

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF FLY – MOSQUITO TRAPPING DEVICE

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance) With Honours.

by

NUR SYAFIQAH BINTI ABDUL AZIZ B071410734 921019-11-5446 FACULTY OF ENGINEERING TECHNOLOGY 2017

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN AND DEVELOPMENT OF FLY - MOSQUITO TRAPPING DEVICE			
SESI PENGAJIAN: 2017/18	Semester 1		
Saya NUR SYAFIQAH BIN	NTI ABDUL AZIZ		
	ooran PSM ini disimpan di Perpustakaan Universiti JTeM) dengan syarat-syarat kegunaan seperti berikut:		
 Perpustakaan Universiti untuk tujuan pengajian sa 	k milik Universiti Teknikal Malaysia Melaka dan penulis. Teknikal Malaysia Melaka dibenarkan membuat salinan ahaja dengan izin penulis. n membuat salinan laporan PSM ini sebagai bahan si pengajian tinggi.		
TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:		
Alamat Tetap: No 801 Kampung Cacar Bar 23100 Paka,	Cop Rasmi: ⁻ u		
Terengganu Darul Iman.			
Tarikh:	Tarikh:		
	ı TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi kali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai		

DECLARATION

I hereby, declared this report entitled "Design of Ultimate Shield for Impact Resistant Purpose" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor Degree of Engineering Technology Bachelor of Mechanical Engineering Technology (Maintenance Technology) With Honours. The member of the supervisory is as follow:

Mr Mohamed Saiful Firdaus Bin Hussin (Project Supervisor)

ABSTRAK

Perangkap lalat digunakan untuk memerangkap dan membunuh lalat dengan menggunakan pelbagai kaedah seperti perangkap cahaya, perangkap melekit dan perangkap umpan. Peranti eletrik penghalau nyamuk adalah alat yang menggunakan untuk menghalau nyamuk dengan cekap. Kebanyakan perangkap lalat di premis makanan menggunakan pembunuh lalat elektrik tetapi reka bentuk yang tidak sesuai kerana peranti ini digantung disebabkan ketidakselesaan kepada pelanggan apabila lalat mati akan jatuh di atas meja, lantai, dan makanan. Oleh kerana masalah reka bentuk perangkap lalat di premis makanan projek ini untuk membangunkan prototaip peranti perangkap lalat - nyamuk yang bermaksud untuk kegunaan yang pelbagai iaitu untuk membunuh lalat dan menghalau nyamuk pada satu peranti individu dengan penambahbaikan reka bentuk bagi mengatasi masalah yang ada di premis. Bagi mencapai objektif ini, reka bentuk peranti direka menggunakan perisian "Autodesk" dan konsep reka bentuk peranti perangkap lalat dilakukan dengan menggunakan kaedah PUGH. Dalam usaha untuk nvamuk meneroka keperluan pelanggan kajian telah dilakukan melalui soal selidik dan temubual. Keputusan eksperimen apabila menguji pencemar bendalir yang berbeza untuk lalat yang terdiri daripada bahan kimia, madu dan gula sirup disusun di dalam jadual. Hasil kimia cecair mendapat 20, 25 dan 30 lalat selama 3 ujian uji, sedangkan madu mendapat 5, 4, dan 5 untuk 3 ujian uji. Terakhir untuk sirap gula mendapat 2, 3, dan 2 untuk 3 ujian uji. Keputusan untuk penghalau nyamuk dengan menggunakan penghalau nyamuk yang berbeza iaitu "Shieldtox violet mat", " Jumbo Q", dan Ridsect masing-masing 9 jam, 12 jam dan 8 jam. Hasil kajian menunjukkan bahawa kebanyakan orang bersetuju untuk membangunkan prototaip peranti perangkap lalat - nyamuk kerana ia adalah mudah untuk digunakan, fungsi

pelbagai guna dan sangat berkesan. Projek pembangunan prototaip peranti perangkap lalat - nyamuk berjaya dilakukan dengan jayanya.

