

SETUP TIME REDUCTION OF SNAP FASTENER MACHINE BY IMPLEMENTING SINGLE MINUTE EXCHANGE OF DIE

This report is submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Manufacturing Management) (Hons.)

by

NUR SYUHADA BINTI MAT ADAM B051310236 940623-11-5446

FACULTY OF MANUFACTURING ENGINEERING 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk:SETUP TIME REDUCTION OF SNAP FASTENER MACHINE BY
IMPLEMENTING SINGLE MINUTE EXCHANGE OF DIE

Sesi Pengajian: 2016/2017 Semester 2

Saya NUR SYUHADA BINTI MAT ADAM (940623-11-5446)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

Tarikh: _____

Tarikh: _____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Setup Time Reduction of Snap Fastener Machine by Implementing Single Minute Exchange of Die" is the result of my own research except as cited in references.

Signature:Author's Name: NUR SYUHADA BINTI MAT ADAMDate: 22 June 2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Manufacturing Management) (Hons). The members of the supervisory committee are as follow:

.....

(Dr. Effendi Bin Mohamad)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Masakini, kebanyakan syarikat, terutamanya dalam bidang pembuatan, sedang berusaha menghasilkan pelbagai produk dalam kos yang rendah dan masa penghantaran yang pendek. Ini boleh dilakukan dengan memastikan pertukaran pantas pada mesin supaya tindak balas fleksibiliti kepada permintaan tidak terjejas. Sebuah syarikat penghasilan barang untuk penjahitan pakaian di Melaka, Malaysia telah menerapkan Single Minute Exchange of Die (SMED) untuk menambah baik masa pertukaran mesin penghasilan logam yang kecil untuk mengetatkan pakaian. Ianya telah diberitahu bahawa isu adalah kekurangan pemikiran lean oleh pekerja, dimana telah menghasilkan pembaziran di dalam proses pertukaran dan masa pertukaran. Dengan menggunakan SMED, pertukaran semasa telah diteliti, aktiviti dalaman dan luaran telah diasingkan, aktiviti dalaman telah ditukar kepada aktiviti luaran, dan semua aktiviti pertukaran telah diselaraskan. Satu daripada aktiviti tersebut mempunyai potensi untuk dilakukan secara luaran, i.e. menyediakan mould / die yang baharu. Beberapa aktiviti di dalam proses pertukaran ini juga telah dihapuskan dengan menambah ramai pekerja dan memperbaiki hubung kait antara pengendali dan juruteknik yang bertanggungjawab untuk pertukaran. Aktiviti – aktiviti tersebut adalah penyediaan untuk pertukaran, membuang brass strip yang berlebihan dan lain-lain. Satu standard baru telah dibuat, yang bertujuan untuk menyamakan fungsi jenis blok dimana hanya boleh digunakan untuk satu jenis pemotong. Pemotong ini bertujuan untuk menyingkirkan keperluan membuat cutter yang baru daripada plate Alat lean yang lain juga telah dicadangkan. Satu pertukaran baru yang lebih mudah dan menjimatkan masa telah direka. Dengan proses tersebut, ia dapat dilihat dengan jumlah masa pertukaran yang diambil hanyalah 38 minit dibandingkan dengan 306 minit untuk pertukaran asal, (pengurangan 87 peratus). Kajian ini telah menunjukkan bahawa SMED masih lagi satu alat yang teguh dan berkesan yang boleh digunakan untuk mencapai pertukaran pantas yang mana sangat penting untuk syarikat.

