WORK POSTURE IMPROVEMENT AT PLASTIC PRINTING PROCESS IN PLASTIC MANUFACTURING INDUSTRY

CHIEW SHET YEE B051310128

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2017

C Universiti Teknikal Malaysia Melaka

WORK POSTURE IMPROVEMENT AT PLASTIC PRINTING PROCESS IN PLASTIC MANUFACTURING INDUSTRY

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management)(Hons.)

by

CHIEW SHET YEE B051310128 930915-06-5330

FACULTY OF MANUFACTURING ENGINEERING

2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: WORK POSTURE IMPROVEMENT AT PLASTIC PRINTING PROCESS IN PLASTIC MANUFACTURING INDUSTRY

SESI PENGAJIAN: 2016/2017 Semester 2

Saya	CHIEW	SHET	YEE	(930915-06-5330)
------	-------	------	-----	------------------

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

		(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)		
\checkmark	TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)			
	TIDAK TERHA			
		Disahkan oleh:		
Alamat Teta	ıp:	Cop Rasmi:		
NO. 76, Jala	an Rimba Permai 1	,		
Taman Rim	ba Permai,			
28400 Ment	akab, Pahang.			
Tarikh:		Tarikh:		
** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD				

FAKULTI KEJURUTERAAN PEMBUATAN

Tel: +606 - 331 6429 / Faks: +606 - 331 6431

Rujukan Kami (Our Ref) : UTeM. Rujukan Tuan (Your Ref) :

Ketua Pustakawan Perpustakaan UTeM Kampus Induk University Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal Melaka. 15 June 2017

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN (PENGURUSAN PEMBUATAN): CHIEW SHET YEE

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "Work Posture Improvement at Plastic Printing Process in Plastic Manufacturing Industry" mohon dikelaskan sebagai TERHAD untuk tempoh LIMA tahun dari tarikh surat ini.

2. Hal ini adalah kerana ianya merupakan projek yang mangandungi maklumat sulit dan sensitif terhadap industri dalam projek ini dan hasil kajiannya adalah terhad.

Sekian dimaklumkan. Terima kasih.

Yang benar,

Tandatangan dan Cop Penyelia

DECLARATION

I hereby, declared this report entitled "Work Posture Improvement at Plastic Printing Process in Plastic Manufacturing Industry" is the result of my own research except as cited in references.

Signature	:
Author's Name	: CHIEW SHET YEE
Date	: 22 June 2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) (Hons.). The members of the supervisory committee are as follow:

.....

(Dr. Isa bin Halim)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Sejak beberapa dekad yang lalu, industri pembuatan telah diiktiraf sebagai pemacu utama prestasi eksport dan juga untuk pertumbuhan ekonomi yang memberangsangkan di Malaysia. Antara semua industri pembuatan, industri pembuatan plastik adalah salah satu sektor pertumbuhan paling dinamik disebabkan oleh permintaan yang tinggi daripada pengguna. Dalam industri pembuatan plastik, terdapat 5 proses utama pengeluaran iaitu percetakan, laminasi, penyemperitan, pencelahan dan pemotongan. Dalam proses percetakan plastik, stesen kerja percetakan adalah separa automatik. Di stesen kerja ini, operator terdedah kepada pelbagai faktor risiko ergonomik seperti mengangkat dan mengendalikan beban berat, postur kerja yang tidak neutral, berdiri yang berpanjangan, dan tekanan haba. Untuk meningkatkan produktiviti, kualiti produk, dan keselamatan dan kesihatan pekerjaan operator, matlamat kajian ini adalah untuk mereka bentuk semula stesen kerja percetakan plastik yang sedia ada untuk bertambah baik postur kerja supaya mengelakkan berlakunya kecederaan pekerjaan. Kajian ini menggunakan pemerhatian di tempat kerja dan kajian soal selidik untuk menyiasat masalah ergonomik yang dihadapi oleh operator yang menjalankan proses percetakan plastik. Faktor risiko yang berkaitan dengan postur kerja yang tidak neutral dianalisis dengan Rapid Upper Limb Assessment (RULA). Skor RULA yang diperolehi untuk setiap postur adalah 5, 6 atau 7, ini menunjukkan bahawa postur perlu diselidiki lebih lanjut dan berubah. Tambahan pula, keperluan operator mengenai stesen kerja percetakan plastik dikumpulkan dan dipindah ke House of Quality (HOQ). Kemudian, tiga konsep reka bentuk stesen kerja telah dilakarkan dan disaring dengan menggunakan kaedah Pugh untuk memilih konsep reka bentuk yang optimum. Cost and benefit analysis (CBA) telah digunakan untuk menilai keberkesanan reka bentuk dari segi penjimatan kos dan return on investment (ROI). Kajian ini menyimpulkan bahawa reka bentuk baru stesen kerja telah bertambah baik dari segi skor RULA. Sementara itu, kajian ini mencadangkan penyiasatan lanjut mengenai analisis produktiviti dan kualiti produk serta kajian aktiviti otot bagi operator dalam kajian masa depan.

