BEAM SWITCHING ULTRA-WIDEBAND ANTENNA FOR MEDICAL APPLICATION

LEE VEI HUNG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BEAM SWITCHING ULTRA-WIDEBAND ANTENNA FOR MEDICAL APPLICATION

LEE VEI HUNG

This report submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Telecommunications Electronics) With Honours

Faculty of Electronics and Computer Engineering

Universiti Teknikal Malaysia Melaka

June 2017

C Universiti Teknikal Malaysia Melaka

CU	[eM]	UNIV FAKULTI K	ERSI EJURU	TI TEI /TERA.	KNIKAL MALAYSIA MELAKA AN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER
STATES OF TENEROLE INCO	ALON MELANA		BORAN	NG PEN OJEK	NGESAHAN STATUS LAPORAN K SARJANA MUDA II
Tajuk Projek	BEA MEI	M SWITC DICAL IM.	CHING AGINC	ULTR 3	A-WIDEBAND ANTENNA FOR
Sesi Pengajian	1	6 /	1	7	
Saya			Li (HUF	EE VE RUF BI	EI HUNG ESAR)
mengaku memb syarat-syarat kej	enarkan La gunaan sep	aporan Proj erti berikut	ek Sarj t:	ana Mi	uda ini disimpan di Perpustakaan dengan
1. Laporan	adalah hak	milik Univ	ersiti T	eknika	al Malaysia Melaka.
 Perpustal Perpustal 	kaan dibena	arkan mem	buat sa	linan u linan la	aporan ini sebagai bahan pertukaran antara
institusi j	oengajian t	inggi.			
4. Sila tanda	akan (√)	÷.			
S S	ULIT*		*(Meng kepen AKT	andung tingan A RAH	zi maklumat yang berdarjah keselamatan atau Malaysia seperti yang termaktub di dalam SIA RASMI 1972)
Т	ERHAD**		**(Men orga	igandun anisasi/l	ngi maklumat terhad yang telah ditentukan oleh badan di mana penyelidikan dijalankan)
Т	IDAK TERH	IAD			
1 1/4	/				Disahkan oleh:
- WX	-				0
(IANDATANGA)	N PENULIS)				(COP DAN TANDATANGAN PENYELIA) DR. NOOR AZWAN BIU SHAJRI Pensyarah Kanan Feksiti Kejuruteraan Elektronik Dan Keju uteraan Komputer
Tarikh: 154 Ju	ne 2017	-			Tarikh: 201 JUNE 2017 Hang Tuah Jaya Tarikh: 201 JUNE 2017 Hang Tuah Jaya
	-	_			

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declare this report entitle "BEAM SWITCHING ULTRA-WIDEBAND ANTENNA FOR MEDICAL APPLICATION" is the results of my own research except as cited in the references.

Signature : 112 Author : LEE VEI HUNG : 151 JUNE 2017 Date

iii

APPROVAL

"I hereby declare that I have read this report and in my opinion, this report is sufficient in terms of the scope and quality for the award of Bachelor of Electronic Engineering (Telecommunication Electronics) With Honors"

Signature Supervisor's Name : DR. NOOR XWAN BIN SHAIRI : 2 MD JUNE 2017 Date

iv

iv

DEDICATION

Special dedication to my beloved parents, Lee Keng Mun & Goh Sien Low

To my supervisors

Dr Noor Azwan Bin Shairi Dr Imran Bin Mohd Ibrahim

My friends and my fellow lecturers Thank you for all your care, support and believe in me

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGMENT

First of all, I would like to thank both of my supervisor, Dr. Noor Azwan Bin Shairi and Dr. Imran Bin Mohd Ibrahim for offering me the opportunity in developing this project. I appreciate the guidance of them throughout the whole project and also process of writing the thesis. The motivation and encouragement for the past year are sincerely a thrust to complete this project. I also thanks to all the friend who giving a hand during the project. Last but not least, I express my appreciation to my family for their encouragement, understanding and patience during the writing of this thesis.