ABSTRACT

Nowadays, majority of companies, especially in manufacturing industry, are bounded to produce variety of products at a low cost and shorter delivery time. This can be carried out by ensuring a rapid changeover of the machinery in such a way that the flexibility of response to demand stays unaffected. A needlework and sewing company in Melaka, Malaysia has adopted Single Minute Exchange of Die (SMED) to shorten the changeover time of its snap fastener machine. It was noted that the problem in the company was poor lean thinking by the workers, which resulted in waste in changeover process, and changeover time. By using SMED, current changeover process was observed, internal and external activities were separated, internal activities were converted into external activities, and all changeover activities were streamlined. One of the changeover activities had the potential to be performed externally, and i.e. preparation of new mould / die. Some of the changeover activities were cancelled out by adding more workers and enhancing the correlation between operator and technician in charge of changeover. These activities were preparation for the changeover, removing the brass strips from the machine, setting the position of the brass strip and preparation for next run. A new standard was developed and implemented, aiming at standardizing the block types which can only be used by one type of cutter. This cutter is intended to get rid of the need to make or design the new cutter from the plate when the cutter is worn-off. To enhance the effectiveness of the improvements, other lean tools were recommended, including andon. Andon was recommended to enhance the correlation between the workers and inform the technicians about the changeover. A new changeover process which is much easier and time saving was created. With the new process, it was observed that the total changeover time was 38 minutes compared to 306 minutes with the current changeover time, (87 percent reduction). This study showed that SMED remains one of the most simple and effective tool which can be used to attain a rapid changeover that is essential for this company.

DEDICATION

Only

my beloved father, Mat Adam Bin Mohd Saed my appreciated mother, Meriam Binti Yusoff my adored sister, Nur Baizura, Nur Afzan and Nur Ain my lovely brother, Muhammad Hafize Firdaus, Muhammad Abdullah Hakim and Muhammad Syukri Hanafi my little sister, Nur Syahirah for giving me moral support, money, cooperation, encouragement and also understandings Thank You So Much & Love You All Forever

ACKNOWLEDGEMENT

In the name of ALLAH, the most gracious, the most merciful, with the highest praise to Allah that I manage to complete this final year project successfully without difficulty.

My respected supervisor, Dr. Effendi Bin Mohamad for the great mentoring that was given to me throughout the project. His kindness, unwavering patience and mentorship guided me through the process, his easily understood explanations and open mind allowed me to grow and learn in such a way that I am now a better researcher. Besides that, I would like to express my gratitude to the Haberdashery Company, the production manager, the supervisor, the technician and the operator for their kind supervision, advice and guidance as well as exposing me with meaningful experiences throughout the study.

Last but not least, I would like to give a special thanks to my best friends who gave me much motivation and cooperation mentally in completing this report especially to, Nor Azatul Fasya Binti Azman for the transportation, Amiza Aliyana Binti Zamuri for the scientific advice, Nor Hafizah Binti Hamdan for the encouragement and Syazxerlin Abd Aziz, NorFarafazera Binti Mohd Sidek and Faridah Binti Dollah for the moral and the financial support. They had given their critical suggestion and comments throughout my research. Thanks for the great friendship.

Finally, I would like to thank everybody who was important to this FYP report, as well as expressing my apology that I could not mention personally each one of you.

TABLE OF CONTENT

Abstra	ak		i
Abstra	act		ii
Dedic	ation		iii
Ackno	owledge	ment	iv
Table	of Cont	tents	v
List of	f Tables		viii
List of	f Figure	S	ix
List of	f Abbre	viations	xi
CHA	PTER 1	: INTRODUCTION	
1.1	Backg	round of Study	1
1.2	Proble	em Statement	2
1.3	Objec	tives of Study	5
1.4	Scope	of Study	6
1.5	Projec	et Summary	6
CHAI	PTER 2	2: LITERATURE REVIEW	
2.1	Conce	pt of Waste in Changeover of Machine	8
	2.1.1	Waste elimination	9
2.2	Introd	uction of Lean Manufacturing (LM)	10
	2.2.1	Seven types of waste in LM	12
	2.2.2	Lean Manufacturing (LM) tools and Principles	14
	2.2.3	Lean Manufacturing (LM) tools used for changeover time redu	ction
			18
2.3	Chang	eover of Machine	21
	2.3.1	Rapid changeover/Single Minute Exchange of Die (SMED)	22