C Universiti Teknikal Malaysia Melaka

ABSTRACT

The fly trap is used to trap and kill the flies by using variety of methods such as light trap, sticky trap and baited trap. The electric mosquito repellent device is a device that uses to repel the mosquitoes efficiently. Mostly the fly trap at the food premises use an electric fly killer but the design is not suitable because the device is hung caused discomfort to the customer as a dead fly will fall on the table, floor, and food. Due to the problem of the design of fly trap at the food premises this project to develop a prototype of fly – mosquito trapping device which means for multipurpose which are to kill flies and repel the mosquitoes at one individual device with improvement design to overcome the problem at the premises. To achieve this objective, the design of device is collaborated with Autodesk software and the design concept of fly – mosquito trapping device is done by using PUGH method. In order to explore the requirements of the customer the survey had been done through questionnaire and interview. The experiment result when testing the different fluid attractant for flies which are liquid chemical, honey and sugar syrup were tabulated in a table. The liquid chemical result got 20, 25 and 30 flies for 3 trials of testing, while the honey got 5, 4, and 5 for 3 trials of testing. Lastly for sugar syrup got 2, 3, and 2 for 3 trials of testing. The result for mosquito repellent by using different mat which are Shieldtox violet mat, Jumbo Q mat, and Ridsect mat were 9 hours, 12 hours and 8 hours respectively. The result shows that most of people agreed for the develop a prototype of fly – mosquito trapping device because it is easy to use, multipurpose function and very effective. The project development for the prototype of fly-mosquito trapping device was done successfully.

DEDICATION

To my husband,

My beloved family,

My supervisor,

and to all my friends,

Thanks for all support and ideas

ACKNOWLEDGEMENT

Assalamualaikum w.b.t

First of all, Alhamdulillah and very grateful to Allah S.W.T because I am able to complete the research project at the right time. I would like to take this opportunity to express gratitude to my supervisor, Mr Mohamed Saiful Firdaus Bin Hussin for helping me so much in order to complete this research project. He give me ideas, guidance and persistent encouragement in making this research. Not forgotten to all lecturers with respect to their direction, guidance and assistance.

Then, I would like to thanks to my family member especially my husband and parents who are always support me during my hardship and ease. Then, not forgotten to my beloved siblings also who always encourage me a lot to finish this project successfully.

Last but not least, I would like to take this opportunity to say a very big thank you to all who have helped me from the beginning of the project until it is completed. Besides that, I would like to thank all my friends who help me by contribute an idea during the progress of the project. Thank you for all support and contribution for the success of my project research at Universiti Teknikal Malaysia Melaka.

TABLE OF CONTENT

ABST	RAK		i
ABST	RACT		iii
DEDIO	CATION		iv
ACKN	IOWLEDGEMH	ENT	xi
TABL	E OF CONTEN	Т	vi
LIST (OF TABLES		Х
LIST (OF FIGURES		xi
LIST A	ABBREVIATIC	ONS, SYMBOLS AND NOMENCLATURES	xiii
СНА	APTER 1: INTE	RODUCTION	1
1.1	Background		1
1.2	Problem State	ement	2
1.3	Objectives		4
1.4	Scope		4
СНА	APTER 2: LITH	ERATURE REVIEW	6
2.1	Type of Fly T	Trap	6
	2.1.1	Light Traps	6
	2.1.2	Sticky Traps	7
	2.1.3	Baited Traps	8
2.2	Types of Mos	squito Repellent	8
	2.2.1	Mosquito Coils	9
	2.2.2	Aerosol Mosquito Repellent	10
2.3	Types of Flie	S	10
	2.3.1	Horse Flies	10
	2.3.2	Green Bottle Fly	11
	2.3.3	House Fly or Musca Domestica	11
2.4	Types of Mos	squitoes	12

	2.4.1	Anopheles	12
	2.4.2	Aedes	13
	2.4.3	The Dark Winged Fungus Gnat	13
2.5	Material Sele	ction for Fly Mosquito Trapping Device	14
	2.5.1	Stainless Steel	14
	2.5.2	Aluminum Alloy	15
	2.5.3	High Carbon Steel	15
	2.5.4	Copper	16
	2.5.5	Zinc	17
	2.5.6	Titanium Alloy	18
	2.5.7	Carbon Fibre	19
	2.5.8	Glass Fibre	19
2.6	Engineering l	Design	20
	2.6.1	House of Quality	20
	2.6.2	Product Design Specification	21
	2.6.3	Morphological Chart	22
	2.6.4	Concept Generation	23
	2.6.5	Pugh Method	24
	2.6.6	AutoCad	24
	2.6.7	Solid Works	26
	2.6.8	Autodesk	27
2.7	Experimental	Works	27
	2.7.1	Type of Manufacturing Process	27
	2.7.2	Lathe Turning	28
	2.7.3	Drilling	31
	2.7.4	Milling	33
	2.7.5	Grinding	34
2.8	Type of Weld	ling	35
	2.8.1	GTAW or Tungsten Inert Gas	35
	2.8.2	GMAW or Gas Metal Arc Welding	35
2.9	Electrical Par	ts	36
	2.9.1	Motor Ac	36