ABSTRACT

Microwave imaging is an emerging technology in the medical sector which have similar function as X-ray, MRI, and CT scan. The operating frequency of microwave imaging is 3.1 GHz to 10.6 GHz which is also known as the Ultra-Wideband frequencies. The design of the microwave imaging system is using monostatic radar approach which antenna will be use as both transmitter and receiver, therefore a switching system that switch between transmitter, receiver, and 8 units of antenna sensors have to be design. The characteristics of the switching system need to have insertion loss lower than -6dB and isolation higher than -15dB. This switching system will be design using Advanced Design System (ADS) software and it contain one unit of Single Pole Double Throw (SPDT) and one unit of Single Pole Eight Throw (SP8T). Model of the capacitors, inductors, and PIN diode will be study and the performance is verify in this report whether it is suitable to operate in UWB frequency. Substrate use will be Roger RO 4350 with the dielectric constant of 3.48. The performance of the SPDT design and SP8T design will be review by the end of the report.

ABSTRAK

Pengimejan microwave merupakan teknologi baru dalam sector pengubatan dan dia mempunyai fungsi yang sama dengan system X-ray, MRI ataupun CT scan. Pengimejan microwave ini beroperasi pada frekuensi berjulat 3.1 GHz dan 10.6 GHz dan frekuensi ini dikenali sebagai Ultra-Wideband Frekuensi. Sistem pengimejan microwave yang ingin direka adalah berdasarkan radar yang berciri monostatic approach dimana satu antena akan berfungsi sebagai penghantar dan penerima frekuensi isyarat. Oleh itu, sistem penukaran antara alat penghantar, alat penerima dan juga 8 unit antena berfungsi sebagai alat pengesan hendaklah direka. Ciri-ciri untuk sistem ini adalah dengan kehilangan sisipan yang rendah daripada -6dB dan juga isolasi yang tinggi daripada -15dB. Sistem penukaran akan direka melalui software Advanced Design System (ADS) dan sistem tersebut mengandungi satu unit Single Pole Double Throw (SPDT) dan satu unit Single Pole Eight Throw (SP8T). Modal komponent seperti kapasitor, induktor dan PIN diod akan ditentukan melalui projek ini dan adakah komponent-komponent tersebut sesuai diguna dalam operasi yang berfrekuensi UWB. Substrat papan litar yang akan diguna adalah modal Roger RO 4350 dengan nilai dieletrik 3.48. Prestasi SPDT dan SP8T yang dereka akan dipapar dalam repot ini.