	2.3.2 The changeover time reduction via Single Minute Exchange of I	
	(SMED) methodology	23
2.4	Implementation of Single Minute Exchange of Die (SMED)	25
2.5	Advantages of Single Minute Exchange of Die (SMED)	29

CHAPTER 3: METHODOLOGY

3.1	Relatio	elationship between Objectives and Methodology 3		
3.2	Steps i	n a Changeover Study	31	
3.3	Study	the Existing Changeover Process	33	
	3.3.1	Direct observations of the current changeover process	33	
	3.3.2	Videotaping the entire setup operation	33	
	3.3.3	Interview or asking the setup person	34	
	3.3.4	Studying the time and motions involved in each step of the setup	36	
3.4	Propos	se the New Standard Procedures	36	
	3.4.1	Identifying between internal and external activities or setup	36	
	3.4.2	Brainstorming and idea development	37	
	3.4.3	Why why's analysis	39	
	3.4.4	Simplifying each activity or setup	40	
	3.4.5	Standardizing the function of cutter	40	
3.5	Data C	Collection and Analysis	42	
	3.5.1	Qualitative data	43	
	3.5.2	Secondary sources	43	
		3.5.2.1 Journals / Articles	43	
		3.5.2.2 Research on books	45	
		3.5.2.3 Internet sources	45	
3.6	Writin	g a Report	46	

CHAPTER 4: RESULT AND DISCUSSION

4.1	Backg	round of Study	47
	4.1.1	Machine	49
	4.1.2	Products	50
	4.1.3	Process flow	53
	4.1.4	Material	54
4.2	The E	xisting Changeover Process	55

C Universiti Teknikal Malaysia Melaka

	4.2.1	List of snap fastener current changeover process	
	4.2.2	Identification of problem in changeover process	62
	4.2.3	Potential failure and root causes analysis	65
		4.2.3.1 Brainstorming method	65
		4.2.3.2 Why why's analysis	68
4.3	Projec	t Improvements	69
	4.3.1	Application of single minute exchange of die (SMED)	69
	4.3.2	Additional of manpower / workers	71
	4.3.3	An operation checklist	72
	4.3.4	Transport improvements for raw material	74
	4.3.5	Additional preparation of operating conditions	78
	4.3.6	Implementation of function standardization of cutter type	80
	4.3.7	The usage of Andon	81
4.4	Chang	eover Process and Time after Implementation	82

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	88
5.2	Recommendation	91

92

REFERENCES

APPENDICES

LIST OF TABLE

2.1	Wastes of setup	9
2.2	Seven aspects in process design (JIT system)	11
2.3	Seven types of waste	12
2.4	Types of manufacturing waste	13
2.5	Seven type of wastes outlined to software development	14
2.6	List of lean tools	16
2.7	Tools and techniques used for reducing changeover time	17
2.8	A theoretical structure of SMED	24
2.9	Single Minute Exchange of Die (SMED implementation)	26
3.1	A relationship between objectives and methodology	30
3.2	Overview of the informants' roles	34
3.3	Overview of the informants' roles	39
4.1	Snap fastener machine components and its functions	49
4.2	Time for current changeover process	61
4.3	Why why's analysis	68
4.4	List of changeover activities after conversion	70
4.5	List of changeover activities after additional and correlation	72
4.6	Procedure before improvement	74
4.7	Procedure after improvement	76
4.8	List of changeover activities after standardizing cutter of block	80
4.9	List of activities for the new changeover process	83
4.10	Changeover time before and after improvements	85

