PREPARATION AND CHARACTERIZATION OF POLYURETHANE FILLED WASTE TYRE DUST (PU/WTD) COMPOSITE FOAM FOR NOISE ABSORPTION MEDIUM

NORAMALINA BINTI RASMI B051410073

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2017

C Universiti Teknikal Malaysia Melaka

PREPARATION AND CHARACTERIZATION OF POLYURETHANE FILLED WASTE TYRE DUST (PU/WTD) COMPOSITE FOAM FOR NOISE ABSORPTION MEDIUM

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

NORAMALINA BINTI RASMI B051410073 931006-14-6584

FACULTY OF MANUFACTURING ENGINEERING 2017

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk:**PREPARATION AND CHARACTERIZATION OF**
POLYURETHANE FILLED WASTE TYRE DUST (PU/WTD)
COMPOSITE FOAM FOR NOISE ABSORPTION MEDIUM

Sesi Pengajian: 2016/2017 Semester 2

Saya NORAMALINA BINTI RASMI (931006-14-6584)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD

AD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap: No. 15 Kg Palimbayan, Sg Penchala, Jalan Damansara, 60000 Kuala Lumpur

Tarikh: _____

Cop Rasmi:

Tarikh: _____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Preparation and Characterization of Polyurethane filled Waste Tyre Dust (PU/WTD) Composite Foam for Noise Absorption Medium" is the result of my own research except as cited in references.

Signature:Author's Name: NORAMALINA BINTI RASMIDate: 22 June 2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons). The member of the supervisory committee are as follow:

(DR. JEEFFERIE BIN ABD. RAZAK)

(DR. MOHD SUKOR BIN SALLEH)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Selama bertahun-tahun ini, pendedahan bunyi tidak diambil serius dalam perekaan alat mekanikal di dalam sesetengah aplikasi seperti peranti kenderaan, pengankutan atau mesin industri. Kebiasaannya, bunyi boleh dikawal dengan menggunakan bahan serapan seperti bahan yang berpori. Polyurethane (PU) telah dipilih sebagai bahan berpori dalam penyilidikan ini kerana ia mempunyai struktur pori yang terbentuk daripada interaksi polyol dan isocyanate. Dengan mempertimbangkan kehijauan dan kelestarian alam sekitar, serbuk sisa tayar (WTD) digunakan untuk menguatkan bahan asas polimer. Kajian ini bertujuan untuk menyediakan busa komposit PU/WTD pada pelbagai beban WTD (5, 15 and 25 wt %) dengan tempoh pengacauan yang berbeza (5, 20 dan 35 minit) sebagai media penyerapan bunyi dimana parameter penyediaan busa telah dioptimumkan berpandukan keatas keupayaan serapan bunyi meggunakan perisian reka bentuk eksperimen (DOE) dengan penggunaan dua tahap reka bentuk faktorial penuh. Kemudian, respon keatas keupayaan serapan telah dihubungkaitkan dengan morfologi busa yang diperhatikan dibawah imbasan mikroskop electron (SEM) Daripada analisis ANOVA, ia dicadangkan bahawa parameter kajian yang optima dalam penyediaan busa adalah penyediaan busa komposit yang disediakan dengan beban WTD sebanyak 25 wt % pada 5 minit tempoh pengacauan. Sementara itu, parameter paling teruk bagi penyediaan busa adalah dimiliki oleh busa yang disediakan dengan beban WTD sebanyak 25 wt % pada 35 minit tempoh pengacauan. Oleh itu, hubungkait bersama morfologi busa telah dianalisa dan ianya telah dikonklusikan bahawa busa komposit PU/WTD dengan struktur sel pori terbuka meningkatkan keupayaan serapan bunyi berbanding struktur sel pori tertutup. Walau bagaimanapun, struktur sel pori terbuka ini telah mengurangkan ketumpatan busa komposit and merendahkan kekuatan mampatan busa komposit PU/WTD disebabkan oleh kekurangan daya tahan dibawah tekanan mampatan. Di samping itu, ia telah dianalisa bahawa busa komposit dengan struktur pori yang lebih terbuka mampu menyerap lebih banyak air.