TABLE OF CONTENTS

TITLE REPORT STATUS VERIFICATION FORM DECLARATION APPROVAL DEDICATION ACKNOWLEDGEMENT ABSTRAK V TABLE OF CONTENTS LIST OF FIGURES DIST OF ABBREVIATIONS X LIST OF FABLES LIST OF ABBREVIATIONS X LIST OF APPENDICES X I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II II III III III III LITERATURE REVIEW II LITERATURE REVIEW 2.1 Microstrip Ultra-Wide band antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 S-Parameters 2.4.1.2 Insertion Loss 2.4.1.3 Isolation <th>CHAPTER</th> <th>CONTENT</th> <th>PAGES</th>	CHAPTER	CONTENT	PAGES
REPORT STATUS VERIFICATION FORM DECLARATION APPROVAL DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK V TABLE OF CONTENTS LIST OF FIGURES LIST OF ABLES LIST OF ABBREVIATIONS X LIST OF ABBREVIATIONS X LIST OF APPENDICES X I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II II ABMINICATION 1.1 Retroverview 2.1 Microwate Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 Separameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2.1 Mechanical Switch Using Motor		TITLE	i
DECLARATION APPROVAL DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK V TABLE OF CONTENTS LIST OF FIGURES LIST OF ABBREVIATIONS X LIST OF ABBREVIATIONS X ABSTRAK V TABLE OF CONTENTS LIST OF ABBREVIATIONS X LIST OF APPENDICES XV I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 Separameters 2.4.1.1 Return Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor		REPORT STATUS VERIFICATION FORM	ii
APPROVAL DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK v TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS X LIST OF ABBREVIATIONS X LIST OF APPENDICES X I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2.1 Mechanical Switch Using Motor		DECLARATION	iii
DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK V TABLE OF CONTENTS LIST OF FIGURES LIST OF ABBREVIATIONS X LIST OF ABBREVIATIONS X LIST OF APPENDICES X I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2.1 Mechanical Switch Using Motor		APPROVAL	iv
ACKNOWLEDGEMENT ABSTRACT ABSTRAK V TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS X LIST OF APPENDICES I I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2.1 Mechanical Switch Using Motor		DEDICATION	V
ABSTRACT ABSTRAK V TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS X LIST OF APPENDICES I I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline I I LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2.1 Mechanical Switch Using Motor		ACKNOWLEDGEMENT	vi
ABSTRAK v TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS X LIST OF APPENDICES I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2.1 Mechanical Switch Using Motor		ABSTRACT	vii
TABLE OF CONTENTS 1 LIST OF FIGURES 1 LIST OF ABBREVIATIONS x LIST OF ABBREVIATIONS x LIST OF APPENDICES x I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline 1 II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor		ABSTRAK	viii
LIST OF FIGURES 1 LIST OF TABLES 1 LIST OF ABBREVIATIONS x LIST OF APPENDICES x I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline 1 II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor		TABLE OF CONTENTS	ix
LIST OF TABLES I LIST OF ABBREVIATIONS x LIST OF APPENDICES xx I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 S-Parameters 2.4.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor		LIST OF FIGURES	xii
LIST OF ABBREVIATIONS x LIST OF APPENDICES xx I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor		LIST OF TABLES	XV
I INTRODUCTION 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2.1 Mechanical Switch Using Motor		LIST OF ABBREVIATIONS	xvi
 I INTRODUCTION Project Overview Problem Statement Objectives Scope of Project Thesis Outline II LITERATURE REVIEW Microwave Imaging Topology in Medical Imaging Ultra-Wide Band Frequency Antenna Microstrip Ultra-Wide band antenna Antenna Scomparison between Switches A.1.1 Return Loss A.1.2 Insertion Loss A.1.3 Isolation Switch Using Motor 		LIST OF APPENDICES	xvii
 1.1 Project Overview 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 	Ι	INTRODUCTION	
 1.2 Problem Statement 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2.1 Mechanical Switch Using Motor 		1 1 Project Overview	1
 1.3 Objectives 1.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.2.1 Mechanical Switch Using Motor 		1 2 Problem Statement	2
 I.4 Scope of Project 1.5 Thesis Outline II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2.1 Mechanical Switch Using Motor 		1.3 Objectives	3
 II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		1.4 Scope of Project	3
 II LITERATURE REVIEW 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		1.5 Thesis Outline	4
 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 	П	LITERATURE REVIEW	
 2.1 Microwave Imaging Topology in Medical Imaging 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 			
 2.2 Ultra-Wide Band Frequency 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		2.1 Microwave Imaging Topology in Medical Imaging	5
 2.3 Antenna 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		2.2 Ultra-Wide Band Frequency	7
 2.3.1 Microstrip Ultra-Wide band antenna 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		2.3 Antenna	9
 2.4 Comparison between Switches 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		2.3.1 Microstrip Ultra-Wide band antenna	10
 2.4.1 S-Parameters 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		2.4 Comparison between Switches	10
 2.4.1.1 Return Loss 2.4.1.2 Insertion Loss 2.4.1.3 Isolation 2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor 		2.4.1 S-Parameters	11
2.4.1.2 Insertion Loss2.4.1.3 Isolation2.4.2 Switches2.4.2.1 Mechanical Switch Using Motor		2.4.1.1 Return Loss	11
2.4.1.3 Isolation2.4.2 Switches2.4.2.1 Mechanical Switch Using Motor		2.4.1.2 Insertion Loss	11
2.4.2 Switches 2.4.2.1 Mechanical Switch Using Motor		2.4.1.3 Isolation	12
2.4.2.1 Mechanical Switch Using Motor		2.4.2 Switches	12
		2.4.2.1 Mechanical Switch Using Motor	12

2.4.2.2 Micro-Electromechanical System (MEMS)	13
2.4.2.3 Complementary Oxide Semiconductors (CMOS)	13
2.4.2.4 PIN Diode	13
2.4.2.5 Silicon Switching Diode	15
2.5 Switch Topologies	15

III METHODOLOGY

3.1 Methodology Flow Chart	17
3.2 Components	20
3.2.1 Capacitor (DC Block)	20
3.2.2 Inductor (DC Feed)	22
3.2.3 PIN Diode	24
3.2.3.1 Biasing Circuit	25
3.2.3.2 PIN Diode in series	26
3.2.3.3 PIN Diode in Shunt	26
3.2.3.4 Multi PIN Diode in series and shunt	28
3.3 Switching Circuit Design	30
3.3.1 Single Pole Double Pole (SPDT) Circuit Design	30
3.3.2 Single Pole Four Throw (SP4T)	30
3.3.3 Single Pole Eight Throw (SP8T)	31
3.4 Substrate	32

