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ABSTRACT 

 

 

 The autonomous mobile robot uses partially observable Markov decision processes 

(POMDP) model for the shortest and the best path planning to reach a destination in a 

partially structured environment. POMDP model is applied to improve computational 

efficiency of path planning problem. Sensing and information processing is important in 

autonomous mobile robots. Path planning in the real world is difficult because of partial 

observability and dynamic changes in the environment. Computational complexity 

increases when more variables are involved. The Perseus algorithm is investigated and the 

outcomes such as value function, reward and number of vectors are evaluated on different 

POMDP problems. Perseus algorithm improves belief point collection and selection to 

compute for better value functions. The algorithm randomly explores the belief space of an 

environment and collect a set of reachable belief points which will be fixed throughout the 

algorithm. Then, new value functions are computed to update the belief points. The 

algorithm repeats until a convergence criterion is met. Varying number of states and 

actions have significant effects on value function and number of vectors. While reward 

depends on the value of reward state and cost state. 
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ABSTRAK 

 

 

Robot mudah alih autonomi menggunakan pemerhatian sebahagian proses 

keputusan Markov (POMDP) dalam perancangan jalan yang singkat dan terbaik untuk 

sampai ke destinasi yang dalam persekitaran berstruktur sebahagian. Pemprosesan sensing 

dan maklumat adalah penting dalam robot mudah alih autonomi. Perancangan laluan dalam 

dunia sebenar adalah sukar kerana keteramatan separa dan perubahan dinamik dalam 

persekitaran. Kerumitan pengiraan meningkat apabila lebih pembolehubah yang terlibat. 

Algoritma Perseus disiasat dan hasil seperti fungsi nilai, ganjaran dan bilangan vektor 

dinilai pada masalah POMDP berbeza. Algoritma Perseus meningkatkan koleksi titik 

kepercayaan dan pilihan untuk membuat pengiraan untuk fungsi nilai yang lebih baik. 

Algoritma secara rawak meneroka ruang kepercayaan alam sekitar dan mengumpul satu set 

mata kepercayaan dicapai yang akan tetap sepanjang algoritma. Kemudian, fungsi nilai 

baru dikira untuk mengemaskini mata kepercayaan. Algoritma mengulangi sehingga 

kriteria penumpuan dipenuhi. nombor yang berbeza-beza negara dan tindakan mempunyai 

kesan yang besar ke atas fungsi nilai dan bilangan vektor. Walaupun ganjaran bergantung 

kepada nilai ganjaran negeri dan negeri kos.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Uncertain environment in robotics research is a challenge to the operation of 

autonomous robotic systems [1]. Autonomous navigation in partially observable domains 

is an extensive research area in mobile robotics. For this reason, researchers have 

developed methods for mobile robots to overcome dynamic changes in the environment 

since the last few decades. 

Partially observable Markov decision processes (POMDP) provide a powerful 

framework for mobile robot planning under uncertain environment. POMDPs generalize 

Markov decision process (MDP) model and offer a natural and principled framework for 

sequential programming to allow more variables to be incorporated in the process [7]. The 

POMDP model contains several qualities such as abstraction, adaptability and robustness 

[7]. The POMDP model is used for robot navigation [2], exploration tasks [8], machine 

learning [9] and other purposes. Consider a mobile robot is moving in a real world, which 

the robot perceives it as a grid world in discrete time, each grid represents a state in which 

the robot acts. A transition probability function tells the robot what to do by observing the 

environment through its sensors. The robot receives a reward or cost after performing the 

action. Thus, the POMDP component will have system state, action, transition probability 

function, reward function, observations, observation function, belief state and discount 

factor if it is a finite criterion. The robot has to generate a belief-state space over the 
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underlying state space by using an algorithm to compute the robot’s current location. The 

robot must be equipped with sensors to detect obstacles such as walls and landmarks in 

order to update the belief state.  

In the principle of mathematics, the complexity of algorithms increases when the 

number of variables increases. The number of variables especially state space and 

observation space grow exponentially over time, making computation for exact solution 

impossible. Over the years, many researches have done to increase the scalability of the 

algorithms that is able to solve larger problems such as decentralized-POMDP [5], 

hierarchical-POMDP [3], and dynamic Bayesian networks [10]. Although there are many 

advance navigation algorithms are introduced, but they are still not ready for dynamic 

changes of the real world. 

 

1.2 Motivation 

 

The primary challenge in implementing POMDPs for navigation is that the robot 

has to first model the physical environment to state spaces. Due to partial observability of 

the state, the robot does not know the exact location it is in, so it cannot execute the action 

recommended for that state [28]. This increases the computational costs of any associated 

algorithm resulting in high computational complexity [2]. In reality, the state is not always 

giving the exact information, and the sensor of the robot is not always giving the accurate 

value. 