	2.9.2 LED light		37
	2.9.3	Electric Shock Killing Nets	37
	2.9.4	Electric Mosquitoes Repellent Device	38
2.10	Types of Fluid	l Attractant	38
	2.10.1	Fly Trap Liquid Chemical	38
	2.10.2	Honey	39
	2.10.3	Sugar Syrup	39

40

CHAPTER 3: METHODOLOGY

3.1	Introduction				
3.2	Flowchart 4				
3.3	Data Collectio	on	41		
3.4	Research Ana	lysis	42		
	3.4.1	House of Quality	42		
3.5	Morphologica	l Chart	44		
3.6	Conceptual D	esign	44		
3.7	Pugh Method		45		
3.8	Selection of T	ypes of Fluid Attractant	46		
	3.8.1	Fly Trap Liquid Chemical	46		
	3.8.2	Honey	46		
	3.8.3	Sugar Syrup	46		
3.9	Material Selec	ction	46		
3.10	Expected Res	ults	47		
	3.10.1	Expected Result for Flies	48		
	3.10.2	Expected Result for Mosquito	49		
CHA	PTER 4: RESU	JLT & DISCUSSION	51		
4.1	Survey analys	is	51		
4.2	House of Qua	lity	62		
4.3	Morphologica	l Chart	65		
4.4	Conceptual Design 66				

4.5 Pugh Method 70

4.6	Design Operation 71				
4.7	Prototype Des	sign	gn		
	4.7.1	Prototyp	e Design Drawing	72	
	4.7.2	Exploded	d View	73	
	4.7.3	Dimensi	on Part Drawing	75	
		4.7.3.1	Body device dimension	75	
		4.7.3.2	Base dimension	76	
		4.7.3.3	Barrier dimension	77	
		4.7.3.4	Angle iron dimension	78	
		4.7.3.5	Feed slot dimension	79	
		4.7.3.6	Electric net dimension	80	
		4.7.3.7	Cap dimension	81	
		4.7.3.8	Body of bait dimension	82	
		4.7.3.9	Sponge dimension	83	
		4.7.3.10	Perspex	84	
		4.7.3.11	Motor base dimension	85	
		4.7.3.12	Triangle cone dimension	86	
		4.7.3.13	Top Perspex dimension	87	
		4.7.3.14	Mosquito repellent box dimension	88	
4.8	Prototype An	alysis Res	ult	89	
	4.8.1	Fly trap	result	89	
	4.8.2	Mosquite	o repellent result	91	
СНА	PTER 5: CON	CLUSIO	N AND RECOMMENDATION	92	
5.1	Conclusion			92	
5.2	Recommenda	tion		93	
REF	ERENCES			94	
APP	ENDIX			97	

LIST OF TABLES

2.1	Example of Morphological Chart Table	23
3.1	Morphological Chart	44
3.2	Table of Pugh Method	45
3.3	Table of Material Properties	47
3.4	Table of Data for Fly Trap Liquid Chemical (Fluid Attractant 1)	48
3.5	Table of Data for Honey (Fluid Attractant 2)	48
3.6	Table of Data for Sugar Syrup (Fluid Attractant 3)	48
3.7	Table of Data for Average Amount of Flies Killed	49
3.8	Table of Data Types of Mat Mosquito Repellent	50
4.1	Morphological Chart and The Lines of the Design Concept	65
4.2	Conceptual Design for Portable Fly-Mosquito Trapping Device	66
4.3	Pugh Method	70
4.4	Exploded View Labeling	74
4.5	Table of Data for Fly Trap Liquid Chemical (Fluid Attractant 1)	89
4.6	Table of Data for Honey (Fluid Attractant 2)	89
4.7	Table of Data for Sugar Syrup (Fluid Attractant 3)	90
4.8	Table of Data for Average Amount of Flies Killed	90
4.9	Table of Data Types of Mat Mosquito Repellent	91

LIST OF FIGURES

1.1	Fly Trap at The Cafeteria UTeM	3
2.1	Example of Light Trap	6
2.2	Example of Sticky Trap	7
2.3	Example of Baited Trap	8
2.4	Example of Mosquito Coil	9
2.5	Example of Aerosol Mosquito Repellent	10
2.6	Example of Horse Flies	10
2.7	Example of Green Bottle Fly	11
2.8	Example of House Fly or Musca Domestica	12
2.9	Example of Anopheles	12
2.10	Example of Aedes	13
2.11	Example of Dark Winged Fungus Gnat	14
2.12	Example of House of Quality	21
2.13	Axial Depth Cut	30
2.14	Radial Depth Cut	31
2.15	A Cross Section of a Hole being Cut by a Common Twist Drill	32

