

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF PINEAPPLE LEAF CUTTER (PLC) DEVICE IN PINEAPPLE INDUSTRY

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours.

by:

MARWAN SHAFIQ BIN MOHD LATFI B071410839 930802-05-5452

FACULTY OF ENGINEERING TECHNOLOGY 2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Design and development of portable leaf cutter device in pineapple industry" is result of my own research except as cited in references

Signature:Author's Name:MARWAN SHAFIQ BIN MOHD LATFIDate:16/12/2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Engineering Technology (Maintenance Technology) with Honour. The member of the supervisory is as follow:

.....

(Project Supervisor)

Mdm. Nurul Amira Binti Zainal

ABSTRAK

Kebiasaannya, pekerja atau penduduk kampung akan menghadapi masalah ketika memotong daun nanas. Ciri-ciri daun nanas yang mempunyai daun yang tajam dan berduri membuatkan ia sukar untuk dipotong. Oleh sebab itu, kemungkinanan untuk tercedera ketika memotong daun nanas ini akan lebih tinggi. Menurut kenyataan ini, tujuan projek ini diadakan adalah untuk membuat satu inovasi dengan merekebentuk satu produk baru yang dinamakan "Pineapple Leaf Cutter" (PLC) bagi menyelesaikan masalah yang dihadapi oleh pengguna yang ingin memotong daun nanas. Oleh dengan itu, produk ini adalah hasil inovasi dari beberapa kajian yang sebelum ini menggunakan pisau atau parang untuk memotong daun nanas dan dari kajian ini mendapati mereka memerlukan banyak tenaga untuk memotong daun nanas. Kaedah "3D solid modelling" yang digunakan untuk merekabentuk "pineapple leaf cutter" (PLC) ini. Projek ini dihasilkan adalah untuk menjimatkan masa dan tenaga bagi pengguna. Selain itu, produk ini direka sebagai pemotong daun nanas mudah alih kerana ciri-cirinya yang kecil berbanding mesin, supaya ia mudah disimpan dan digunakan.Untuk mendapatkan dan menghasilkan struktur produk PLC yang baik, beberapa bahan logam digunakan seperti keluli lembut dan keluli tahan karat. Semasa menghasilkan produk ini, ia melibatkan beberapa proses pemasangan seperti rolling, drilling, grinding dan kimpalan. Kesimpulannya, hasil dari projek ini berjaya untuk membantu pengguna bagi memudahkan kerja mereka untuk memotong daun nanas dengan amaun yang banyak dalam satu masa dan juga produk ini sangat sesuai digunakan dalam industri nanas.

ABSTRACT

Normally, workers or villagers will face a problem when they want to cut the pineapple leaves. The characteristics of pineapple leaves that have sharp and thorny leaves make it difficult to cut. Therefore, the possibility of being injured when cutting this pineapple leaf will be higher. According to this statement, the purpose of this project is to create an innovation by designing a new product is call "Pineapple Leaf Cutter" (PLC) to solve the problems that faced by consumers who want to cut the pineapple leaves. Therefore, this product is the result of innovation from several studies that previously used a knife or machete to cut the pineapple leaves and from this study found that they needed a lot of energy to cut the pineapple leaves. The "3D solid modeling" method used to design this "pineapple leaf cutter" (PLC). This project is designed to save consumer time and energy. Additionally, this product is designed to be a portable pineapple leaf cutter because of its small features compared to the machine, so that it can be easily stored and to be used. In order to obtain and produce a good PLC product structure, some metal materials are used such as soft steel and stainless steel. When producing this product, it involves several installation processes such as rolling, drilling, grinding and welding. In a conclusion, the results of this project have been successful in helping consumers to facilitate their work to cut more pineapple leaves in one time and this product is particularly suitable in pineapple industry.

ACKNOWLEDGEMENT

Alhamdulillah, all thanks should be praise to Allah as He help and ease me so much to complete this project successfully. This research project won't be complete without people surrounding me who give a lot support and help.