ABSTRACT

Over the past decades, manufacturing industry has been recognized as the main driver for export performance as well as for the impressive economic growth in Malaysia. Among all the manufacturing industries, plastic manufacturing industry is one of the most dynamic growth sectors due to the high demand of consumers. In plastic manufacturing industry, there are 5 main production processes which are printing, lamination, extrusion, slitting and cutting processes. In plastic printing process, the printing workstations are semi-automated. At these workstations, the operators are exposed to various ergonomics risk factors such as lifting and handling heavy loads, non-neutral work posture, prolonged standing, and heat stress. In order to enhance the productivity, product quality, and occupational safety and health of operators, the aim of this study is to redesign the existing plastic printing workstation for improving work posture to prevent the occurrence of occupational injuries. This study applied workplace observation and questionnaire survey to investigate the ergonomics related problems faced by the operators who are carrying out plastic printing process in a plastic manufacturing industry. The risk factor which relates to non-neutral work posture was analyzed by Rapid Upper Limb Assessment (RULA). The RULA scores obtained for each posture were 5, 6 or 7, which indicated that the postures should be investigated further and changed. Furthermore, the operators requirements regarding plastic printing workstation were collected and transformed into House of Quality (HOQ). Then, three concepts of the improved design workstation were sketched. They were screened by using Pugh method to select the optimum design concept of workstation. Cost and benefit analysis (CBA) was used to evaluate effectiveness of the improved design workstation in terms of cost saving and return on investment (ROI). This study concluded that the new design of the workstation has improved the RULA score. Meanwhile, this study suggested further investigation of productivity and product quality analysis and the study on muscle activity for the operators in future study.

DEDICATION

For my beloved family, project supervisor, industrial supervisor, lecturers and friends that always believe in me to complete this project and report.

ACKNOWLEDGEMENT

Firstly, it is a genuine pleasure to express my deep sense of thanks and gratitude to my respected supervisor, Dr Isa bin Halim, for the great mentoring that was given to me throughout the project. His guidance, advices and supervision had exposed me with meaningful experiences throughout this study. He also dedicated to provide me useful information and comments in completing the presentation and report.

Furthermore, I would like to thank my lovely family for supporting and motivating me all the time from far whenever I felt stressed. Thank you so much for the love.

Moreover, I would like to give a special thanks to my friends who gave me much motivation and support in completing this project. They had given their critical suggestion and comment regarding to my research. Thanks for the great friendship.

Last but not least, I would like to thank Lum Mah Plastic & Printing (M) Sdn. Bhd. including all the workers for giving me all time cooperation and supportive information in completing this project.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	viii
List of Figures	х
List of Abbreviations	xii
List of Symbols	xiv

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	4
1.3	Objectives	6
1.4	Scope and Limitation of Study	7
1.5	Significance of Study	7

CHAPTER 2: LITERATURE REVIEW

2.1	Invest	igation of the Ergonomics Related Problems	8
	2.1.1	Workplace Observation	8
	2.1.2	Questionnaire Survey	9
	2.1.3	Interview	11
	2.1.4	Literature Review	12
2.2	Analy	sis of Work Posture	13
	2.2.1	Rapid Upper Limb Assessment (RULA)	13
	2.2.2	Rapid Entire Body Assessment (REBA)	16
	2.2.3	Ovako Working Posture Analysing System (OWAS)	17

	2.2.4	Quick Exposure Check (QEC)	18
2.3	Redes	ign of Workstation to Improve Work Posture	20
	2.3.1	House of Quality (HOQ)	20
	2.3.2	Focus Group Technique	21
	2.3.3	Pugh Method	22
	2.3.4	Immersion	23
	2.3.5	Cost-Benefit Analysis (CBA)	24
2.4	Differ	ences between Previous Studies and Current Study	26
2.5	Summ	ary	27