i

ABSTRACT

Over the years, noise exposure are not being taken seriously in designing a mechanical device in some application such as vehicle parts, transportation or industrial machine. Usually, the noise can be controlled by using an absorption material such as porous material. Polyurethane (PU) was chosen as an absorption material in this research because it has porous structure that were formed by the interaction of polyol and isocyanate. By considering the green environmental and sustainability, Waste Tyre Dust (WTD) are used to reinforce the polymeric based material. This study aim to prepare the PU/WTD composite foam at various WTD loadings (5, 15 and 25 wt %) with different stirring period (5, 20 and 35 minutes) for noise absorption medium whereby the parameter of the foam preparation had been optimized based on sound absorption coefficient using Design of Experiment (DOE) software with utilization of two level full factorial design approach. Later, response of the absorption coefficient was correlated with foam morphologies that observed under Scanning Electron Microscope (SEM). From ANOVA analysis, it was postulated that the optimized parametric study of foam preparation are the PU/WTD composite foam prepared with 25 wt % of WTD at 5 minutes of stirring period Meanwhile, the worst parameter of foam preparation are owned by PU/WTD foam that prepared with 25 wt % of WTD at 35 minutes of stirring period. Therefore, the correlation with the foam morphologies was analysed and it was concluded that PU/WTD composite foam with open pore cell structure enhance the sound absorption coefficient rather than closed cell structure. However, these open pore cell structure had reduced the density of the composite foam and decrease the compression strength of the PU foam. In addition, it was analysed that PU/WTD composite foam with more open pore structure could able to absorb more water.

DEDICATION

Dedicated for my Mother, Junaidah Binti Mohamed Father, Rasmi Bin Jasulidin Amazing siblings Honourable lecturers Loyal friends Much love from Noramalina

ACKNOWLEDGEMENT

"In the name of ALLAH, the most gracious, the most merciful"

Alhamdulillah, Thank you Allah for giving me a chance to successfully finish this final year project. I would like to express my sincere thanks to my parents for always support me in most challenging situation.

Special thanks to my respected supervisor, Dr. Jeefferie Bin Abd Razak for the guidance and passion in supervising me throughout this project period. His patience towards my deficiencies was deeply appreciated. Besides, I would like to thank to all assistants engineer who lend me their helpful skills and knowledge in conducting all the related testing and laboratory activities.

Last but not least, my gratitude goes to my fellow housemates who gave me much support and ideas in solving problems. Thanks also to those who I did not mention each one of them who are directly or indirectly helping me to complete this project. May God bless and pay all your kindness with thousands benefits.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	viii
List of Figures	ix
List of Abbreviations	xii
List of Symbols	xiv

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Scope	5
1.5	Project Significance	6
1.6	Thesis Organization	6
1.7	Summary	7

CHAPTER 2: LITERATURE REVIEW

2.1	Polyurethane (PU)		8
	2.1.1	Fundamental of PU	9
		2.1.1.1 Polyol	11
		2.1.1.2 Isocyanate	12
	2.1.2	Properties and Structure of PU	12

v

	2.1.3	PU for Specific Applications	15
	2.1.4	Limitation and Advantage of PU Based Products	16
2.2	Waste	Tire Dust (WTD)	17
	2.2.1	Waste Tire Dust Disposal Issues	17
	2.2.2	WTD for Potential Filler Reinforcement in Composite	18
	2.2.3	WTD Types and Preparation	19
	2.2.4	Review on WTD Utilization for Composite Manufacturing	20
2.3	Comp	osite Foam	21
	2.3.1	Type of Composite Foam	22
	2.3.2	Morphologies of Polymeric Based Foams	22
	2.3.3	PU Based Foams	24
	2.3.4	Manufacturing of PU Foam	24
	2.3.5	Advantage of PU Based Foam	27
	2.3.6	Properties of PU Based Foam	27
2.4	Noise	, Vibration and Harshness (NVH)	29
	2.4.1	NVH Fundamental Concept	29
	2.4.2	Noise Absorption and Vibration Damping	30
	2.4.3	Polymeric Materials For NVH Absorption Medium	31
	2.4.4	Limitation of Polymeric Based Foam for NVH Medium	32
	2.4.5	Characteristic of Good Absorption Medium for NVH Application	32
2.5	Noise	Absorption and Vibration Damping Characterization and Testing	34
	2.5.1	PU Based Foam for Noise Absorption Medium	34
	2.5.2	Noise Absorption Test	35
2.6	Desig	n of Experiment	36
	2.6.1	Two Level Full Factorial Design	36
	2.6.2	Past Study on Polymeric Foam Using Doe Approach	38
2.7	Resea	rch Gap and Summary	40