Respect, love and thanks to my family members - my father, my mother who gave so much moral support throughout this process. Not forgotten for my siblings who encourage me a lot. Thanks for your understanding and support.

I would like to thanks my supervisor, Madam Nurul Amira Binti Zainal who guide me and help me throughout this whole process of completing this research project. She has helped me so much and gives her best despite having lot of works and responsible to deliver. Without her, I do believe that this project won't complete.

I would also like to thank to all my friends who help me by discussing this project. All gratitude for all people who get involved with this project. I do wish this research would be beneficial for future reference. Thank you.

TABLE OF CONTENT

Declaration			
Appro	val	ii	
Abstra	k	iii	
Absra	et	iv	
Ackno	wledgement	v	
Table	of Content	vi	
List of	List of Tables		
List of	List of Figures		
CHAI	TER 1: INTRODUCTION	1	
1.0	Introduction	1	
1.1	Problem Statement	1	
1.2	Objective	2	

1.4	Result Expectation	2
1.1	Result Expectation	2

CHAPTER 2: LITERATURE REVIEW		3	
2.0	Introd	luction	3
2.1	Natur	al Fiber	3
	2.1.1	Fiber Types	6
		2.1.1.1 Fiber from Monocotyledonous Plant	7

	2.1.1.2 Bast Fiber	8
	2.1.1.3 Seed Hairs	9
	2.1.1.4 Animal Wool Fiber	11
	2.1.1.5 Animal Silk Fiber	12
	2.1.2 Cell Wall Structure	13
2.2	Pineapple Plant	16
	2.2.1 Leaves	18
	2.2.2 Pineapple Fruits	19
2.3	Pineapple Leaf Fiber (PALF)	21
2.4	Characterization of PALF	25
2.5	Extraction Method for PALF	25
2.6	Chemical Constituents	26
2.7	Scrapping Of Pineapple Leaf	26
2.8	Retting Process	28
2.9	Pre and Post Harvesting Metabolism	28
2.10	Commercial Use after Harvesting	29

CHAI	CHAPTER 3: METHODOLOGY		
3.0	Introduction	30	
3.1	Flow Chart	31	
3.2	Product Idea	32	
	3.2.1 First Idea	32	
	3.2.2 Second Idea	33	
3.3	Design Development	34	

	3.3.1	Solid Work	34
	3.3.2	Auto-Cad (CAD)	35
	3.3.3	Catia	38
		3.3.3.1 Mechanical Engineering	38
		3.3.3.2 Design	38
3.4	Mater	ial Selection	39
	3.4.1	Hollow Steel	39
		3.4.1.1 Rectangular Hollow Sections (RHS)	40
		3.4.1.2 Square Hollow Sections (SHS)	41
		3.4.1.3 Circular Hollow Sections (CHS)	42
	3.4.2	Spring	43
	3.4.3	Steel Plate	45
	3.3.3	Bolt and Nut	46
CHA	PTER 4	: RESULT AND DISCUSSION	48
4.0	Introd	uction	48
4.1	Desig	n And Development	48
	4.1.1	Measurement	49
		4.1.1.1 Handle Part of PLC	49
		4.1.1.2 Stem Part of PLC	50
		4.1.1.3 Cutter Part of PLC	51
		4.1.1.4 Housing Part of PLC	51
4.2	Tools	and Equipment Used	52
4.3	Mater	ial Used	54