CHAPTER 3: METHODOLOGY

3.1	Invest	igation of the Ergonomics Related Problems Experienced by the		
	Opera	tors at Printing Process Workstation	28	
	3.1.1	Workplace Observation	28	
	3.1.2	Questionnaire Survey	33	
3.2	Analy	sis of Work Posture at the Existing Printing Workstation	37	
3.3	Redesign of Printing Workstation to Improve Work Posture			
	3.3.1	House of Quality (HOQ)	40	
	3.3.2	Focus Group Technique	42	
	3.3.3	Pugh Method	42	
	3.3.4	Cost and Benefit Analysis (CBA)	43	
	3.3.5	Workstation Design by using CATIA [®] Software	44	
3.4	Summ	ary	46	

CHAPTER 4: RESULT AND DISCUSSION

4.1 E	Ergon	omics Related Problems at Printing Process Workstation	49
	4.1.1	Workplace Observation	50
	4.1.2	Cronbach's Alpha Test of the Questionnaire Survey	52
	4.1.3	Demographic Information of the Respondents	53
	4.1.4	Ergonomics Related Problems and Root Causes at Printing Process	
		Workstation	55

4.2	Work	Posture at the Existing Printing Process Workstation	59
	4.2.1	Comfort Level at Current Printing Process Workstation	59
	4.2.2	Working Posture Assessment	62
4.3	Impro	ved Design of Plastic Printing Process Workstation	68
	4.3.1	Design Requirements of Plastic Printing Process Workstation	68
	4.3.2	House of Quality (HOQ)	69
	4.3.3	Pugh method	70
	4.3.4	Cost and Benefit Analysis (CBA)	74
	4.3.5	Final Design of the Improved Plastic Printing Process Workstation	75
CHA	PTER (5: CONCLUSION AND RECOMMENDATION	
5.1	Ergon	omics Related Problems Experienced by the Operators at Printing	
	Proces	ss Workstation	80
5.2	Work	Posture of Operators at the Existing Printing Process Workstation	80
5.3	Improved Design of the Plastic Printing Process Workstation		81
5.4	Recommendation for Future Study		81
5.5	Sustai	nable Design and Development	81
REFE	ERENC	ES	82
APPE	NDIC	ES	

А	Questionnaire Survey Form	89
В	Quotation of the Alternative	96

LIST OF TABLES

2.1	Rule of thumb for various degree of internal consistency	10
2.2	Rapid Upper Limb Assessment (RULA) levels and indications	14
2.3	REBA action levels	17
2.4	OWAS action categories for prevention	18
2.5	QEC action levels	20
2.6	BCR value and its explanation	25
2.7	ROI value and its explanation	25
2.8	Differences between previous studies and current study	26
3.1	Data sheet for anthropometry data of the operators	38
3.2	Customer requirements based on relative importance	40
3.3	Translation of customer requirements to VOEs	41
3.4	Symbols used to show the strength of relationships	41
3.5	Symbols used to indicate the correlations between each technical requirements	41
3.6	Concept screening matrix	42
3.7	Rating used for concept comparison and evaluation	43
3.8	Cost Justification	43
4.1	Ergonomics Observation Worksheet	50
4.2	Designation and gender	53
4.3	Age group	54
4.4	Nationality	54
4.5	Height	54
4.6	Weight	54
4.7	Working experience in plastic printing process	55
4.8	Education level	55
4.9	Comfort level at the existing printing process workstation	60

4.10	Operators' working postures and RULA score at the existing workstation	63
4.11	Importance rating of design requirements	68
4.12	Technical requirements for improved design of workstation	69
4.13	Concept screening matrix	73
4.14	Cost Justification	75
4.15	Operators' working postures and RULA score at the new design of workstation	76

LIST OF FIGURES

1.1	Working environment at plastic printing workstation	3
1.2	Operators perform the plastic printing process in non-neutral work posture	4
1.3	Operators perform the plastic printing process in awkward postures	6
2.1	Cornell Musculoskeletal Discomfort Questionnaire	11
2.2	RULA Employee Assessment Worksheet	13
2.3	RULA Scoring Sheet	14
2.4	RULA analysis in CATIA software	15
2.5	REBA Employee Assessment Worksheet	16
2.6	OWAS Evaluation Chart	18
2.7	QEC assessment and scoring form	19
2.8	House of Quality	21
2.9	Decision-matrix flow chart	23
3.1	Example of Ergonomics Observation Worksheet	29
3.2	Measuring the dimensions of the whole printing department	31
3.3	Plant layout of the plastic printing process department	31
3.4	Flow chart of the workplace observation	32
3.5	Setup in Minitab [®] software	34
3.6	Item Analysis used to perform Cronbach's Alpha test	34
3.7	Item Analysis window to select the variables that need to be analyzed	35
3.8	Conducting questionnaire survey with the operator	35
3.9	Flow chart of preparation questionnaire survey	36
3.10	Measuring the anthropometry of the operator	37
3.11	Manikin in measurement editor	38
3.12	Manikin in human builder	38
3.13	Flow chart of work posture analysis	39

