower top	72		

4.2	Base 1	73
4.3	Main slide	73
4.4	Slide (part 1)	74
4.5	Slide (part 2)	74
4.6	Slide (part 3)	74
4.7	Base 2 (part 1)	75
4.8	Table	75
4.9	Table (part 1)	75
4.10	Tower	75
4.11	Tower (part 1)	76
4.12	Tower top	76
4.13	Cover screw	76
4.14	Base 2	76
4.15	Block screw	76
4.16	Bolt and Nut	77
4.17	Bolt and Nut	77
4.18	Base milling machine	77
4.19	Screw	77
4.20	G-Clamp	77
4.21	Tool Kit Grinder	77
4.22	Parts of vertical milling machine	78
4.23	Final product	78

4.24	Sample (table part) surface area to be measured		
4.25	Sample graph for table part	80	
4.26	Graph of comparison between different methods due to surface finish	81	
4.27	Measurement using vernier caliper	82	
4.28	Sample measurement for table part	83	
4.29	Sample of Base 1	84	
4.30	Sample of Slide (part 2)	85	
4.31	Sample of Tower Top	86	
4.32	Comparison Between Different Methods of RP Due to Dimension accuracy	87	

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AM	-	Additive Manufacturing
ABS	-	Acrylonitrile Butadiene Styrene
CLIP	-	Continuous Liquid Interface Production
CAD	-	Computer Aided Design
FDM	-	Fused Deposition Modelling
LOM	-	Laminated Object Manufacturing
PLA	-	Polylactic acid
RP	-	Rapid Prototyping
R _a	-	Arithmetical mean roughness
SLA	-	Stereolithography
SLS	-	Selective Laser Sintering
STL	-	Stereolithography
3D	-	Three Dimensional
3DP	_	Three Dimensional Printer

CHAPTER 1

INTRODUCTION

Basically, this chapter will give a brief explanation about this project, starting with the background of the project title "Development of Vertical Milling Machine Educational Kit Using Various 3D Printing Methods to Assess Rapid Prototyping Process Capability". This chapter will also discuss about the problem statement, the objectives, and the scope of this project.

1.1 Background

Rapid prototyping (RP) is a group of techniques used to fabricate a scale model of a physical parts or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using additive manufacturing technology. Besides, Rapid prototyping technologies allow the manufacture of prototypes the product that can be used as concept or functional of the models. So that's, it means the prototypes will be support for new products development in future. Rapid Manufacturing is also an additive process that creates directly the actual product by 3D printing without any production tools needed.

Other than that, 3D printings are also known as an additive manufacturing, refers to various processes used to synthesize a three-dimensional object which successive layers of material are formed under computer control to create an object. The size of the objects can be of almost any shape or geometry and are produced using digital model data from a 3D model such as an Additive Manufacturing File. There are large number of additive processes are now available in the market.

The main differences between processes are in the way layers are deposited to create parts and in the materials that are used. Some methods melt or soften the material to produce the layers, such as Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), while others cure liquid materials using different technologies, such as Stereolithography (SLA). With Laminated Object Manufacturing (LOM), thin layers are cut to shape and joined together. But, it is a common thing that each of the method they has its own advantages and disadvantages. With development and mature of 3D printing technology, it has been widely used in various fields. With the great wealth of life, the product wants to occupied more market share, so it is necessary to meet the needs of users as much as possible. The main considerations in choosing a machine are generally speed, costs of the 3D printer, printed prototype, choice and cost of the materials, and colour capabilities.

So, this project is about to design and produce vertical milling machine educational kit using 3D printing methods. The selection methods before produce the milling machine must be selected with a suitable materials. Then, this project will continue with capabilities evaluation of 3D printing methods for each part of vertical milling machine.

1.2 Problem Statement

Rapid Prototyping technologies has a various types that commonly used in industry such as Selective Laser Sintering (SLS), Stereolithography (SLA), Fused Deposition Modelling (FDM), Laminated Object Manufacturing (LOM) and Three Dimensional Printer (3DP). It also has different forms of Rapid Prototyping for different purposes. Each one has aspects that make it beneficial, as well as weak point. The wrong methods will give impact to the product such as fragile, poor surface quality, internal structure of product is missing or broken and so on. So, the main problem to focus in this project is about to analyze the best methods of rapid prototyping technologies for each