IV RESULTS & DISCUSSION

4.1 Capacitors (DC Block)	35
4.1.1 Capacitors Model	36
4.2 Inductors (DC Feed)	39
4.2.1 nductors Model	40
4.3 PIN Diode	42
4.3.1 PIN Diode in Series	42
4.3.2 PIN Diode in Shunt	46
4.3.3 Amount of PIN Diode	49
4.4 SPDT Design	51
4.5 SP4T Design	55
4.6 SP8T Design	59

V CONCLUSION

5.1 Conclusion	62
5.2 Sustainable Development	62
5.3 Commercialization	63
5.4 Future Works	63

REFERENCE	64
APPENDICES	68

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURE

Figure 2.1 (a) Circular and (b) Planar Scanning	6
Figure 2.2 (a) Result of Planar Scanning (b) Result of Circular Scanning	7
Figure 2.3 (a) Method A 3 GHz to 10 GHz (b) Method A 8 GHz to 12 GHz	(c)
Method B 3 GHz to 10 GHz (d) Method B 8 GHz to 12 GHz	8
Figure 2.4 Types of Antennas	9
Figure 2.5 Ultra-Wide Band Antenna	10
Figure 2.6 PIN Diode Layout	14
Figure 2.7 Series and Shunt SPDT	15
Figure 2.8 Combination of Series Shunt Switches	16
Figure 2.9 Shunt-Shunt topology	16
Figure 3.1 Methodology Flow Chart	19
Figure 3.2 Circuit for Ideal Capacitor Performance Review	20
Figure 3.3 TDK C0603CH Capacitor	21
Figure 3.4 Murata GRM02	21
Figure 3.5 Murata GRM15	21
Figure 3.6 (a) Setting capacitor value $2pF$ (b) Setting capacitor value $4pF$	22
Figure 3.7 Ideal Inductor Performance Review Circuit	23
Figure 3.8 CoilCraft 0603LS	23
Figure 3.9 CoilCraft BCR802	24
Figure 3.10 Changing the Inductance Value	24
Figure 3.11 Biasing Circuit	25
Figure 3.12 PIN diode simulation circuit	26
Figure 3.13 PIN diode in Shunt Simulation Circuit	27
Figure 3.14 (a) 1 Diode (b) 2 Diodes (c) 3 Diodes	29
Figure 3.15 SPDT Final Design Concept	30
Figure 3.16 Final Design of SP4T	31
Figure 3.17 SP8T Concept Design	32
Figure 3.18 Window Setting for Substrate	33

Figure 3.19 Line Calc setting window	34
Figure 4.1 Ideal Capacitor	35
Figure 4.2 Results for TDK C0603CH	
Figure 4.3 Results for Murata GRM15	
Figure 4.4 Results for Murata GRM02	
Figure 4.5 Comparison of Different Capacitance	
Figure 4.6 Ideal Inductor	40
Figure 4.7 Results of BCR802	41
Figure 4.8 Results of 0603LS	42
Figure 4.9 Comparison of Inductance Value	42
Figure 4.10 NxP BA277 PIN Diode	44
Figure 4.11 NxP BAP64_02 PIN Diode	45
Figure 4.12 NxP BAP64_03 PIN Diode	45
Figure 4.13 Skywork 1352_079 PIN Diode	46
Figure 4.14 Skywork 1320_079 PIN Diode	46
Figure 4.15 Skywork 1320_079 PIN Diode	47
Figure 4.16 Nxp BA277 in Shunt	
Figure 4.17 Nxp BAP64_02 in Shunt	49
Figure 4.18 Nxp BAP64_03 in Shunt	49
Figure 4.19 Skywork 1320 in Shunt	
Figure 4.20 Skywork 1320_079 in Shunt	
Figure 4.21 Skywork 1352_079 in Shunt	50
Figure 4.22 Results of Different Amount PIN Diode	51
Figure 4.23 Different amount of Shunt PIN Diode	
Figure 4.24 Simulation of SPDT without microstrip	53
Figure 4.25 SPDT with FR4	54
Figure 4.26 SPDT Performance with ROGER RO 4530B	54
Figure 4.27 SPDT Layout Simulation Result	55
Figure 4.28 SP4T Performance (Without Substrate)	56
Figure 4.29 SP4T Performance (Without Substrate) other path	56
Figure 4.30 SP4T with ROGER RO 4530B	57

Figure 4.31 Another path of SP4T	58
Figure 4.32 Performance when Port 2 is on	59
Figure 4.33 Performance when Port 3 is on	59
Figure 4.34 Performance when Port 4 is on	59
Figure 4.35 Performance when Port 5 is on	60
Figure 4.36 Port 7 performance	61
Figure 4.37 Port 8 Performance	61

