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ABSTRACT 

 

 

The designing of a multivariable PID control for multi input multi output is 

being concerned in this project by applying four multivariable PID control tuning which 

are Davison, Penttinen-Koivo, Maciejowski and Proposed method. The determination of 

this study is to investigate the performance of selected optimization technique to tune 

the parameter of MPID controller. The selected optimization techniques are Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA) and Bat Algorithm (BA). The 

best MPID method which is Proposed has been choose to be as a controller tuning 

method from the all methods of MPID result tuning that have been compared and 

analyzed. Later, the Proposed has been compared between PSO, GA and BA in order to 

determine which optimization techniques are better based on the system performances 

in terms of transient response. The result obtained for the best optimization techniques 

to be used in Activated Sludge Process (ASP) was the Bat Algorithm with the Proposed 

control tuning method. This project also was done by simulated the algorithm in a 

different types of ASP system which are linear and nonlinear system.   
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background of Study 

 

 Activated sludge process (ASP) is biological process that suspended growth 

secondary treatment process of Wastewater Treatment Plant (WWTP). It is a primarily 

removes dissolved organic solids while involving in controlling the concentration of 

microorganisms and sludge particles that are naturally found in unsettled wastewater. 

Besides, the controller parameters stay remained constant once after the plant been 

commissioned and this process involves a number of interacting controls. Therefore, a 

proper tuning of multivariable PID will improves the performances of WWTP while the 

parameter tuning can be obtained using optimization technique.   

 

1.2 Motivation 

 

 Wastewater treatment plant (WWTP) is become very important nowadays due to 

the increasing of environmental awareness around the world. This situation cause the 

improvement of WWTP is driving enforcement because of the tightened requirements 

for the effluents before being released into the river. Activated Sludge Process (ASP) is 

secondary treatment process of WWTP and quite popular to be known as biological 

process. The complexity process of ASP make it becomes difficult to be handled. Thus, 

it can affect the performance of WWTP producing high quality effluent. With the proper 

tuning of multivariable PID, the performances of WWTP will be improved. Bat 

Algorithm (BA) technique of optimization was used in this project to gain the parameter 

tuning of MPID.  
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1.3 Problem Statement 

 

 Lately much of the efforts are giving an attention on new sources of clean 

energy, transportation and of course, wastewater treatment. An accurate treatment of the 

wastewater is a common issue in all metropolises before its discharge into the receiving 

water. Besides, since the ecological awareness is more important for people and 

politicians nowadays, the quality standards for Wastewater Treatment Plants (WWTP) 

becoming constricted [7]. WWTP also is categorized as a complex system. Therefore, 

an effective control methods need to be implemented for economic and environmental 

reasons, especially its Activated Sludge Process (ASP) because it involve a biological 

process. Unfortunately, an increasing claim for a more stable effluent water quality [6] 

makes a scalar PID based control systems are become insufficient anymore due to 

complexity of the system such as interrelated and highly nonlinear of its biological, 

physical and chemistry phenomena. Hence, as the system becomes more complex, the 

process of tuning controllers also becomes more difficult [8].  

  

 Then, the multivariable control systems are really needed to overcome that 

problem by using the suitable tuning method of its controllers and optimization 

techniques that can helps obtained an optimal solution to get the best values of 

parameter tuning  in order to have good transient response performances of the system.
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1.4 Objectives 

 

The aim of this project is to gain parameter tuning based on selected 

optimization technique. So, the goals of this project are:  

 

1) To implement the Multivariable PID (MPID) control tuning method of Activated 

Sludge Process. 

2) To tune MPID parameter using optimization technique, Bat Algorithm (BA), 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for MPID 

control tuning method. 

3) To compare the system performances in term of transient response between 

selected optimization techniques  

 

 

1.5 Project Scope 

 

 This project implements MPID controller design for activated sludge process. 