A significant of research have done on the application of POMDP in mobile robots 

over the past few decades. The algorithm’s scalability can be improved by decreasing the 

order of observation functions from exponential to polynomial [5]. Hierarchical 

decomposition of POMDP enables mobile robot to breakdown large and complex maps to 

formulate a sequence of sensing and processing suitable for its main objective [3]. The 

robot needs to plan sequentially one after another to find coordinated trajectories with an 

adapted version of classical prioritized planning [6]. However, the algorithm becomes 

impossible to compute when the size of the observation set increases. The motivation of 

this research is to solve the problem by using an extension to point-based value iteration 
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algorithm, known as Perseus algorithm. The algorithm samples a finite set of reachable 

belief points and then update the belief points. 

 

1.3 Problem Statement 

 

Development of autonomous mobile robot is heavily based on sensing and 

information processing to a specific task. Path planning in the real-world domain is 

particularly difficult because partial observability and dynamic changes occur continuously. 

The existing mobile robot system is built for static environment only, which is prone to 

sensing error during navigation when it is equipped with sensors [3]. Every action executed 

by the mobile robot may affect the total reward it will receive. However, the mobile robot 

may take a considerable amount of time to evaluate the long-term reward from its action. 

Moreover, human proficiency and time to provide detail and accurate feedback is crucial in 

designing a mobile robot to navigate in complex domains [3]. 

It is necessary for a mobile robot to respond quickly to dynamic changes on the 

environment so that it would not need human intervention during operation. The sensor of 

a robot is important to provide information on changes of the environment. However, 

sensor is not reliable because it does not provide accurate information of the real world 

consistently. The sensor may not work properly due to its physical constraints or when it 

breaks down. Application of the project is an exploration task specifically for logistics. A 

mobile robot is deployed with a predefined of an environment. The task of the mobile 

robot is to transfer an object from a source to a destination. Essentially, it has to plan the 

best route to transfer the object. The main objective of the mobile robot is to maximize the 

reward when undergoing each path planning algorithm [4]. 
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1.4 Objectives 

 

 The objectives of the project are: 

1. To investigate path planning for mobile robots by using Perseus algorithm. 

2. To evaluate the performance of the algorithm in terms of value function, reward 

and number of vectors in partially observable environments. 

 

1.5 Scopes 

 

 The scopes of the project are: 

1. Partially observable Markov decision processes is applied to model the path 

planning problem in a partially observable environment. 

2. A predefined map of an enclosed area in an indoor environment is stored in a 

mobile robot for path planning task. 

3. The map is a 2D bounded environment. 

4. A single robot will be navigating in the enclosed area. 

5. Evaluated factor is the average reward collected by the robot when undergoing each 

path planning algorithm. 

 

1.6 Thesis Organization 

 

 The thesis is organized as follows. The next chapter presents the literature review 

on POMDPs and other well-known methods for solving POMDP problems. Chapter 3 

describes the methodology and application of the algorithm in a mobile robot travelling in 

a partially observable area. Chapter 4 compares and discusses the result using Perseus 

algorithm between several well-known POMDP problems. Chapter 5 concludes the overall 

work and proposes recommendation for future research based on the outcomes of the 

research.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Path planning 

 

Path planning of autonomous mobile robot is a challenge in the real world. In this 

project, the robot already has a grid-based world of the predefined map of an enclosed area. 

The grid world defines each state of the world that allows the robot to plan a path over it. 

Every action on a state is offered with a specific amount of cost or reward. 

When there are changes in the domain map due to changes in object arrangements, 

the robot automatically updates the map and recalculates the path to a destination [12]. The 

path planning algorithm such as modified pulse-coupled neural network (MPCNN) [13] 

uses a simple neural network by first collecting the robot’s location, destination and 

obstacles that plan the shortest collision-free path so that the robot moves to the grid cell 

containing the highest reward [12]. Energy consumed by the robot can be reduced when 

planning an optimal path [13]. However, MPCNN do not include a learning function that 

lets the robot to learn. 

In recent years, new path planning methods have been introduced such as improved 

Q-learning (IQL) and heuristic searching techniques for mobile robots [14]. The methods 

limit the belief space and variation range of the mobile robot. There are two path planning 

methods that are used in a static environment. Global path planning is finding a path before 

execution in a static environment. This planning method is computationally intractable in 

more complex environment. Local path planning is used in partially observable 
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environment. The IQL algorithm is combined with several exploration strategies to reduce 

computational time [14]. However, IQL method is still having difficulty in path planning 

in a dynamic environment with a large number of state spaces. 