LIST OF FIGURES

1.1	Snap fastener machine	2
1.2	A current changeover process for snap fastener machine	3
1.3	A current changeover chart for snap fastener machine	4
1.4	A cutter of snap fastener machine	5
3.1	Data collection phase	31
3.2	Analysis of Data Phase	32
3.3	Data evaluation phase	32
3.4	Using a camera to do a setup analysis	34
3.5	The interview session at production line of snap fastener	35
3.6	Outcomes from the brainstorming session	38
3.7	Output of brainstorming and idea development	39
3.8	Why why's analysis for cutter replacement	40
3.9	T-slot block	41
3.10	Cutter for T-slot block	41
3.11	Dovetail block	41
3.12	Cutter for Dovetail block	41
3.13	The snap fastener tape	42
3.14	Research resources from Library UTeM website	44
3.15	Research on ScienceDirect website	44
3.16	Research on Google Scholar website	44
3.17	Books	45
4.1	Line A	48
4.2	Snap fastener machine	50
4.3	The snap fastener products	51
4.4	The sizes of the snap fastener products	52
4.5	The stamped brass strip	53
4.6	The finished product	53
4.7	The brass strip	54
4.8	A recoiler of the brass strip	54

4.9	A flowchart of current changeover process	56
4.10	Prepare for changeover	57
4.11	Remove brass strip from machine	57
4.12	Loosen the screws on the pin lever of the machine	57
4.13	Unload and move the old mould / die away from the machine	57
4.14	Check whole part of mould / die	58
4.15	Design / make new cutter	58
4.16	Prepare new mould / die	58
4.17	Load new mould / die for next run	58
4.18	Settings and adjustments	59
4.19	Tighten screws on pin lever	59
4.20	Trial runs and adjustments	59
4.21	Setting position of brass strip	59
4.22	Quality check on the brass strip	59
4.23	Prepare for next run	59
4.24	Good to go	60
4.25	A current changeover process chart	62
4.26	Storage for mould / die at Line A	64
4.27	Brainstorming of snap fastener machine problem at Primary Department	65
4.28	T-slot block	66
4.29	Cutter for T-slot block	66
4.30	Dovetail block	66
4.31	Cutter for Dovetail block	66
4.32	A sample of checklist for changeover	73
4.33	Before improvement: Putting away the old roll of the brass strip before	
loading	g the new one	75
4.34	After improvement: Loading the new roll of the brass strip before storing	
the old	one	77
4.35	A temporary holder for brass strip	78
4.36	A side view of a temporary holder	79
4.37	Andon for snap fastener machine	82
4.38	A flowchart for the changeover process	84
4.39	Preparing new mould / die	86
4.40	Correlation between operator and technician	87

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

SMED	-	Single Minute Exchange of Die
TPS	-	Toyota Production System
LM	-	Lean Manufacturing
JIT	-	Just-In-Time
WIP	-	Work-In-Process
VSM	-	Value Stream Mapping
NVA	-	Non Value Added
VA -		Value Added
TPM	-	Total Productive Maintenance
CNC	-	Computer Numerical Control
OEE	-	Overall Equipment Effectiveness
SOP	-	Standard operation procedure

CHAPTER 1 INTRODUCTION

In this introductory chapter, the background of the study and company background will be set out as a important information for better understanding. Problems are identified through interview and observation. This is followed by the objectives to be achieved throughout the study and scope which narrows down the area of the study. The important findings of other researchers are also stated in the problem statement as a rationale behind this survey. Besides that, the motivation of study is focused in reducing the changeover time in the manufacturing in industry. Finally, the impact of the study to the company is also revealed.

1.1 Background of Study

Due to the increasing competitors and high potential market demand, most companies have difficulties to produce and deliver products on time (Katsanos et al., 2009). Changeover time is the amount of time needed for changes to occur from one product to the other, from last to first good piece. The occurrence of changes in the products could cause an increase in the production downtime. So, it is very important for company to evaluate the option and action to cope with that issue by implementing the changeover or setup time reduction. The changeover or setup time reduction would lead to increasing the productivity of the company. According to Azizi (2015), productivity performance also can be improved by reducing the production lead time and also production waste.