4.4	Fabric	eation Process	57
	4.4.1	Marking and Measuring Process	57
		4.4.1.1 Handle and Stem	58
		4.4.1.2 The Connector	58
		4.4.1.3 Cutter	59
		4.4.1.4 Housing	60
		4.4.1.5 Hollow Cover	60
		4.4.1.6 Rod	61
	4.4.2	Cutting Process	61
		4.4.2.1 Handle and Stem	62
		4.4.2.2 Connector	62
		4.4.2.3 Cutter	63
		4.4.2.4 Housing	65
		4.4.2.5 Hollow Cover	65
	4.4.3	Drilling Process	67
		4.4.3.1 Connector	67
		4.4.3.2 Stem	68
		4.4.3.3 Hollow Cover	69
	4.4.4	Curving Process	70
	4.4.5	Filling Process	71
	4.4.6	Rolling Process	72
		4.4.6.1 Housing	72
	4.4.7	Tapping Process	73
	4.4.8	Welding Process	74

		4.4.8.1 Handle	74
		4.4.8.2 Stem	75
		4.4.8.3 Rod	76
		4.4.8.4 Cutter	77
		4.4.8.5 Housing	77
	4.4.9	Finishing	79
		4.4.9.1 Grinding	80
		4.4.9.2 Sandpaper	82
		4.4.9.3 Painting	84
4.5	Assem	ably Process	86
	4.5.1	Parts of PLC Product	86
	4.5.2	Procedure	89
4.6	Protot	ype	92
4.7	Limita	ation	93

СНАР	TER 5: CONCLUSION AND RECOMMENDATION	94
5.0	Introduction	94
5.1	Conclusion	94
5.2	Recommendation	95
REFERENCES		

APPENDICES	100

LIST OF TABLES

TAB	LE TITLE	PAGE
2.0	Annual Production of Natural Fibres And Sources (2015)	15
4.1	All Tools and Equipment	52-54
4.2	All Material	55-56
4.3	All Part of PLC Product	86-88
4.4	Assembling Process	89-92

LIST OF FIGURES

FIGU	RE TITLE	PAGE
2.0	Overviewof Natural Fibres	5
2.1	Example For Animal Fibre Sources	6
2.2	Example For Plant Fibre Sources	6
2.3	Schematic Drawing Showing Possible Locations Of Fibres Within Ste	ems 7
	of Monocotyledonous And Dicotyledonous Plants And Trees	
2.4	Different Species Of Agave	8
2.5	Photograph Of A Retted Flax Stem, Showing Bast Fibres (Bf) As The	y 9
	Separate (\downarrow) From Inner, Core Tissues That Make Up Shive (S) In	
	Processing Waste	
2.6	Different Leaf Shapes In Cotton And Open Cotton Flower	10
2.7	Wool Structure and The Practical Use of Each of the Structural Eleme	nts 11
2.8	Examples of Silk Fibers Produced By Silkworms And Spiders And	12
	A Schematic Illustration	
2.9	Schematics of Possible Cell Wall Organisation in (A) Wood Fibres,	14
	(B) Bast Fibres, (C) Monocotyledonous Plant Fibres And	
	(D) Seed Fibres	
2.10	Pineapple Plant	18
2.11	Pineapple Leaves	19
2.12	Example of Pineapple Fruit	20

xii

2.13	Production of Pineapple Leaf Fibre, Sequential	21
2.14	Pineapple Leaf Fibre That Extracted From Pineapple Leaf.	22
2.15	Optical Micrograph of Cross Section of PALF	25
2.16	Process Using A Plate	26
2.17	Taking Out The Fiber	27
2.18	Scrapping Operation Through Rollers	27
3.1	First Design Idea	32
3.2	Second Design Idea	33
3.3	Solid Work Interface	35
3.4	2-D CAD Drawing Example	36
3.5	3-D CAD Model Example	37
3.6	Auto Cad Software Interface	37
3.7	Catia Interface	39
3.8	Common Type of Hollow Steel	40
3.9	Rectangular Hollow Section	41
3.10	Square Hollow Section	42
3.11	Circular Hollow Section	43
3.12	Type of Spring	44
3.13	Steel Plate Example	45
3.14	Bolt And Nut Example	47
4.1	Design by SolidWorks (Solid)	48
4.2	Design by SolidWorks (Transparent)	49