x C Universiti Teknikal Malaysia Melaka

3.14	Technical drawing of the plastic printing process workstation	44	
3.15	Flow chart of the design process		
3.16	Flow chart of the summary of methodology	48	
4.1	Cronbach's alpha result of Section B	52	
4.2	Cronbach's alpha result of Section E	53	
4.3	Cronbach's alpha result of Section F	53	
4.4	Ergonomics related problems experienced by the workers	56	
4.5	Causes of low productivity, poor occupational health, and poor product quality in the		
plastic printing process 56			
4.6	Root causes for the ergonomics related problems in the plastic printing process	57	
4.7	Pareto Chart of the root causes	58	
4.8	Ache, pain, discomfort experienced by the workers	61	
4.9	Level of discomfort	61	
4.10	Interfere with work ability when experienced discomfort	62	
4.11	House of Quality	70	
4.12	Concept A	71	
4.13	Concept B	72	
4.14	Concept C	72	
4.15	Final conceptual sketching of the improved plastic printing process workstation	74	
4.16	New design of plastic printing process workstation	75	

LIST OF ABBREVIATIONS

GDP	-	Gross domestic product
CAGR	-	Compound annual growth rate
SOCSO	-	Social Security Organization
SOP	-	Standard operating procedure
AutoCAD	-	Automated Computer-Aided Design
CATIA	-	Computer-Aided Three-Dimensional Interactive Application
DELMIA	-	Digital Enterprise Lean Manufacturing Interactive Application
CMDQ	-	Cornell Musculoskeletal Discomfort Questionnaire
RULA	-	Rapid Upper Limb Assessment
3D	-	Three-dimensional
REBA	-	Rapid Entire Body Assessment
WMSDs	-	Work related musculoskeletal disorders
OWAS	-	Ovako Working Posture Analysing System
QEC	-	Quick Exposure Check
HOQ	-	House of Quality
CBA	-	Cost and benefit analysis
ROI	-	Return on investment
BCR	-	Benefit cost ratio
NPV	-	Net present value
WP	-	Working Postures
WSD	-	Work Shift Duration
WD	-	Workstation Design
SMA	-	Symptoms of Musculoskeletal Ailments
MSDs	-	Musculoskeletal disorders
TFT-LCD	-	Thin-film-transistor liquid-crystal display
OSHA	-	Occupational Safety and Health Administration
BRIEF	-	Behavior Rating Inventory of Executive Functioning

3D SSPP	-	Three-Dimensional Static Strength Prediction Program
NIOSH	-	National Institute for Occupational Safety and Health
ANOVA	-	Analysis of variance
NASA-TLX	-	National Aeronautics and Space Administration Task Load
		Index
MRFs	-	Musculoskeletal risk factors
MSSs	-	Musculoskeletal symptoms
SPSS	-	Statistical Package for the Social Sciences
VOEs	-	Voice of engineers

LIST OF SYMBOLS

RM	-	Ringgit Malaysia
α	-	alpha
kg	-	kilogram
cm	-	centimeter
®	-	Registered
ТМ	-	Trademark

CHAPTER 1 INTRODUCTION

This chapter describes the background of study, problem statement, objectives of study, scope and limitation of study and significance of study. The background of study focuses on the existing working practices and ergonomics risk factors presence at plastic printing process workstation. The problem statement reveals the ergonomics related problems experienced by the operators at the printing process workstations. The intention of this study is to redesign the existing plastic printing process workstation for improving work posture to reduce the risk of occupational health. Additionally, the scope of study emphasizes the focus and limitations of the study. At the end of this chapter, the significance of study is presented.