Lingayat et al. (2015) stated that nowadays, to achieve the higher demand from the customer, the industries produce the variety of products and they are bound to produce the same in low cost, shorter delivery time and without affect to quality. To respond to these demands, Eriksson (2007) outlined that industries need to increase the productivity and efficiency and this can be achieved through setup time and lead time reduction.

This study is conducted in a needlework and sewing industry in Melaka which is a multinational manufacturing company with worldwide operations. This study also evaluates the changeover process or setup operation and propose an effective solution that can reduce the production downtime and thus reduce the production cost of the industry.

1.2 Problem Statement

This study was conducted in a needlework and sewing manufacturing industry in Melaka, Malaysia. In order to achieve the batch size reduction and the product variation demands, the snap fastener machine in this company as shown in Figure 1.1 have to undergo frequent changeovers and this machine need to shut down during the changeover.

Figure 1.1: Snap fastener machine

² C Universiti Teknikal Malaysia Melaka

This machine is producing different types of snap fastener tape and each type uses different types of cutter. All Pre-Stamping and Stud machines have difficulties on loading the raw material to the machine. The changeover process for the snap fastener machine involves the conversion of different types of size which are large and small sizes. The current changeover for small size to large size takes about 4 - 5 hours and large size to small size takes about 3 - 4 hours and time for each conversions are shown in Figure 1.2.

Figure 1.2: A current changeover process for snap fastener machine

Besides that, the time for each activities are shown in Figure 1.3. The changeover time for this machine is long and more time will be wasted in the changeover procedure because the snap fastener machine usually need to undergo changeover at least 2 - 3 times per week. This problem will reduce the utilization of snap fastener machine and reducing the productivity of this industry. From the Figure 1.3 below, the activity whist is most time-consuming is preparing the new die for next run which is 200 minutes in this changeover process.

Current changeover operation/process did not have proper Standard Operating Procedures (SOPs) and any record of changeover time for changeover process of snap fastener machine. Changing heavy dies on a snap fastener machine, designing the cutter from plate, setting on the snap fastener machine and mold and die repair were not adopted in current operation/process.

Machines such as large pressses machine frequently require processes at both the front of the machine and rear of the machine. In this case, for snap fastener machine require three operations which are the front of the machine, the die or mold set and the back of the machine. Furthermore, only one operator will involve for this setup operations. One worker that do the changeover process of the snap fastener machine means wasted time and movement. It is because the same worker is continuously doing the changeover process by walking back and forth from one end of the snap fastener machine to the other.

Figure 1.3: A current changeover chart for snap fastener machine

For the current changeover of the snap fastener machine, all the activities are performed internally, which means that can only be done when the machine is shut down. Last but not least, the snap fastener machine need to undergo frequent changeovers because of its cutter is always worn off and need to be replaced (Figure 1.4).

Figure 1.4: A cutter of snap fastener machine

In order to fulfill demand from customers and to reduce the setup time, the main approach that has been used for this study is Single Minute Exchange of Die (SMED). According to Shingo, S. (1985), Single Minute Exchange of Die (SMED) is a scientific technique for changeover time reduction that can be implemented in any company and to any machine. The changeover processes and machine setup can be reduced to less than ten minutes. Besides, by making setup times quicker and simpler, SMED help companies meet the customer demands with less waste by making it cost – effective to produce products in smaller batches, or lots. Moxham and Greatbanks (2001) stated that the usage in SMED allowing industries to understand where they currently stand in setting up a process.

1.3 Objectives of Study

The objectives of this study are as follows:

- a) To study the existing changeover process of snap fastener machine.
- b) To propose the new standard procedures by simplifying the steps in the existing changeover process.
- c) To implement the new standard procedures in the changeover process for snap fastener machine.

