ANALYSE OF PROCESS PARAMETER VARIATION IN GRAPHENE FIELD-EFFECT TRANSISTOR (GFET) DEVICE USING L9 OA TAGUCHI METHOD

NURIN IRWANIE BINTI RUSLI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ANALYSE OF PROCESS PARAMETER VARIATION IN GRRAPHENE FIELD-EFFECT TRANSISTOR (GFET) DEVICE USING L9 OA TAGUCHI METHOD

NURIN IRWANIE BINTI RUSLI

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree Of Electronic Engineering (Computer Engineering)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

Universiti Teknikal Malaysia Melaka

June 2017

UTeM	UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN
NIVERSITI YEKNIKAL MALAYSIA MELAKA	PROJEK SARJANA MUDA II
Tajuk Projek :	ANALYSE OF PROCESS PARAMETER VARIATION IN
	GRAPHENE FIELD-EFFECT (GFET) DEVICE USING L9 OA TAGUCHI MET
Sesi Pengajian :	16/17
Saya NURIN IRWA	ANIE BT RUSLI (HURUF BESAR)
mengaku membenarkan I kegunaan seperti berikut:	Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat
1. Laporan adalah ha	akmilik Universiti Teknikal Malaysia Melaka.
2. Perpustakaan dibe	enarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibe	narkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi
pengajian tinggi.	
pengajian tinggi. 4. Sila tandakan (√	
):
4. Sila tandakan (√): IT* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam
4. Sila tandakan (√ SUL TER): IT* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) 'HAD** **(Mengandungi maklumat terhad yang telah ditentukan oleh
4. Sila tandakan (√ SUL TER): IT* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) HAD** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
4. Sila tandakan (√ SUL TER TID. Manfung): IT* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) HAD** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) AK TERHAD Disahkan oleh: MALTARAHSIA COP DAN TANDATANGAN PENYELIA)
4. Sila tandakan (√ SUL TER V TID.): IT* *(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) HAD** **(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) AK TERHAD Disahkan oleh: Disahkan oleh: MAMMA (COP DAN TANDATANGAN PENYELIA) DR. FAUZIYAH BINTI SALENUDDIN Pensyarah Kanan Fakuti Kaurutergan Elektronik dan

DECLARATION

"I declare that this thesis entitle "Analyse of Process Parameter Variation In Graphene Field-Effect Transistor (GFET) Device Using L9 OA Taguchi Method" is the result on my own research except as cited with the references. The thesis has been accepted for any degree and is not concurrently submitted in candidature of any other degree."

Signature	Nafrij
Name	. NURIN IRWANIE BTRUSLI
Date	. J /6/2017

Nar Dat

SUPERVISOR VERIFICATION

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering).

> Signature Supervisor's Name Date

And L BR. FAMILYAH SALEHIDAIN 2/6/2017.

iv

Dedicated to my beloved family especially my parents, supervisor, lecturers and all my friends who helping me whether directly or indirectly.

ACKNOWLEGEMENT

In the name of Allah, Most Merciful, Most Compassionate. Alhamdulillah, I was able to complete this project within the time given. I would like to give my sincere gratitude to my supervisor of this project; Dr. Fauziyah Binti Salehudin who gave me such a huge opportunity to gain a knowledge on semiconductor technology. I would like to thanks my supervisor so much on her vision, technical guidance, patience and willingness throughout the entire project.

I also would like to thank to Mr. Khairil Ezwan Bin Kaharudin, Mr. Muhammad Nazirul Ifwat Bin Abd Aziz for their advice and information at resolving my difficulty to finish this project. Apart from that, I would like to send my special thanks to my cousin Norhaida Binti Sahak who helps me to lend her laptop and can make me install and using software tools that I used to complete this project.

Finally, I would like to express my gratitude towards my parents and brothers for their loving support and also to all my friends for always giving their support when I needed it. Then, also I would like to say thanks to all individual whom I not state in here which directly or indirectly to help me throughout this journey.