1.1 Background of Study

Over the past decades, Malaysia received considerable amounts of foreign direct investment (FDI) which has played a vital role in the development of the manufacturing industry in Malaysia. Manufacturing industry is an essential engine of economic growth for the Malaysian economy. The significance of the manufacturing industry to the economy is proven in its contribution to the gross domestic product (GDP). It contributes positive estimated growth of 4.8 percent per annum in the overall performance of the manufacturing sector, contributing 23 percent or RM243.9 billion to GDP in 2015 (Saptari, 2016). Manufacturing sector contributed 76.2 percent of total exports in 2013, from 58.7 percent in 1990 (Wan, 2016). Additionally, manufactured goods continue to dominate exports with a share of 81.8 percent of total exports or RM636.7 billion in 2015. Therefore, the manufacturing sector has been recognized as the main driver for export performance as well as

1

for the impressive economic growth in Malaysia. In brief, manufacturing industry acts as a critical role in the transformation and development of the Malaysian economy.

Plastic manufacturing industry is one of the most dynamic growth sectors in Malaysia. This industry attained a standard growth rate of 15 percent during last 11 years due to the robust rate of Malaysian economy. According to Overview (2011), plastic manufacturing industry recorded total sales of RM16.1 billion in 2008, which increase of 4.1 percent when compared to RM15.46 billion in 2007. Meanwhile export of the plastic products for the year 2007 increased by 11.5 percent from RM8.38 billion to RM9.34 billion in 2008. Plastic manufacturing industry can be classified into four sub-sectors such as consumer and industrial products, plastic packaging, electrical & electronics and automotive components. The plastic packaging remains the largest market for the plastic industry with 40 percent of total industry output. This is due to pharmaceutical, and food and beverages industries have the highest demand for plastic packaging materials. In Malaysia, the food consumption level increased at a compound annual growth rate (CAGR) of 4.62 percent from 2002 to 2012 whereas the total pharmaceutical sales value had grown at a CAGR of 10.6 percent from 2002 to 2012, more than double of the food consumption value in the same period (UZABASE Materials Sector Team, 2014). Hence, the strong growth in these two industries showed strong demand on the plastic packaging materials.

In plastic manufacturing industry, there are 5 main production processes which are printing, lamination, extrusion, slitting and cutting processes. In this industry, most of the routine tasks are automated but some of the workstations are semi-automated therefore the operators have to operate both automated and semi-automated machines simultaneously. In plastic printing process, the printing workstations are semi-automated. At these workstations, the operators are exposed to various ergonomics risk factors such as lifting and handling heavy loads, non-neutral work posture, prolonged standing, and heat stress. These ergonomics risk factors can cause the operators to experience occupational health problems such as, back pain, neck pain and shoulder pain. As a consequence of these pains, the operators feel uncomfortable and unable to pay full concentration while operating the machines, hence

affects the product quality. Additionally, the operators may also unable to achieve the production target.

In the past three years, the Social Security Organization (SOCSO) of Malaysia reported 15754 sprain and strain cases in workplaces (SOCSO Annual Reports 2012, 2013 and 2014). A strain is caused by twisting or pulling a muscle or tendon. Strain can occur after improperly lifting heavy loads or overstressing the muscles. In addition to improperly lifting heavy loads, improper design of workstation such as inappropriate table height is also one of the contributors to strain because the operators have to adopt non-neutral work posture during performing jobs.

Figure 1.1 shows the working environment at plastic printing workstation. Figure 1.2 shows the operators perform the plastic printing process in non-neutral work posture.

Figure 1.1: Working environment at plastic printing workstation

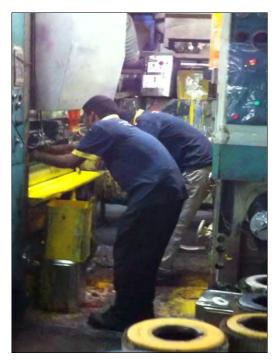


Figure 1.2: Operators perform the plastic printing process in non-neutral work posture

In order to enhance the productivity and occupational safety and health of operators in plastic manufacturing industry, the aim of this study is to redesign plastic printing workstation for improving work posture to prevent the occurrence of occupational injuries.

1.2 Problem Statement

This study performed workplace observation and questionnaire survey to investigate the ergonomics related problems faced by the operators who are carrying out plastic printing process in a plastic manufacturing industry located in Ayer Keroh Industrial Estate, Melaka. Based on the workplace observation and questionnaire survey, this study discovered that the ergonomics related problems experienced by the industry are:

a) Low productivity

The production rate of the plastic printing process is considered very low. The company has decided production target is 12 plastic rolls to be processed per day, but the operators only managed to obtain 8 plastic rolls per day. This is due to the