CHAPTER 3: METHODOLOGY

3.1	Overv	iew of Methodology	42
3.2	Raw Materials and Characterization		
	3.2.1	Isocyanate and Polyol	44
	3.2.2	Particle Size Analysis For WTD	45

3.3	Design of Experiment; Two-Level Full Factorial Design 47		
3.4	PU/WTD Composite Foams Preparation		
	3.4.1 Polyol And Isocyanate Ratio Determination	47	
	3.4.2 Foaming Mold Preparation	48	
	3.4.3 PU/WTD Composite Foaming	48	
3.5	Noise Absorption Test	50	
3.6	Physical and Mechanical Evaluation of PU/WTD Composite Foam	51	
	3.6.1 Density Test	52	
	3.6.2 Water Absorption Test	53	
	3.6.3 Compression Test	54	
3.7	Morphologies observation on PU/WTD composite foam under Scanning Electron Microscopy (SEM)	55	
CHA	APTER 4: RESULTS AND DISCUSSIONS		
4.1	Overview	56	
4.2	Particle Size Analysis for WTD	57	
4.3	Noise Absorption Coefficient Analysis for PU/WTD Composite Foams via Response Surface Methodology 4.3.1 Design Expert Analysis	57	
	4.3.2 Response on Sound Absorption Coefficient	50 65	
ΔΔ	Compression Strength Properties of PU/WTD Composite Foams	69	
4.5	Water Absorption Evaluation of PU/WTD Composite Foams		
CHA	APTER 5: CONCLUSION AND RECOMMENDATIONS		
5.1	CONCLUSION	74	
5.2	RECOMMENDATION	77	
5.3	SUSTAINABILITY ELEMENT 7		
REF	ERENCES	79	
APP	ENDICES	84	
	Gantt Chart PSM 1	85	
	Gantt Chart PSM 2	86	

LIST OF TABLES

2.1	Commercially available isocyanate	12
2.2	Crumb rubber preparation method with description	20
2.3	Manufacturing of PUR foam from various past literature	26
2.4	Maximum time of noise exposure	30
2.5	Standard and extended notation for factor setting	37
2.6	Process parameter for the wear test	38
2.7	Statistical design of the wear process	38
2.8	Factorial design of wear process showing treatment combination	39
2.9	Result of wear characterization of the polymeric based materials	39
3.1	Parametric combination for composite foams preparation and	
	experimental	44
3.2	TDI specification (Sigma-Aldrich (M) Sdn. Bhd.)	45
3.3	Properties of palm oil based polyol (PolyGreen Chemical Sdn. Bhd)	47
4.1	Particle Sizes of WTD	57
4.2	Parametric combination for composite foams preparation and	
	experimental values	58
4.3	ANOVA for sound absorption coefficient	64
4.4	Regression static of sound absorption coefficient	64
4.5	Compression strength and density of composite PU foam at	
	50% of compression deformation	70