4.3	Handle Part	50
4.4	Stem Part	50
4.5	Cutter Part	51
4.6	Housing Part	51
4.7	Tools For Marking And Measuring	57
4.8	Marking Height of Stem And Handle Of Pineapple Leaf Cutter	58
4.9	Marking The Height Of Connector	58
4.10	Measure And Marking The Cutter	59
4.11	Measure And Marking The Plate	60
4.12	Measure And Marking The Hollow Cover	60
4.13	Measure And Marking The Rod	61
4.14	Cutting Handle And Stem	61
4.15	Cutting The Connector	62
4.16	Cutting The Cutter	63
4.17	Cutting Zig Zag	63
4.18	Cutting Size 88mm X 40mm	64
4.19	Cutter After Cutting Process	64
4.20	Cutting Housing Plate	65
4.21	Cutting Cover Size 144mm	65
4.22	Cutting Cover Size 100mm	66
4.23	Hollow Cover After Cutting Process	66
4.24	Drilling The Connector	67
4.25	Speed Machine While Drilling	67
4.26	Drilling The Stem	68

4.27	Use Oil For Smooth Drilling	68
4.28	Drilling The Hollow Cover	69
4.29	Curve On Connector	70
4.30	Filing The Cutter	71
4.31	Filing The Handle And Stem	71
4.32	Rolling The Housing	72
4.33	Tapping The Rod	73
4.34	Welding The Handle On The Curved Connector	74
4.35	Welding The Stem On The Circle Plate	75
4.36	Welding The Rod Behind Stem	76
4.37	Welding The Cutter Cover	77
4.38	Tap Welding On Housing	77
4.39	Continue Welding The Housing	78
4.40	Housing After Welding	78
4.41	Welding The Housing Cover	79
4.42	Grind The Handle	80
4.43	Grind The Stem	80
4.44	Grind The Cutter	81
4.45	Grind The Housing	81
4.46	Brush The Handle	82
4.47	Brush The Stem	82
4.48	Brush The Cutter	83
4.49	Brush The Housing	83
4.50	Spray The Handle	84

4.51	Spray The Stem	84
4.52	Spray The Cutter	85
4.53	Spray The Housing	85
4.54	Prototype Before Painting	92
4.55	Prototype After Painting	93

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.0 Introduction

Pineapple leaf is a plant that has 50-150cm height, elongated leaf like the sword with spiked or not spiked edge, the length of 80-150 cm. Pineapple is a Xerophyte plant and includes plants that are very resistant to drought conditions because they are classified as critically Crassulacean Acid Metabolism. Depending on the species or type of plant, pineapple leaf length is between 55cm to 75cm by 3.1cm to 5.3 cm wide and 0.18cm thick leaves of up to 0.27cm (Hidayat, 2008). Research shows that the leaves of the pineapple plant contain approximately 3% of strong white silky fibres. These valuable long fibres can be used in industrial applications in place of jute and other bast fibers. They also can be used to make heavy fabrics such as upholstery material or curtains, and in industrial applications such as tyres and conveyor belts. The aim of this project is to design and develop a machine that can facilitate the work to cut the leaves from the pineapple tree, hence the leaves can be extract as fiber which can be a new source of raw material to the industries and can be potential replacement of the expensive and nonrenewable synthetic fiber.

1.1 Problem Statement

As known, pineapple is among one of the Malaysia local fruit. Other than savoury fruit, pineapple leaf also has many uses. Among the usability pineapple leaf fiber is now popular in commercial textile industry. There are already many mechanical machine to obtain fiber from pineapple leaf, but until now, a mechanism to cut the pineapple leaf easily to get the fiber is still unavailable. People nowadays cut the pineapple by using knife or machete and exposed to danger because they easily injured when cuts through the thorns from pineapple leaves.