LIST OF TABLES

Table 2.1 Comparison of Motor movement and Switch Speed	
Table 3.1 PIN Diode Models	
Table 3.2 Both Substrate Setting	
Table 4.1 Different Capacitor Model Results	
Table 4.2 Inductor Simulation Results	41
Table 4.3 PIN Diode Performance Testing in Series Position	44
Table 4.4 PIN Diode simulation in Shunt Position	48
Table 4.5 SP4T Layout Simulation	58
Table 4.6 SP8T Simulation Result	61

LIST OF ABBREVIATIONS

UWB	-	Ultra-Wideband
SPDT	-	Single Pole Double Throw
SP4T	-	Single Pole Four Throw
SP8T	-	Single Pole Eight Throw
ADS	-	Advanced Design System

C Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

APPENDIX	TITLE	PAGES
A1	Circuit Construct for shunt element performance study	67
A2	SPDT design without Microstrip	68
A3	SP4T Design without Microstrip	69
A4	SPDT with Microstrips	70
A5	SP4T with Microstrips	71
B1	SPDT LAYOUT	72
B2	SP4T Layout	73
B3	SP8T Layout	74
С	SP8T Results	75

CHAPTER I

INTRODUCTION

Overview of this project, objective and the scope of work of the project are discussed in this chapter. Problem statement is stated and it will overcome by objectives with appropriate methodology.

1.1 Project Overview

In biomedical sector, a screening system is a way of reading the abnormal tissue or health condition allocate inside a human body. The basic element in the biomedical scanning system are the signal emitted and different scanning system having different of emitting elements. For example, X-ray scanning system emit x-ray as the element to detect the unusual health condition in human body while magnetic resonance imaging scanning system emit magnetic field and pulses of radio wave as the detecting elements. In recent year, microwave frequency that range between 300 MHz to 300 GHz show its characteristics and capability in the field of scanning system. Ultra-wide band frequency which is the frequency range between 3.1 GHz to 10.6 GHz that located between the microwave frequency provide a better effect when come to the application of scanning system. As same as other scanning system, data are required to obtain from several point around the body under test, therefore an ultra-wide band beam switching unit are needed to introduce to switch between the antenna arrays. The switching unit have to ensure the power of signal from generator are reaching the antenna sufficiently which mean the loss introduce by the switching unit have to be as low as possible. Thus, a beam switching ultra-wide band antenna for medical application are introduce to overcome the problem.

1.2 Problem Statement

Medical Imaging acting as a crucial element in medical sector since the first discover of X-Ray by the year of 1895. There are several medical imaging system available currently such as X-ray, Computerized tomography scan (CT scan), magnetic resonance imaging (MRI) and others. All these system that mentioned project waves with different level of frequency and energy at particular aim in order to obtain data for the image construction. However, some of the wave such as X-ray are consider as high energy frequency which will cause cancer under a long term exposure. Besides, one of the concern about screening system available now is a bulky system which mean it is impossible to appear during first aid scene and failing in detect of bone crack during first aid might bring death to the casualty.

In past decade, researcher have been focus on using microwave frequency as the element of medical imaging especially used to map the tumor located in breast. Microwave frequency is low energy frequency which wouldn't ionize body atom or molecule that lowered the risk of getting cancer. It is believe with the application of microwave imaging technology in the biomedical sector, the problem with the existing screening system such as high implementation cost, bulky size, harming ionizing radiation and time consume could be overcome. There are several kinds of different studies regarding to microwave imaging technology that including types of microwave imaging approach, frequency range or even the shape of antenna arrangement. Types of approach such as monostatic radar approach and bi-static radar approach give different effect on the image construction under the affection of shape of antenna array as well. Therefore, it have to analyze which combination is the best suit for medical imaging purpose.

Beam switching system acting as a crucial element in microwave imaging system as in switching between antenna to get data from different point and angle are the focus point. By the purpose of fabricating a switching system for medical imaging purpose, the signal power that is suitable to be used have to be low enough that wouldn't bring any harm and the signal level are identified as 10dBm. Therefore, the insertion loss of the beam switching system have to be -3dB at the frequency of 3 GHz and -6dB at the frequency of 10 GHz. Besides the allow isolation of the system should be higher than - 15dB to prevent the stray signal flow into undesired path. The insertion loss have to be as low as possible in negative dB because this indicate that more or sufficient signal could be delivered out through the system and the isolation have to be as high as possible in the negative dB form to ensure the signal deliver through the desired path. If the isolation is low in negative dB, that will cause receiver receive the signal not only from one antenna but from more than one antenna and this will cause a distortion in the receiver output. Therefore, a topology of switch have to design in order to meet the requirement mentioned.