 

2.2 Partially observable Markov decision processes (POMDPs) 

 

When a mobile robot is moving in a partially observable environment, the mobile 

robot is often difficult to make the best decision to achieve task objective. Hence, this kind 

of problem has to be modeled as POMDPs. This method is gaining popularity in the 

modern autonomous mobile robot application though it is computationally complex. 

POMDPs planning is capable of predicting the future by studying the history for a finite 

time bound. However, applying the general POMDP model to perform simple tasks such 

as navigation only is PSPACE-hard [6], which means it is very complex and not efficient 

to compute [28]. Hence, many research focus on improving the navigation algorithm [1], 

[2] or reducing the number of variables for computation [19, 20]. 

An exploring autonomous mobile robot has to update state of the environment 

every time the state changes. Dynamic Bayesian Network (DBN) is used to monitor the 

environment changes and update the belief state at each node in the network [23]. However, 

new nodes are generated when updating the DBN and may reach high computational 

complexity after a short time for large problems. 

Task planning and motion planning level are a sequence of operations that take the 

robot to reach the task objectives. Motion planning level are executed only after the task 

planning level has computed, and this may lead to undesired motion planning solutions 

when the proposed task plans are too difficult to be computed by the motion planning level. 

This problem is modeled as the simultaneous task and motion planning (STAMP) problem. 

The STAMP problem is integrated with task motion multigraph (TMM) algorithm to 

increase the efficiency in solving STAMP problem. TMM-based algorithm is able to solve 

problems that demonstrates Markov Decision Processes (MDPs) [24]. However, due to the 

nature of MDP problems, the integration with TMM often unable to accurately solve the 

problem and it takes longer time to compute, though this paper focuses on solving POMDP 

problems, which is an extension of MDPs. 
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2.3 Point-based value iteration (PBVI) algorithm 

 

The problem is that the complexity of the process becomes more difficult because 

the number of state space increases exponentially as time goes by. The introduction of the 

PBVI algorithm has been able to approximately solve large POMDPs rapidly. This section 

discusses about the PBVI algorithm. 

The PBVI algorithm samples a representative set of points from the belief space 

and use it to represent the space approximately. Recent algorithms are more efficient by 

sampling a set of reachable under arbitrary sequences of actions. Approximate POMDPs 

solutions can be obtained efficiently by using PBVI algorithm [19]. Ideally, the algorithm 

selects belief points that are spread evenly across the reachable belief space to cover as 

much reachable space as possible within a given horizon. 

Successive Approximations of the Reachable Space under Optimal Policies 

(SARSOP) is another algorithm that computes the optimal policy on a range of optimally 

reachable belief space. SARSOP is proven to improve computational efficiency when 

performing simple robotic tasks including navigation [19]. Finding a range of reachable 

belief space is the key for this algorithm to solve for an optimal policy. However, finding 

the range that is close to the optimal value function is difficult even the size of the belief 

space is polynomial. 

Several works have conducted on separated POMDP model into a hierarchy of 

processes to achieve much simpler computations. Hierarchical POMDP (H-POMDP) is 

capable for collaboration of human and mobile robot to achieve task objectives together. 

Multi robot collaboration is also achievable using the H-POMDP formulation by adding 

another layer for communication between robots. H-POMDP consists of three levels which 

is high-level for visual sensing, intermediate-level for information selection and low-level 

for information processing [3]. However, a significant amount of data and modelling 

algorithms have to be coded manually. 
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2.4 Perseus algorithm 

 

One of the extension to the PBVI algorithm is the Perseus algorithm [32]. The 

Perseus algorithm performs random exploration in the belief space, then samples an action 

and observation to update the belief state by running several trials. The trials continue to 

get a large number of points over the belief space. For each successive iteration, Perseus 

improves the approximation of value function by performing a one-step backup of each 

belief. During each iteration, Perseus improves standard PBVI by omitting the improved 

beliefs by another backup. 

 

2.5 Summary of Path Planning technique 

 

In this chapter, autonomous mobile robot is more preferred for the industry because 

of the automaticity and absence of human operator. The POMDP model provides a 

powerful framework for modelling uncertainty and also predicting for close future. The 

PBVI algorithm can effectively compute belief points over a belief space to achieve near 

optimal outcome. This thesis discusses POMDP model based on Perseus algorithm to 

achieve the objective effectively in terms of execution time and success probability. The 

method is applied in path planning and navigation of autonomous mobile robot in an 

enclosed area such as a warehouse. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

The aim of the POMDP model is to solve autonomous mobile robot navigation 

uncertainty in a partially-structured environment. The mobile robot has to plan the best 

route from the start to a specified destination. Besides planning the shortest distance to a 

destination, the logical path is also considered. The robot has to continue to the next 

destination without returning to the starting point, until it has achieved the objectives. For 

autonomous mobile robot, the robot is always waiting at the starting point for new 

instructions. 