C Universiti Teknikal Malaysia Melaka

3.1	Flow Chart	40
3.2	House of Quality of Fly – Mosquito Device	42
3.3	Example of Graph Amount of Flies Killed Versus Type of Fluid Attractant	49
3.4	Example of Bar Graph of Lasting Hours Versus Types of Mat Mosquito Repellent	50
4.1	Ages of the Respondents	51
4.2	Genders of the Respondents	51
4.3	Percentage of the Respondents buy Food at Premises	52
4.4	Percentages of Respondents having Food Poisoning	53
4.5	Percentage of the place of Food Poisoning	53
4.6	Effect of Flies to health and meal time	54
4.7	Does the Fly Trap Important for Customer's Comfort	55
4.8	Electrical Fly Trap	55
4.9	Safety and Cleanliness of Electrical Fly Trap	56
4.10	Design of Fly Trap	57
4.11	Place to put the Fly Trap	57
4.12	Fly Trap at the Premises	58
4.13	Multifunction Fly Trap	59
4.14	Combination of Fly Trap and Mosquito Repellent Device	59
4.15	Portable Fly-Mosquito Trapping Device	61
4.16	House of Quality	62

4.17	Prototype Design of Device	72
4.18	Exploded View	73
4.19	Body Device dimension	75
4.20	Base dimension	76
4.21	Barrier dimension	77
4.22	Angle iron dimension	78
4.23	Feed slot dimension	79
4.24	Electric net dimension	80
4.25	Cap dimension	81
4.26	Body of bait dimension	82
4.27	Sponge dimension	83
4.28	Perspex dimension	84
4.29	Motor base dimension	85
4.30	Triangle cone dimension	86
4.31	Top Perspex dimension	87
4.32	Mosquito repellent box dimension	88
4.33	Graph Amount of Flies Killed Versus Types of Fluid Attractant	90
4.34	Bar Graph of Lasting Hours versus Types of Mat Mosquito Repellent	91

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AC	-	Alternating Current
CFRP	-	Carbon Fiber Reinforced Plastics
CAD	-	Computer Aided Design
CAE	-	Computer Aided Engineering
CAM	-	Computer Aided Manufacturing
Cu	-	Copper
CO2	-	Carbon
CRs	-	Customer Requirements
ECs	-	Engineering Charateristics
FTK	-	Faculty of Engineering Technology
GFRP	-	Glass Fiber Reinforced Plastics
GF	-	Glass Fibre
GMAW	-	Gas Metal Arc Welding
GTAW	-	Gas Tungsten Arc Welding
H20	-	Water
HOQ	-	House Of Quality
IPM	-	Integrated Pest Management
LCDs	-	Liquid Crystal Displays
LED	-	Light Emitting Diode
Mn	-	Manganese
M-Chart	-	Morphology Chart
MPa	-	Mega Pascal
°C	-	Degree Celcius
PC	-	Personal Computer
PDS	-	Product Design Specification
PVA	-	Polyvinyl Acetate
PVB	-	Polyvinyl butyral
PE	-	Polyethylene
QFD	-	Quality Function Deployment

SFM	-	Surface Feet Per Minute
TIG	-	Tungsten Inert Gas
UTeM	-	Universiti Teknikal Malaysia Melaka
Zn	-	Zinc

C Universiti Teknikal Malaysia Melaka

CHAPTER 1 INTRODUCTION

1.1 Background

Dengue has turned into an imperative general wellbeing concern everywhere throughout the world since 1950s. The disease is considered a vector-borne illness in terms of the number of human infections occur worldwide. South-East Asia and Western Pacific regions most truly affected by dengue. Tropical regions in Africa are vulnerable to persistent infection. Population at Malaysia with a 28.33 million and a populace density of 86 per square kilometer, dengue is currently a very endemic sickness. The increased number of dengue cases has consistently recorded at the country for each year since from 1980. The dengue disease has been announced as one of the dangerous health treat to the general population in Malaysia (Mia et al., 2013). Electronic mosquito repellents that are created to repel female mosquitoes to produce a loud noise almost inaudible to the human ear. Female Anopheles mosquitoes transmit malaria by sucking blood from people, and this device is planned to drive them out by evacuating high recurrence buzz practically quiet to the human ear. It can be utilized inside and outside and is asserted to repulse mosquitoes in the range up to 2.5 meters.