1.2 Objective

The objectives of this study are:

- i. To generate a concept design of pineapple leaf cutter machine
- ii. To develop a prototype of pineapple leaf cutter machine

1.3 Work Scope

In order to achieve the objective of this study, the scopes of this study are prepared as shown below:

- i. This machine is limited to cut pineapple leaf only.
- ii. The machine can cut more than a piece of leaves but not more than a bunch of pineapple tree at one time.
- iii. The machine is portable and easy to use.

1.4 Result Expectation

- i. The design of pineapple leaf cutter device is easy to use and portable.
- ii. The development of this pineapple leaf cutter can cut more than a piece of leaves but not more than a bunch of pineapple tree at one time.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter covered the study about a pineapple leaf fiber and how the extraction of pineapple fibers for making commercial product. This chapter also reviewed previous study from research or paper and article that related with fiber

2.1 Natural Fiber

It is believed that source of petroleum based products are limited and uncertainty. So an alternative with cheap sustainable and easily available raw material is required. The countries growing plant and fruit are not for only agriculture purpose but also to generate raw materials for industries. Most of the developing countries trade lignocellulosic fibers for improving economic condition of poor farmers as much as country support. Near about 30 million tonnes of natural fibers are produced every year and used as component of many manufacturing processes like clothing, packaging, paper making, automobile, building materials, and sport equipment. Natural fibers composites are eye-catching to industry because of its density and ecofriendly nature over traditional composites. Other than plant fibres, various animal fibres also have different types such as products from the wool, silk, feathers, avian fibre, and animal hairs which are prime resource. Fruit fibres are taken from fruits like coconut (coir) fibre. Stalk fibres are collected from husk and straw of crops like wheat, rice, barley, and so forth. Tree wood can also be used as fibre. Natural fibers have been used for a long time in many developing countries as cement materials. It can be extracted from the bast stem, leaf, and seeds from the plants in a bundle form. Therefore it is also called fibre bundles.

Natural plant fibres are cell walls that occur in stem and leaf parts and are comprised of cellulose, hemicelluloses, lignin and aromatics, waxes and other lipids, ash and water-soluble compounds. The chemistry and structure of fibres determine their characteristics, functionalities and processing efficiencies. Extraction method of fibres is similar in both bast stem and leaf, while seed fibres have many methods like cotton lint extracted from ginning process (Asim et al., 2015). The variety of fibres in nature is enormous. Depending on their function within the plant, fibres may be located in different regions of the plant. The location of fibres in the stem depends on the species. Plant fibres can be found, for example, within stems of monocotyledonous and dicotyledonous plants and dicotyledonous and gymnosperm trees at different positions. Natural fibres used for technical applications range from secondary xylem fibres such as wood fibres for paper production, phloem fibres such as hemp bast fibres, extra-xylary fibres such as sisal and seed hairs such as cotton. Figure 2.0 gives an overview of the broad range of organic and inorganic natural fibres. Natural fiber also will take a major role in the emerging "green" economy based on energy efficiency, the use of renewable materials in polymer products, industrial processes that reduce carbon emission and recyclable materials that minimize waste. Natural fibers are kind of renewable resources, which have been renewed by nature and human ingenuity for thousand years.

This paper focus on different properties of natural fibers (such as hemp, jute, bamboo and sisal) and its application which were used to substitute glass fiber (Ashik et al., 2015). Other than that, natural fibers and its composites utilized as a part of different commercial and engineering applications. Based on this article (Sanjay et al., 2016) it helps to provide details about the potential use of natural fiber and its composite materials, mechanical and physical properties and some of their application in engineering sectors. Besides that, natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their eco-friendly nature and sustainability. According to this review article, the aim is to provide a comprehensive review of the foremost appropriate as wll as widely used natural fiber reinforced polymer composites (NFPCs) and their application. In addition, it presents

summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fibers reinforcements thermoplastics composites were studied (Mohammed et al., 2015). The scheme subdivides the organic fibres into plant and animal fibres. Refer Figure 2.1 and Figure 2.2 below.