ABSTRACT

This project is about analyse of process parameter variation in Graphene Field-Effect Transistor (GFET) device using L₉ OA Taguchi Method. The simulation process is done by using Silvaco TCAD tools and the statistical modeling is analyzed by using L_9 orthogonal array (OA) of Taguchi method. In this research, there are four process parameter that be investigated which halo implant dose, halo implant energy, S/D implant dose and S/D implant energy. L₉ OA Taguchi method is used to analyse the process parameters and noise factor to identify the optimum value of threshold voltage (V_{TH}) , drive current (I_{ON}) and current state ratio (I_{ON}/I_{OFF}) . The aims of this project are to design GFET device by using ATHENA module, to analyze the electrical characteristics of GFET by using ATLAS module and to optimize the process parameter variation of GFET using Taguchi method. The value of threshold voltage (V_{TH}), drive current (I_{ON}) and current state ratio (I_{ON}/I_{OFF}) are compared with before and after optimization. In addition, the value of current state ratio (I_{ON}/I_{OFF}) also be compared with previous research. This research is proved that the value after optimization is better than before optimization and current state ratio (I_{ON}/I_{OFF}) of this research is higher compared to previous research.

ABSTRAK

Projek ini adalah mengenai analisis variasi proses parameter di dalam *Graphene Field*-*Effect Transistor (GFET)* peranti menggunakan *L9 OA* Kaedah Taguchi. Proses simulasi dilakukan dengan menggunakan alat *SILVACO TCAD* dan pemodelan statistik menggunakan *L9 OA* kaedah *Taguchi*. Dalam kertas ini, terdapat empat proses parameter yang dikaji iaitu halo implant dos, halo implant tenaga, S/D implant dos dan S/D implant tenaga. *L9 OA* kaedah Taguchi digunakan untuk menganalisis proses parameter untuk mengenal pasti nilai optimum ambang voltan (*V*_{TH}), *drive current (I*_{ON}) dan current-state ratio (*I*_{ON}/*I*_{OFF}). Matlamat projek ini adalah untuk mereka bentuk peranti _{GFET} dengan menggunakan modul *ATHENA*, menganalisis ciri-ciri elektrik dengan menggunakan kaedah Taguchi. Nilai *V*_{TH}, *I*_{ON} dan nisbah *I*_{ON}/*I*_{OFF} dibandingkan dengan sebulam dan selepas proses pengoptimum. Di samping itu, nilai nisbah *I*_{ON}/*I*_{OFF} dibandingkan dengan kajian penyelidikan yang lepas. Kajian ini membuktikan bahawa nilai selepas pengoptimum adalah lebih baik daripada sebelum pengoptimum dan nisbah *I*_{ON}/*I*_{OFF} kajian ini lebih tinggi berbanding dengan kajian penyelidikan sebelum ini.

TABLE OF CONTENT

CHAPTER TITLE

PROJECT TITLE	i
REPORT STATUS FORM	ii
DECLARATION	iii
SUPERVISOR VERIFICATION	iv
DEDICATION	V
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
ABSTRAK	viii
TABLE OF CONTENT	ix-xii
LIST OF TABLES	xiii-xiv
LIST OF FIGURES	xv-xvi
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xviii

I INTRODUCTION

1.1	BACKGROUND	1-3
1.2	OBJECTIVES OF THIS PROJECT	3
1.3	PROBLEM STATEMENT	3-4
1.4	SCOPE OF PROJECT	4
1.5	REPORT STRUCTURE	4-5

II LITERATURE REVIEW

2.1	INTR	ODUCTION	6
2.2	INTR	ODUCTION TO CMOS	6-7
2.3	INTR	ODUCTION TO GRAPHENE	7-9
	2.3.1	Operating Principle of Graphene Device	10
2.4	GRAF	PHENE FIELD EFFECT TRANSISTOR (GFET)	10
	2.4.1	Basic Operation Principles	10
	2.4.2	GFET Circuits Model and Characterization	11
	2.4.3	Mobility Analysis GFETs	11
	2.4.4	Current-Voltage Characteristics of GFETs	11-13
	2.4.5	Hybrid Radiation Detector Based on Charge	13
		Sensing GFET	
2.5	APPL	ICATION OF GRAPHENE	14-15
2.6	TAGU	JCHI METHOD	16
2.7	L9 OF	RTHOGONAL ARRAY METHOD	16-17
2.8	TAGU	JCHI OPTIMIZED SYNTHESIS OF GRAPHENE	17-19

III METHODOLOGY

3.1	INTR	ODUCTION	20
3.2	SIMU	LATION USING SILVACO TCAD TOOLS	20-21
	SOFT	WARE	
3.3	BASI	C FLOWCHART OF MOSFET-LIKE GFET	22
	TRAN	ISISTOR	
	3.3.1	Mesh and Substrate Material Establishment	23
	3.3.2	Well Oxidation	23-24
	3.3.3	Gate Oxide Growth	24
	3.3.4	Bilayer Graphene Formation	25
	3.3.5	High-k Dielectric Formation	26