The counteractive action of food spoilage and sustenance harming pathogens is normally accomplished by utilization of compound additives which have negative effects including human wellbeing risks of the chemical applications, synthetic residues in sustenance and feed chains and acquisition of microbial resistance to the utilized chemicals (Mostafa et al., 2017).Because of such concerns, the necessity to find a potentially effective and a better way to prevent the food poison due to flies is a must. Mechanical control is another method that able to prevent the food poison due to flies. The oldest counter measure for control house flies falls under this

🔘 Universiti Teknikal Malaysia Melaka

section – fly swatting. The modern mechanical control method have a different kinds of fly traps. Various types include traps baited fly traps, light traps and sticky traps. House flies need a best controlled with the use of integrated pest management (IPM) because the flies able to overcome the insecticide resistance and develop reproductive potential. IPM tactics commonly used include hygiene, pesticides, biological control agents, and fly trap. Electric insect killer is a tool or equipment to kill flying insects such as flies and mosquitoes. Electric fly-swatters is a safe device which eliminates insects and is used widely in many countries. House flies and mosquitoes have high touchy hairs which can detect the small changes in air pressure. This is the reason fly swatters, in general, have a open- design which makes the flies and mosquitoes do not identify the swatter until it is past the point where it is possible to get away from the webbing.

1.2 Problem statement

The problem that faced in this project is the design of a fly trap that exist which is hung caused discomfort to the customer as a dead fly will fall on the table, floor, and food. When this issue occurs, the food will be unclean and polluted. Food poisoning is considered as one of the most common causes of diseases and death in developing countries. Most of the food poisoning reports are related to the bacterial contamination especially members of negative bacteria such as Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa (White, 2011). Other positive bacteria including Staphylococcus aureus and Bacillus cereus have been also identified as the agents of foodborne diseases or food spoilage (Mostafa et al., 2017). Prevention of food spoilage and their etiological agent is traditionally achieved by the use of chemical preservatives (Mishra et al., 2017).

Figure 1.1: Example of Problematic Fly Trap

The housefly, Musca domestica, is an aggravation bothers as well as goes about as a vital mechanical vector for heaps of pathogenic microorganism specialists, including microscopic organisms, protozoa, worms, growths and infections among people and creatures. The number of inhabitants in houseflies transmits the infection operators by methods for various parts of their bodies (hairs body, members, and mouthparts) and discharges (feces). House-flies enter a few spots including polluted premises as the place where the flies can get some food and it is also its biologic habits for feeding. The propensities for house fly support the spread of microbes and other sickness bringing about life forms. Therefore, housefly, for example, can spread sicknesses, for example, food poisoning and many more (Vazirianzadeh et al., 2008). Mosquito bites are round and severely itchy. With regards to getting a charge out of the outside exercises, mosquito bites appear to be something that cannot be evaded. While honey bees and wasps infuse venom when sting, mosquitoes just bite to feed upon your blood. Bumps and itching that comes from mosquito inject to prevent blood from clotting, which can cause mild allergic reactions which is red bumps. The dengue occurrence is pervasive all through the nation with the highest rate among the most developed and thickly populated regions and states. All age group is influenced with the most defenseless among the school going kids and young adults. Every

single ethnic group is in danger of being infected. Changes in atmosphere factor, for example, temperature rising, expanded precipitation, and relative dampness is the most compelling main impetus of dengue transmission in Malaysia. Amid Malaysia fast industrialization and financial development in the previous a few decades, enormous infrastructure improvement resulted in the spread of the disease (Mia et al. 2013). Up to now, there are a lot of device trap for fly and mosquitoes that are widely used in other countries but a combination of these two device has yet to be designed and manufactured. In fact, it is verifiable that the use of the combination of these two device will solve two problems at one time.

1.3 Objective

Based on the problem statement discussed above, the objectives of this project are listed below:

- To conduct a survey on portable fly mosquito trapping device in obtaining customers' needs.
- To design the concept of fly mosquito trapping device by using PUGH method.
- 3. To develop a prototype of fly mosquito trapping device.

1.4 Scope

The research project will be a focus on to conduct a survey on portable fly – mosquito trapping device for the food premises owner in 5 different districts in Malaysia. Each district should interview 10 different food premises for designing purpose. The survey is done by distributing a questionnaire to the 50 persons of food premises owner which is consists of 20 questions. The fly – mosquito trapping device design will be selected by analyzing the best-selected design concept by using Pugh method. Selection of Pugh method is a quantitative method. It is used to

evaluate a set of multi – dimensional alternative options. It is much of the time utilized as a part of building for settling on design decisions, however, can likewise be used to rank venture alternatives, vendor options, product choices or any other arrangement of multidimensional substances. In order to achieve the third objective of this project, a desirable prototype unit of fly – mosquito trapping device will be developed for 2 main functions which are to expel the mosquitoes and kill the flies.