viii

LIST OF FIGURES

2.1	Basic urethane	9
2.2	Polyurethane alternating hard segment and soft segment structure	10
2.3	Hydrogen bonding interaction in polyurethane	10
2.4	Stress-strain curves for thermal aging at 85°C: (1) unaged, (2) 3 week (3) 9 weeks, (4) 24 weeks, (5) 52 weeks, and (6) 62 weeks	13
2.5	Stress-strain curves for thermal aging at 120°C: (1) unaged, (2) 2 days, (3) 1 week, (4) 2 weeks, (5) 3 weeks, (6) 4 weeks, (7) 9 weeks and (8) 13 week	13
2.6	Network transformation during aging of the polyurethane	14
2.7	Polyurethane structure with different content of RHA (a) 0% Rice Husk,(b) 1% Rice Husk, (c) 2% Rice Husk, (d) 3% Rice Husk,(e) 5% Rice Husk	14
2.8	Polyurethane application based on their physical properties	15
2.9	Microstructure of waste tire rubber and carbon black	19
2.10	Rubber aggregate used in the experiment	21
2.11	Rubber particle in the concrete mixture	21
2.12	Morphology of open porous cel; (a) 0.35 mm diameter of porous cell, (b) 0.77 mm diameter of porous cell, (c) 1.05 mm diameter of porous cell	23
2.13	Closed pore cell morphologies of PU foam, (a) 2% water blister, (b) 6% water blister	23
2.14	Cellular network of polyurethane	27
2.15	Effect of calcite filler of different composition and particle size on indentation hardness of polyurethane foam	28

2.16	Effect of different composition and particle size of calcite filler on tensile strength of polyurethane foam	29
2.17	NVH parts in automotive made from VDM (a) Exhaust system, (b) Engine mount system, (c) Exhaust system hanger	33
2.18	An arrangement of an impedance tube	36
2.19	Graphical display of a two-factor example	37
2.20	variation of wear rate with treatment condition	40
3.1	Flow chart of methodology	43
3.2	WTD particle	45
3.3	Sever machine	46
3.4	Scanning Electron Microscope (SEM)	46
3.5	Foaming mold	48
3.6	PU/WTD composite foaming flow chart	49
3.7	Preparation of PU / WTD composite	50
3.8	PU / WTD composite foaming	50
3.9	Sample used for impedance tube test	51
3.10	Noise absorption impedance test	51
3.11	Sample used for density test	52
3.12	Electronic Densimeter (MD-300S, AlfaMirage, Japan)	53
3.13	Sample used for water absorption test	54
3.14	Sample used for compression test	54
3.15	Sample mounting on the UTM machine	55
4.1	Graph comparison of sound absorption coefficient for different composite foams	59
4.2	Half normal plot for the factor screening	59

х

4.3	Graph of desirability for the independent factors towards the	
	response studied	60
4.4	3D response surface of sound absorption coefficient	61
4.5	Graph of interaction between WTD loading and stirring period for sound absorption coefficient	62
4.6	Plot of residual versus predicted sound absorption coefficient response for composite foam.	63
4.7	Graph of sound absorption coefficient for the control, the best and the worst sample of foams	65
4.8	(a) Neat PU foam cell structure; (b) composite foam cell structure for5 minutes of stirring period; (c) composite foam cell structure for 35minutes of stirring period	66
4.9	Tortuous path in different cell size	68
4.10	(a) Neat PU foam cell structure; (b) WTD particle in composite foam for 5 minutes of stirring period; (c) WTD particle in composite foam for 35 minutes of stirring period	69
4.11	Comparison graph of PU/WTD composite foam with neat PU foam for compression behaviour	71
4.12	Water absorption behaviour for three selected sample of PU foam	72

xi

LIST OF ABBREVIATIONS

PU	-	Polyurethane
WTD	-	Waste Tire Dust
NVH	-	Noise, Vibration and Harshness
DOE	-	Design of Experiment
SS	-	Soft Segment
HS	-	Hard Segment
TDI	-	Toluene Diisocyanate
MDI	-	Diphenylmethane Diisocyanate
HDI	-	Hexane Diisocyanate
IPDI	-	Isopherone Diisocyanate
NDI	-	Naphthalene Diisocyanate
RHA	-	Rice Husk Ash
IIR	-	Butyl Rubber
NBR	-	Butadiene Acrylonitrile Rubber
PPG	-	Polypropylene Glycol Triol
OSHA	-	Occupational Safety and Health Administration
RLDPE	-	Recycled Low-Density Polyethylene
BAP	-	Bagasse Ash Particles
VDM	-	Viscoelastic Damping Material
Ss	-	Sliding Speed
La	-	Load