	3.3.6	Halo Implantation	27
	3.3.7	Sidewall Spacer	27-28
	3.3.8	Source/Drain Implantation	28
	3.3.9	PECVD and BPSG Oxide Deposition	29
	3.3.10	Pattern Source/Drain Contact	29-30
	3.3.11	Aluminium Metallization	30-31
	3.3.12	2 Mirror MOSFET-like GFET Structure	31
3.4	DEVI	CE SIMULATION USING ATLAS	32
3.5	TAGI	JCHI METHOD FOR OPTIMIZATION	33-34
	APPR	OACH	
	3.5.1	Identification of Process Parameters	35
	3.5.2	Selection of Orthogonal Array (OA)	35-36
	3.5.3	Analysis of Variance	36
	3.5.4	Confirmation Experiment	37

IV RESULT AND ANALYSIS

4.1	INTRO	DUCTION	38
4.2	MOSF	ET-like GFET	38-41
4.3	STATI	STICAL MODELING OF PROCESS	
	PARA	METER VARIATIONS BY USING L9 OA	42
	OF TA	GUCHI METHOD	
	4.3.1	Selection of The Process Parameter and Orthogonal	42-43
		Array of Taguchi Method	
	4.3.2	V_{TH} , I_{ON} and I_{ON}/I_{OFF} Ratio Value Acquisition	44-46
	4.3.3	Signal to Noise Analysis	46-49
	4.3.4	Prediction of S/N Ratio	49-53
	4.3.5	Analysis of Variance (ANOVA)	53-55
	4.3.6	Confirmation Test	55-57
4.4	COMP	ARISON OF THE ELECTRICAL	57-59

V CONCLUSION

5.1	CONCLUSION	60-61
5.2	RECOMMENDATION AND FUTURE	61
	DEVELOPMENT	

REFERENCES

62-65

LIST OF TABLES

NO TITLE

PAGES

2.1	Electronic applications of graphene	15
2.2	Photonic applications of graphene	15
2.3	Experimental layout using L9 orthogonal array	17
3.1	Process parameter selected	35
3.2	Taguchi experimental layout using L9 orthogonal array	36
4.1	Original value of process parameter	43
4.2	Process parameter and their levels of 16nm GFET	43
4.3	Noise parameter and their levels	43
4.4	Taguchi experimental layout using L ₉ orthogonal array (OA)	43
4.5	Threshold voltage (V_{TH}) values for 16nm GFET device	45
4.6	Drive current (I _{ON}) values for 16nm GFET device	45
4.7	Current state ratio (I_{ON}/I_{OFF}) for 16nm GFET device	46
4.8	Mean, variance and S/R ratio of threshold voltage, (V $_{TH}$)	47
4.9	S/N ratio of drive current, (I _{ON})	48
4.10	S/N ratio of (I_{ON}/I_{OFF}) ratio	49
4.11	Prediction S/N ratio for nominal-the-best of V_{TH}	50
4.12	Prediction S/N ratio for larger-the-best of I_{ON}	52
4.13	Prediction S/N ratio for larger-the-best of I_{ON} / I_{OFF} ratio	53
4.14	Result on ANOVA for V _{TH} , I _{ON} , I _{ON} /I _{OFF} ratio	54
4.15	Process Parameter and their effects on S/N ratio	56
4.16	Best combination level of process parameters	56
4.17	Result of Electrical Characteristics in GFET device	57
4.18	Comparison of the optimal V_{TH} Value between before and	58

after optimization

4.19	Comparison of the optimal I_{ON} Value between before and	58
	after optimization	
4.20	Comparison of the optimal I _{ON} /I _{OFF} ratio value	59

LIST OF FIGURES

NO TITLE

PAGES

1.1	Moore's Law in evolution of a billion transistor in recent years	1
2.1	sp2 and p orbital of carbon atoms in graphene	8
2.2	Graphene form in years	8
2.3	Lattice structure of graphene	9
2.4	The electronic dispersion in graphene	9
2.5	Schematic of dual-gate GFET	12
2.6	Ideal drain current versus gate voltage using equation	12
2.7	Ideal drain current against source-drain voltage for different	13
	gate biases	
2.8	Hybrid GFET detector schematic and operating principle	13
2.9	Response graph of I_{2D}/I_G	18
2.10	Response graph of I_D/I_G	19
3.1	Simulation flowchart using SILVACO TCAD Tools	21
3.2	Flowchart of MOSFET-like GFET Design	22
3.3	P-type substrate doping concentration	23
3.4	Oxide deposition	24
3.5	Gate oxide growth	24
3.6	Adding of Bilayer Graphene on top of SiO ₂	25
3.7	Deposited high-k material of HfO ₂	26
3.8	Deposited metal gate of WSi _X	26
3.9	Halo Implantation process	27
3.10	Depositing and etching Si ₃ N ₄	28
3.11	Source/Drain Implantation	28