1.4 Scopes of Study

This study aims to reduce changeover time on the snap fastener machine by implementing Single Minute Exchange of Dies (SMED). This study focuses at Line A. It involves only one Snap Fastener machine. This machine produces different types of snap fastener tape to suit all possible demand of customers in the snap fastening application. Due to the time constraint that could not be avoided, and thus to the large amount of different changeover operations, it is important to focus on one machine only. SMED is expected reduce complex, time-consuming, and non value added activities in this company, which should support the competitiveness of the company and make the work easier. The quality and the performance improvement is not considered in the scope of this study.

1.5 **Project Summary**

To get the better understanding, this report has been written according to the arrangement of the chapter which have been decided by the researcher. This report is classified into five main chapters, which is each of the chapters contain the different explanation.

Chapter 1: Introduction

This chapter states about the background of the study, the problem statement, the objectives and the scope of this study which plays as the main to the whole research.

Chapter 2: Literature Review

This chapter covers on the previous research and findings about the topics that related to the study through the research of all published work types.

Chapter 3: Methodology

It explains the method that have been chosen and used by the researcher to complete this study. It contains of fundamental approach and techniques that to be taken to achieve the objectives of the study.

Chapter 4: Result and Discussion

This chapter shows the results and the discussion of the study. Data was obtained from the method that have been used for this study followed by the discussions related to the results.

Chapter 5: Conclusion and Recommendation

This chapter describes the summary on this project findings and research. It concludes the improvements and recommendations of this study based on the results and discussions obtained from all previous chapters

CHAPTER 2 LITERATURE REVIEW

This chapter covers the research topic and the previous studies from articles and internet sources by other researchers. This study is about Single Minute Exchange of Die (SMED) implementation in order to cut the changeover time. The purposes of this chapter is to understand about the changeover operations from the earlier researchers that can be used as the reference. Besides, the basic methods in the changeover procedure, the changeover procedure for analyzing the current setup operation and the three stages of SMED are also comprised. Lastly, the concepts, methods and tools for implementing the each stage of SMED are described.

2.1 Concept of Waste in Changeover of Machine

Andreia and Alexandra (2010) stated that changing of products processes, replacement or modifying of the tools, are called as setup or changeover processes. From that, the waste has been considered in the productive system during the performance of changeover processes, since there is production cost and time used are added to the finished goods without direct creation of value. Ohno (1998) described the waste concept as non value added activity and concludes seven wastes which are overproduction, defects, over-processing, inventory, waiting, motion and transportation.

When the setup or changeover operations occur, the setup times will become too high and it becomes necessary for company to produce the larger size lots. Thus, the company will make the stock, which can increase the production costs. So the time spent in setups is considered as a waste and it should be minimized or if possible, eliminated. (Shingo, 1998)

Waste must be minimized or eliminated as much as possible in order to reduce the changeover time. Waste of changeover is usually found in motion such as; searching, selecting, arranging a tool and transporting the tool and dies to the machine. According to Arai and Sekine (1992), wastes of setup that always discovered are:

No.	Wastes of Setup
1.	Waste in searching for, finding, lining up, and transporting the seven changeover tools
2.	Standby waste related to materials, especially missing items
3.	Searching waste related to bolts, nuts, and washers for attaching dies
4.	Searching for carts and waiting for an available crane
5.	Searching for dies
6.	Finding chutes and searching for their bolts
7.	Searching for block gauges, inspection tools, and clean rags
8.	Checking the technical drawing or manufacturing specifications
9.	Checking personal notes on gauges' values
10.	Searching for pallets, product containers, and conveyor

2.1.1 Waste elimination

Bicheno (2000) showed in an empirical study that there are two kinds of wastes in any manufacturing industry which are material waste and time waste. It is important to reduce all the types of wastes in order to increase the profit. In order to get the ambitious benefit, it is crucial to achieve the shorter setup time and possible through the waste of time reduction or non value added activities elimination.

According to Varghese and T. (2015), the steps explanation such as value added and non-value added is the one of the key things in TPS and Lean. All the process tasks must be divided into these two categories to eliminate the waste. It is then possible to start actions for eliminating the non-value adding activities and enhancing the value adding ones.