Sd	-	Sliding Distance
ASTM	-	American Society for Testing and Materials
CLC	-	Combine Loading Compression
SEM	-	Scanning Electron Microscopy
ОМ	-	Optical Microscopy
CB	-	Carbon Black
Min	-	Minute
wt	-	weightage

xiii

LIST OF SYMBOLS

wt %	-	Weight percentage
%	-	Percentage
°C	-	Degree Celsius
°C/min	-	Degree Celsius per minute
mm	-	Millimeter
mm/min	-	Millimeter per minute
m	-	Meter
m/s	-	Meter per second
rpm	-	Revolution per minute
in	-	Inch
Hz	-	Hertz
dB	-	Decible
SWR	-	Wave ratio
R	-	Reflection coefficient amplitude
Rn	-	Sound power reflection coefficient
α	-	Sound absorption coefficient,
A+B	-	maximum pressure of sound
A-B	-	Minimum pressure sound
Κ	-	Number of factors
N	-	Newton
g	-	gram
g/Ml	-	Gram per milliliter
g/m ³	-	gram per meter cube
X_1	-	Waste tire dust loading (wt %)
X ₂	-	Stirring period (minute)
ρ	-	Density
m/v	-	Mass per volume

xiv

\mathbf{W}_{y}	-	Final weight of sample
W_x	-	Initial weight of sample
min ⁻¹	-	minute per second
μm	-	Micro meter
Х	-	Image resolution
A	-	WTD loading
В	-	Stirring period
E	-	Exponential

CHAPTER 1 INTRODUCTION

This chapter briefly explained the background of study for this project. The objective and the scope of research are also included. Besides, the project significance, thesis organization and summary of the chapter are also stated and detailed out in this chapter.

1.1 Background of Study

Over the years, noise, vibration, and harshness (NVH) are not being taken critically during the design stage, and operation of vehicles or machines in their real service condition. As the technology growth, NVH factor has turned into crucial consideration for better improvement (Happian-Smith, 2002). NVH are important especially in the application such as in industrial machine and automotive industries as it effects the user comfortability and safety. Noise can be accepted for human hearing if it was operated within their frequency range while vibration can interfere human physical comfort without sufficient damping.

Generally, the attenuation of noise and vibration can be increased by using a porous material (Zhang *et al.*, 2012). Polyurethane based composite foams were chosen in the research done by Gambang and city (2013) as the porous material for noise absorption and vibration damping medium. Due to combination of two main materials namely as polyol and isocyanate, the foams were made and form a rigid or flexible foam, whereby the flexible foams are commonly consisted of open cell structure, while rigid foams consisted of closed cell structure. Back to several years ago, the polyol used in making of polyurethane are solely based on synthetic polyols such as poly (glycolide), poly (ethylene adipated) and poly (hexamethylene oxide). However, concerning to the green environmental and sustainability awareness, the polyol used in polyurethane manufacturing are already substituted with the

bio-based polyol or vegetable polyol resources. Palm oil are one of the famous raw feedstock that is used as the polyol source for the manufacturing of polyurethane foams. Palm oil could give advantages in reducing the demand for hydrocarbon-based oil towards the creation of low greenhouse gas emission. In addition, palm oil could be obtained at a very reasonable cost. This factor could contribute them to be an ideal solution for cost-saving replacement of hydrocarbon-based polyol without compromising the final product quality

Nowadays, various filler was embedded into the polyurethane based composite foams in order to optimize their related engineering properties such as mechanical and physical attributes. A study conducted by Fiorelli *et al.* (2012) had used sugarcane bagasse as the reinforcement in the polyurethane where it was included in the castor oil based polyol for particleboards production in order to enhance the resulted properties of density, absorption and swelling index, and their modulus of elasticity. By having the sugarcane bagasse filler inclusive within polyurethane, it was found that the physicomechanical properties of produced are resilience and extraordinary sustainable for their usage in the moist environment.