When the state of the mobile robot is too large, solving for a policy requires 

tremendous time and computational power. Perseus is an extension to PBVI algorithm that 

is able to solve large state spaces without compromising time and computational power. 

This chapter discusses POMDP model, PBVI algorithm and Perseus to be applied in a 

mobile robot. 

 

3.1 The POMDP model 

 

In the real world where mobile robot navigation is concerned, decision-making is 

the fundamental problem for the robot. The mobile robot has to determine the best action 

during the decision-making processes to achieve an optimal reward or accomplish the main 

objectives. When the environment around the robot changes dynamically, observations 
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need to be included into decision-making process. The problem is, the mobile robot has to 

consider the rewards after a sequence of action, which gives rise to sequential planning in a 

stochastic environment. POMDP serves as a powerful framework developed to account for 

the problem. A mobile robot will be represented as an agent from here onwards. 

The objective of POMDP planning is to discover a policy π to select an action for 

the agent. The policy defines how the agent should act in order to maximize the rewards. 

There are several types of policies, history-dependent or Markov, stochastic or 

deterministic [27]. In POMDP formulation, the observation often depends only on the 

current state of the process, regardless of the history. Also, including histories into the 

process can be an exhaustive task, so the belief state is used in the space of probability 

distributions over states. POMDP models with belief states can be generalized into a 

belief-space MDP models. This formalism is widely used in the POMDP to model the 

agent’s navigation. We focus on applying discrete and finite state space and action space. 

Continuous state space is also used in POMDP to scale up the algorithm to simulate a near 

actual environment [18]. 

POMDPs provide a framework for sequential planning to allow more forms of 

uncertainty into the process. The system states of the POMDP model is represented by 

belief states that are used for decision-making [16]. A POMDP [1-3, 15-17] is formally 

denoted as a tuple <S, A, T, Z, O, R, b, γ>. Variables in capital letter is the complete set 

variable in an environment, small letter denotes a certain set of variable used for 

calculation. The variables are defined in Table 3.1. 

When an agent does not know the exact state, the agent can only act depending on 

observations it can perceive. However, the sensor of the agent may not give accurate 

observations of the state. The agent has to assign a probability distribution over the state 

known as the belief state b. The probability of the belief state assigned to an actual state is 

written as b(s). The agent must update the current belief state to a new belief state for the 

actions taken and observations made so far. A technique called recursive function is used 

to calculate the new belief state 𝑏′ from the previous belief state and new observation. The 

new belief state is given by 

𝑏′(𝑠′) = 𝛼𝑃(𝑜|𝑠′) ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)

𝑠

, (3.1) 
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Table 3.1: Variables of a general POMDP model. 

Variable Name Description 

S State space A discrete and finite set of all system states, which 

are observable and unobservable, that represents the 

environment where the robot acts. 

A Action space A discrete and finite set of actions at each time 

instant. 

T State transition A probability function that passes the current state to 

the next state. The value is within an interval [0,1]. 

It is defined as 𝑇: 𝑆×𝐴×𝑆′ → [0,1].  Also, 

∑ 𝑇(𝑠, 𝑎, 𝑠′)𝑠∈𝑆′ = 1, ∀(𝑠, 𝑎). The notation 𝑆′ is the 

subsequent state 𝑆 . Notation 𝑇(𝑠, 𝑎, 𝑠′) is the state 

transition in current state 𝑠  given action 𝑎  moving 

into next state 𝑠′. 

Z Observation space A finite set of observations. The observations 

include noisy inputs of the true state of the 

environment through the robot sensors. 

O Observation function A function that represents the conditional probability 

given the action and the subsequent state. The 

function depends on the triplet (𝑧, 𝑎, 𝑠′). 

R Reward function Immediate reward function that assigns a real value 

executing action A in state S. Negative reward 

represents a cost. The function directs an agent 

towards the goal location. Also defined as R: S × A. 

b Belief state The agent’s knowledge or belief of the state of the 

environment. It is a probability distribution over all 

possible states S. 