1.3 Objectives

The objectives of this project is to study and design a radio frequency switches that is small in size which is capable to become a portable switching system and also suitable for the ultra-wide band antenna with frequency range between 3.1 GHz to 10.6 GHz. Besides, the effect of different topology of the switching elements on switches have to be study and analyze as in it will affect the S-parameter such as insertion loss, return loss and isolation. The switching unit have to achieve insertion loss that higher than -3dB in 3 GHz and -6dB in 10.6 GHz together with isolation lower than -15dB in a broad bandwidth. Moreover, the beam switching method have to be identified for achieving fast switching between antenna arrays and able to produce good resolution of image.

1.4 Scope of Project

The scope of work for this project are:

- The design of ultra-wide band bean switching unit that combine of SPDT switch back to back with SP8T switch with frequency range between 3.1 GHz to 10.6 GHz that have the S-parameter measurement of insertion loss less than 3dB and isolation less than 15dB.
- 2. The design of switch is simulated by using Advanced Design System (ADS) in order to study the effect of different topology of switches on S-parameters such as insertion loss, return loss, isolation and bandwidth.

- 3. Two switch are required to design in this project which is Single Pole Double Throw (SPDT) switches and Single Pole Eight Throw (SP8T) switches, once these two switches are simulated it is then observe with the insertion loss and the isolation performance of the switch.
- The material of substrate used to design both SPDT and SP8T switch is by using ROGER RO 4530B epoxy board with dielectric constant of 3.47, tangent loss of substrate 0.037, thickness of substrate 0.508mm and thickness of copper is 0.0035mm.

1.5 Thesis Outline

Chapter 1 describes an introduction of the beam switching ultra-wide band antenna for medical imaging and the problem that faced by the society that could be overcome through developing this project. Besides, the objective and the scope of work for this project was set in order to achieve in the end of the project.

Chapter 2 describes the literature review on topology of microwave imaging system together with the scanning approach apply, ultra-wide band frequency, theory behind ultra-wide band antenna, comparison between RF switches and topology in designing RF switches.

Chapter 3 explains the methodology of the project with the use of flow chart. Then, step by step of development of the project will be discuss in details.

Chapter 4 include all the result mentioned in chapter 3 together along with the discussion on all the results.

Chapter 5 involve the conclusion of the overall project including the sustainable discussion, commercialization and also the future work of this particular project.

CHAPTER II

LITERATURE REVIEW

1.2

Microwave imaging is the application of microwave frequency that range between 300 MHz to 300 GHz, according to Matteo Pastorino microwave imaging technology is aim at sensing a given scene by the mean of microwave integration [24]. Microwave imaging has been widely apply in several sector such as civil and industrial application for the indestructible test and evaluation for example pipe leakage or crack in wall. Besides, microwave imaging technology is also applicable in shallow subsurface imaging which allow people to detect buried object and this is believed to be useful for military especially comes to demining activities.

Starting the year of 1998, researchers been applying microwave imaging technology in the medical sector as a screening system [2]. Several studies about microwave imaging on health condition for brains and heart was carried out but the major focus of microwave imaging are in detecting tumor that located in the breast area [8-10, 12-14, 16, 20]. In order to build a microwave imaging system for screening purpose, several focus have to be made to utilize the technology for example scanning topology, frequency applies, how this technology works [3].

2.1 Microwave Imaging Topology in Medical Imaging

There are actually two different topology which can be involve for microwave imaging system in biomedical sector which is cylindrical (circular) and planar configuration which roughly with the idea shown below. [7]

Figure 2.1 (a) Circular and (b) Planar Scanning

Both topology shown above are the common topology used and a comparison between both topology is made. For the cylindrical topology, monostatic radar approach is applied while for the planar topology the bi-static radar approach is applied [1]. According to Microwave Engineering written by David M.Pozar monostatic radar approach is technology using one antenna act as both transmitter and receiver and the signal is analyze by interrogating the reflecting signal while bi-static radar approach having two different antenna act as transmitter and receiver and the signal analyze by mean of interrogating the back scatter signal from the target object [22].

Figure 2.2 shows comparison of both topology that have been done in year 2006. From that particular experiment, the material location are clearly determine through the