3.12	PECVD and BPSG oxide deposition process	29
3.13	MOSFET-like GFET structure after pattern source/drain contact	30
	Process	
3.14	Aluminium metallization process	30
3.15	Aluminium etching	31
3.16	Mirroring Process	31
3.17	Flowchart of device simulation using ATLAS module	32
3.18	Flowchart of Taguchi Method Approach	34
4.1	MOSFET-like GFET	39
4.2	Contour of MOSFET-like GFET device	40
4.3	Graph of I_D - V_D for MOSFET-like GFET	40
4.4	Graph of subthreshold I_D - V_G for MOSFET-like GFET	41
4.5	Output window of MOSFET-like GFET	41
4.6	S/N graph of threshold voltage (V _{TH})	50
4.7	S/N graph of drive current (I _{ON})	51
4.8	S/N graph of current state ratio (I_{ON}/I_{OFF})	51

xvi

LIST OF ABBREVIATIONS

CMOS	-	Complementary Metal Oxide Semiconductor
MOSFET	-	Metal Oxide Semiconductor Field Effect Transistor
Si MOSFET	-	Silicon Metal Oxide Semiconductor Field Effect Transistor
GFET	-	Graphene Field Effect Transistor
TCAD	-	Technology Computer Aided Design
OA	-	Orthogonal Array
CVD	-	Chemical Vapor Deposition
FET	-	Field Effect Transistor
S/N	-	Signal-to-noise ratio
ITRS	-	International Technology Roadmap for Semiconductors
Bi-graphene	-	Bilayer Grapheme
I-V	-	Device Current-Voltage Characteristics
MOS	-	Metal-Oxide Semiconductor
S/D	-	Source/Drain

LIST OF SYMBOLS

°C	-	Celsius
2D	-	2-Dimensional
eV	-	Electron-volt
I _D	-	Drain Current
I _{OFF}	-	Off-state Current or Leakage Current
I _{ON}	-	On-state Current or Drive Current
k	-	Boltzmann constant
Lg	-	Gate Length
n	-	Free electron concentration
Ni	-	Nickel
Nm	-	Nano-meter
S	-	Second
Si	-	Silicon
SiC	-	Silicon Carbide
SiO ₂	-	Silicon Dioxide
V_D	-	Drain Voltage
V_{DS}	-	Drain to Source Voltage
V _G	-	Gate Voltage
V _{GS}	-	Gate to Source Voltage
V_{TH}	-	Threshold Voltage
μm	-	Micro-meter
WSi ₂	-	Tungsten Silicide
I_{ON}/I_{OFF}	-	Current State Ratio

CHAPTER 1

INTRODUCTION

1.1 Background

In the past recent years, the microelectronic industry has decreased the transistor feature size scaling which 10μ m to approximately 30nm. Apart from that, silicon(Si) bipolar also changed to p-channel metal oxidesemiconductor (MOS) and then evaluate to n-channel MOS and stop to complementary MOS (CMOS) planar transistor. Unfortunately, the industry also had faced challenges in scaling the transistor size into 10nm. However, this challenges need to be overcome by identifying other material that suitable to replace Si transistor in the future [1]. Another limitation that come across is the physical limits of the transistor [2]. The development of CMOS scaling in recent years is defined as Moore's Law. Figure 1.1 shown evolution of transistor according to Moore's Law [3].

Figure 1.1 : Moore's Law in evolution of a billion transistor in recent years.

Scaling theory is based on the simple rules of the transistor design which need in increase of circuit speed and density. Therefore, with the improvement on circuit performance and density, a complicated functionallity can be construct into a single chip. This can give benefit in reducing cost of fabrication [3]. Moore's Law state that the component density and performance of integrated circuits will be double in every two years. The integrated circuits and scaling based on Moore's Law is said as "the cheap way to do electronics". The rate of improvement to overcome the limitation of CMOS will be change again and that means that Moore's Law is still have more further. The limitations of the scaling are parasitic resistance and capacitance. This limitation is assumed as negligible by scaling theory. This limitation was accepted in the past 40 years but are not valid anymore for futher implementation in the next years. Moore's law is not a physical law but it is a law about economics [1].