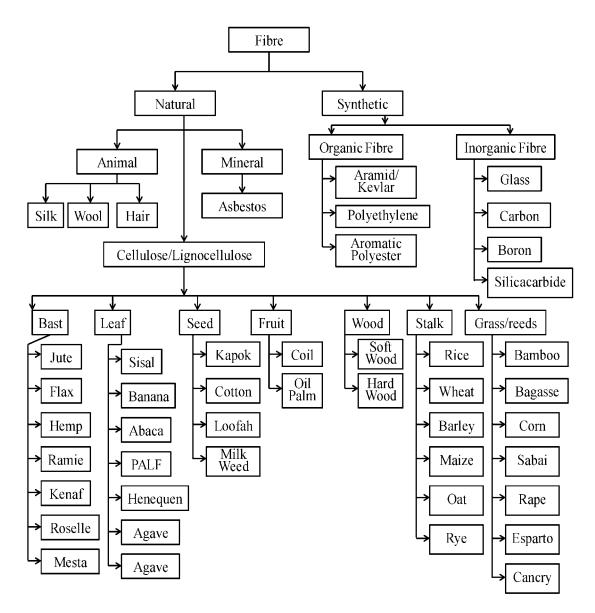


Figure 2.0: Overview of Natural Fibres

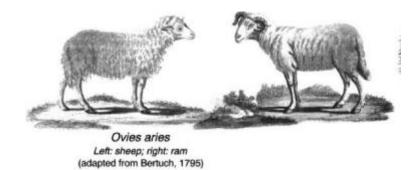


Figure 2.1: Example of Animal Fibre Sources

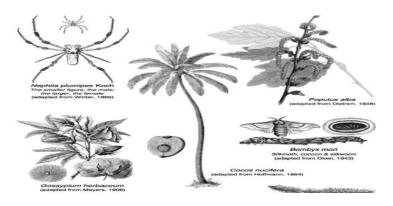


Figure 2.2: Example of Plant Fibre Sources.

2.1.1 Fiber Types

There are multitude of plant fibres that are used for technical applications or have the potential to be utilised. In the plant body they can appear as the dominating tissue type, in a ring-like fashion, or as separate clusters, organised in a characteristic pattern or just randomly distributed. Below is the comprehensive picture of where fibres can be located in various plant bodies. The schematic drawing is provided in the Figure 2.3. This is intended to provide a rough scheme of where technically utilised fibres can be found in plant stems, refered to Esau's Plant Anatomy (Evert, 2006).

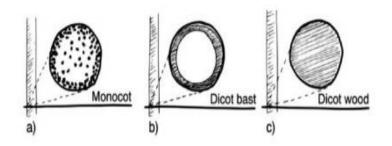


Figure 2.3: Schematic Drawing Showing Possible Locations of Fibres Within Stems of Monocotyledonous And Dicotyledonous Plants And Trees.

2.1.1.1 Fibres from Monocotyledonous Plants (leaves and stems)

In the production of natural fibres, sisal plays a dominant role in the field of leaf fibres. A total of 0.33 million of sisal is produced worldwide (0.01% of the production of all natural fibres). Sisal is well suited for technical applications because of the interesting properties of the fibres. The lifespan of a typical sisal plant varies from 7 to 15 years, depending upon cultivars, genetic species, climate, growing conditions and soil quality. It is classified within the family Agavaceae under genus Agave, and further subdivided into two subgenera, namely Agave and Littaea (Berger, 1915). There are several botanical species identified. However, some commonly found species include Agave sisalana and Agave americana (the century plant) are shown in Figures 2.4. It is also sometimes referred to as the century plant, and is now widely cultivated for its handsome appearance. The leaf in its variegated form has a white or yellow marginal or central stripe from base to apex, thus offering an ornamental appearance. As the leaves open up from the centre of the rosette, the impression of the spines on the edge is clearly visible on the still erect younger leaves. The leaves mature very slowly and die after flowering, but they are easily propagated by the offshoots from the base of the stem.