As to control the vibration in NVH, viscoelastic material possesses a higher ability to absorb more vibration effect due to its damping behavior (Sung *et al.*, 2016). According to Jones (2001), damping is one of the main requirement for a good mechanical design of mechanical structures, machines, and vehicles. Rubber particles have been used in many types of research to overcome the limitation of damping behavior. The performance towards the damping is due to the nature of viscoelastic behavior where it has an ability in absorbing vibration for a better comfortability (Issa and Salem, 2013). The dramatic growth of waste tire in this age was recorded due to increasing number of vehicles on the road and over utilization of it. The increasing of waste tire has led to a negative consequence towards their disposal issue. Therefore, waste tire dust is used in the production of polyurethane based composite foams in order to improve the damping behavior in sound absorption for better control of NVH.

Thus far, there are large number of current studies on polyurethane based composite foam which specifically investigate the effect of filler type and its loading to the response for acoustic absorption. Nevertheless, there are still no similar research was dedicated on polyurethane reinforced waste tire dust at various loading with various stirring period of composite foam preparation for noise absorption medium.

This study was conducted to see the relationship and correlation between the effects of waste tire dust filler loadings and stirring time with the noise absorption response. The correlation of the absorption performance with the foam morphologies was analyzed. In addition, other important various support testing of physical and mechanical are also conducted to understand the roles of experimental variables to the obtained findings.

The pores morphologies were observed by using the Scanning Electron Microscopy (SEM) to analyze the characteristic of noise absorption for produced PU based composite foams, with regard to their cell structure of foams. Most important, in achieving the objectives stated for this research, the design of experiment (DOE) approach using two level full factorial strategy was used in optimizing the important major response of noise absorption attributes. Last but not least, through this study, it is hoped that the developed PU/WTD composite foams could be potentially becoming as an alternative advanced materials for next generation high performance noise absorption medium.

1.2 Problem Statement

Noise is an important element that must be considered in many application especially in vehicles and transportation. Most of the vehicle parts either external or internal part are experienced with the effects of NVH exposure. External parts are more likely exhibit the noise and vibration due to tire movement (Backer *et al.*, 2016). Another major factor that also contributed such as the working system in engines, radiator vibration, and timing belt oscillation while internal part tends to affect the passenger's comfort during the vehicle motion (Heibing and Ersoy., 2011). Good comfortability is crucial for vehicle's driver during their travel as it may affect the performance of driving either in a lower or higher velocity and speed. In fact, the comfortability should be attained in whatever road condition during the movement of vehicles. In brief explanation, noise is a type of pollution which could directly trouble the driver and also surrounding environment. Disruption from undesirable noise contributes to a poor NVH control in the automobile application. Such these disruptions tend to produce bad interference to a comfortability while driving the vehicle. According to OSHA, noise which achieve 90 dB and above are categorized as noise pollution where it have a big chance in contribution to permanent human hearing loss. Since materials are always related with the design approach, it is important to select them with careful consideration during manufacturing stage during the production of the mechanical based components. Based on previous studies, there is improvement made in selecting the good materials candidates to tackle this noise issue for an automotive and occupational application.

One of the latest study regarding the improvement of sound absorption was performed by Sung *et al.* (2016). They utilized the polymeric material to enhance the sound absorption performance. The polyurethane composite filled with magnesium hydroxide filler was developed for this purpose. A good structural materials are needed to be formed in order to achieve the desired characteristic of component functionality. As the absorption medium, porous material with homogenous pores dimension structure is necessary to be produced. Polyurethane is chosen as they possessed the porous structure for this intended purpose. As the polyol and the isocyanate material used based on petroleum oil, it contributes to a higher price of the feedstock material. This could be solved by substituting the petroleum oil with biodegradable and renewable source polymeric material. It is therefore suggested that the substitution of the petroleum oil with the palm oil polyol in producing a polyurethane foam are relevant (Pawlik and Prociak., 2012).

Nowadays, the pollutions towards the environment are getting serious. One of the pollutions comes from the burning of waste tire to the atmosphere without any proper treatment which makes the air contaminated with a black smoke (Pacheco-Torgal *et al.*, 2012). As a tire waste are getting dominant with the increasing number of the vehicle, this disposal issue need to be tackled in smart ways. Usage of waste tire dust as a filler reinforcement or cheapener in polymer composite foam is one of the solutions to overcome the waste tire disposal issue where it is indirectly improve the damping behavior as well as noise absorption characteristic of produced PU based composite foams