Therefore, to overcome the limitation there are a research regarding to identify a new device structure and alternative material. A few nanoelectronics device have been choosen to replace MOSFET device. For example silicon nanowire (SiNW), carbon nanotubes (CNT), III-V compound materials such as gallium arsenide (GaAs) and germanium (Ge) and last but not least is graphene. As this research continued, the graphene had final be choose as the most suitable material that can replace Si MOSFET [4]. Graphene is type of material that produce as high quality material with simple procedure and has cheap cost. Graphene has a large number of its material parameters such as mechanical stiffness, strength and elasticity, very high electrical and thermal conductivity [5]. A further explanation regarding to this material will be explain further in literature review part of this report.

This project is about a simulation process of MOSFET-like graphene field-effect transistor (GFET) by using a technology computer aided design (TCAD) tools software. In this SILVACO TCAD tools software, the material of graphene does not still exist in its library therefore the polysilicon is set as a graphene with change the properties of polysilicon into graphene properties. The structure of GFET is design in ATHENA module and its electrical characteristics is define by using ATLAS module. Bilayer

graphene is used in MOSFET-like GFET device due to its potential in one of the solution to open the band gap in graphene material. Taguchi method is utilize to optimize the process parameter on threshold voltage (Vth), drive current (I_{ON}) and current state ratio (I_{ON}/I_{OFF}) of the device. Analysis by using Taguchi method is done to identify which the process parameter that give the most impact on device performance. L9 Orthogonal Array (OA) of Taguchi Method is use for the statistical approach. The comparison is made up with previous research, before and after optimization.

1.2 Objectives of This Project

The main goal of this research is to analyse of process of parameter variation in Graphene field-effect transistor (GFET) device using L9 Orthogonal Array (OA) Taguchi method. The objectives are specific:

- (i) To design MOSFET-like Graphene Field-Effect Transistor (GFET) by using ATHENA module in SILVACO TCAD tool.
- (ii) To analyze the electrical characteristics of GFET by using ATLAS module.
- (iii) To optimize the process parameter variation of MOSFET-like GFET using Taguchi method.

1.3 Problem Statement

Moore's law mentioned that the number of transistor in a chip will double every two years. For the past few years, researchers had identified for a new alternative to replace the existing silicon. There were showed a rapid growth between the developer to perform a better devices [3]. The variation of the development of transistor were changed aggressively in other to full fill the requirement for world industry and to define the limitation of Moore's law. It had been invented for low cost and sustain with high performance. The device had faced the limitation by using Si transistor due to the parasitic resistance and capacitance which are generally assumed negligible [1]. A new device structure and alternative material is needed to overcome this limitation. Hence, among the new material that been choose, graphene appeared as the most suitable material that can replaced Si MOSFET [5].

1.4 Scope of Project

This project execution is based on simulation and program development. Simulation of Graphene field-effect transistor (GFET) device will be conducted by using a ATHENA module in SILVACO's TCAD tool. Meanwhile, the simulation of electrical characteristics will be implemented by using an ATLAS module in SILVACO's TCAD simulation tool. This tool will be used to simulate and design device structures. Other than that, this project is focused on the application of Taguchi method to obtain the optimum solution for GFET device in order to verify the predicted optimal design.

1.5 Report Structure

This thesis consist of five chapters which contain of the introduction, literature review, methodology, result and discussion and for the last chapter is conclusion and recomendation of the project. Chapter 1 is about the introduction of the project. In this chapter, the background and specific intruction regarding to this project is explained. Apart from that, in this Chapter 1 the objectives of the project are state with the problem statement and also the scope of the project.

In Chapter 2, the real explaination regarding to this project is explain further with including the previous research done. The structure of the MOSFET-like GFET is discussed in this chapter with the analyse parameter by using Taguchi method. The methodologies of the project is explain in Chapter 3. Therefore, all the steps and flow toward solving the problem in such a specific method is used to design and develop the

MOSFET-like GFET structure is explain further. Apart from that, the method that be used to analyse the parameter of the MOSFET-like GFET also is included in this chapter.

Next, for the Chapter 4 all the expected result from this project is describe here. Hence, the performance also be justified to make sure it meets the objectives of the research. Finally, Chapter 5 will concludes for the whole research progress of the project with the recommendation.

5