γ Discount factor A real value within the interval [0,1). An infinite 

sequence becomes finite ensures the algorithm 

converges to a final value. 
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where 𝛼 is a normalizing constant that makes belief state sum to 1. The subsequent belief 

state takes the summation for 𝑠 = 0, 1, … , 𝑆 in an environment the agent is exploring. The 

agent does action according to its current belief state, not the actual state. This means that 

the optimal policy 𝜋∗(𝑏)  maps belief states to actions. In fact, the action changes 

subsequent belief state when the agent observed the outcome of its action. Hence, action 

can be considered as one of the performance of the agent. 

Given the current belief state 𝑏 and action 𝑎, we can calculate the probability the 

agent would reach in the subsequent belief state 𝑏′ . We do not know the subsequent 

observation yet, so the agent might reach in one of several possible belief states 𝑏′. The 

probability of observation 𝑜 given that action 𝑎 was performed in belief 𝑏 is given by 

𝑃(𝑜|𝑎, 𝑏) = ∑ 𝑃(𝑜|𝑎, 𝑠′, 𝑏)𝑃(𝑠′|𝑎, 𝑏)

𝑠′

= ∑ 𝑃(𝑜|𝑠′)

𝑠′

∑ 𝑃(𝑠′|𝑠, 𝑎)

𝑠′

𝑏(𝑠). 

To find the transition probability of mapping 𝑏 to 𝑏′ given action 𝑎 as 𝑇(𝑏′|𝑏, 𝑎), we get 

𝑇(𝑏′|𝑏, 𝑎) = 𝑇(𝑏′|𝑎, 𝑏) = ∑ 𝑇(𝑏′|𝑜, 𝑎, 𝑏)𝑇(𝑜|𝑎, 𝑏)

𝑠′

= ∑ 𝑇(𝑏′|𝑜, 𝑎, 𝑏)

𝑜

∑ 𝑇(𝑜|𝑠′)

𝑠′

∑ 𝑇(𝑠′|𝑠, 𝑎)𝑏(𝑠)

𝑜

. 

Equation (3.4) can be used as the transition model for the belief state. The reward 

function for belief states is 

𝜌(𝑏) = ∑ 𝑏(𝑠)𝑅(𝑠).

𝑠

 

The probability 𝑇(𝑏′|𝑏, 𝑎) from Equation (3.3) and (3.4) and reward function 𝜌(𝑏) 

from Equation (3.5) can represent an observable MDP on the space of belief states. The 

optimal policy for this MDP, 𝜋∗(𝑏), is also the optimal policy for the original POMDP. 

Hence, POMDP in the physical state space can be generalized into an observable MDP on 

the corresponding belief-state space. This is because we assume the belief states are fully 

observable to the agent. Figure 3.1 illustrates the process of a general POMDP algorithm. 

The algorithm will stop after it reaches a terminating condition, usually a convergence 

(3.2) 

(3.5) 

(3.4) 

(3.3) 
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criterion or within a limited time. Though, in mobile robot, it is usually programmed to do 

other task after reaching the goal state, such as placing down objects. 

 

3.2 Value function 

 

Value function is one of the characteristic of Markov decision processes. Finding 

an optimal policy can be immediately transformed into an optimization problem in terms 

of value functions. This results in a less complex optimality equations resolution than 

exploring the whole set of policies. We can use the Bellman equation for the belief-space 

MDP to generate the value function, V: 

𝑉 = max
𝑎∈𝐴

 𝑅(𝑏, 𝑎) + 𝛾 ∑ 𝜏(𝑏, 𝑎, 𝑏′)𝑉(𝑏′)

𝑏′∈𝐵

 

= max
𝑎∈𝐴

 𝑅(𝑏, 𝑎) + 𝛾 ∑ 𝑇(𝑜|𝑏, 𝑎)𝑉(𝑏𝑎,𝑜).

𝑜∈𝑂

 

In both the finite and infinite horizon case, the value function V can be modeled 

almost closely as the upper envelope of a finite set of linear functions, known as α-vectors. 

Now, the value function can be written as 𝑉 = {𝛼1, . . . , 𝛼𝑛} to define over the full belief of 

the process. The value at a given belief can be computed as: 

𝑉(𝑏) = max 
𝛼∈𝑉

𝑏 ⋅ 𝛼,  

where 𝑏 ⋅ 𝛼 = ∑ 𝑏(𝑠)𝑠∈𝑆 ⋅ 𝛼(𝑠) is the standard inner product operation in vector space. 

The Bellman equation from Equation (3.6) serves as an important aspect in value 

iteration algorithm to solve POMDPs. If there are n states, then there are n Bellman 

equations corresponding to each state. However, the Bellman equation is not linear, 

because the “max” operator is not a linear operator. 
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