Davison, Penttinen-Koivo, Maciejowski and Proposed Combined method are the four 

types of MPID tuning that will be used in this project. Then, the scalar parameter MPID 

controllers are being adjusted by the selected optimization techniques which are Bat 

Algorithm (BA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) in 

the system. All the simulation steps are done by using MATLAB/SIMULINK software 

and the results of this project are presented based on the performances of linear and 

non-linear system in terms of transient response and performances index. 
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1.6 Project Report Summary 

 

This thesis basically is distributed into five chapters and this section delivers a 

brief overview of the chapters comprised in it. 

 

Chapter 1: Introduction 

 This section guides readers to the elementary of this project, such as overview of 

activated sludge process, objectives, problem statement and project scope towards it. 

 

Chapter 2: Literature Review 

This part provides a simple explanation on the concept and previous work of 

related literature studies. The activated sludge process flow, controllers, MPID tuning 

and optimization techniques are being reviewed.  

 

Chapter 3: Methodology 

 In this section, the project flow and methodology along to accomplish this 

project are being presented. Davison, Penttinen-Koivo, Maciejowski and Proposed 

Combined method are the types of MPID tuning that will be explained. Instead, the 

process of implementation of optimization technique will be stated in this chapter 

 

Chapter 4: Result and Discussion 

This section shows the results of system performance in term of transient 

response by using MPID tuning method. Its scalar parameter is being obtained via 

tuning with selected optimization technique. The results are compared and the specific 

discussions will also include in this section. 
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Chapter 5: Conclusion and Future woks  

 This section contains of conclusion based on the whole methodologies and 

outcomes. Then, some suggested work that can be done for a future is also mention in it.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

 This chapter explained about the definition of related subject or issues for this 

project. From this review, a several MPID methods and optimization technique will be 

chosen for additional studies. Hence, this section also reviews the related previous 

researches that have been done and other topic connected with this project. 

 

 

2.2 Activated Sludge Process 

 

 Wastewater treatment plant (WWTP) is a place where the wastewater treatment 

process being carried out. The wastewater treatment process is designed in order to 

achieve enhancement in the quality of the wastewater that including three stages of 

processes [1] which are primary, secondary and tertiary as shown in Figure 2.1. The 

primary stage is also known as mechanical process, was aimed to eliminate gross, 

suspended and floating solid from raw sewage by including screening to trap solid 

object and sedimentation. Secondary stage is biological process. While, tertiary or 

advanced stage is a last stage where from this stage, almost all the impurities from the 

sewage will be removed.  
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Figure 2.1: The Wastewater Treatment Process 

 

Activated sludge process is the most widely used for biological wastewater 

treatment plant [2] and a type of secondary treatment where a high level of elimination 

of biodegradable organic pollutants are given to keep receiving water quality that 

clarification alone cannot provide. The activated sludge process also can speeds up 

decomposition by adding an activated sludge into the wastewater where the activated 

sludge particles hold many living organisms that can feed on the incoming wastewater 

[3]. This process is divided into two parts; an aerator tank which where the growth of 

organisms take place and a secondary settling tank, in where the leaving of clear liquid 

free of organic material happened [4]. 
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Figure 2.2: Activated Sludge Process 

 

 Figure 2.2 illustrated on how the process of activated sludge system takes an 

action [5]. This process starts with the incoming of influent to the aeration tank. 

Aeration tank is where the place of biological react occurred to segregate wastes from 

water and form waste decomposition. During that time, microorganisms are inject in 

and being contact in the wastewater; they feed and grow by the source of oxygen 

supplied into the tank. Then, the mixed liquor which is the mixture of wastewater and 

microorganisms will flow into secondary clarifier and begin to aggregation together. 

During the bio-flocculation process, the particles start to clump together, called floc and 

it will be settle to the bottom tank of the clarifier as sludge (separated completely from 

water). From the secondary clarifier tank, the relatively clear liquid above the sludge 

will flow on for further treatment while the sludge is driven back to the aeration tank, 

named Return Activated Sludge process (RAS). Lastly, the sludge that is intentionally 

eliminated from the ASP is denoted as Waste Activated Sludge (WAS).   
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2.3 Activated Sludge Process Controller 

 

 Nowadays, the health of natural ecosystems has been giving more attention 

cause of the effect from the human development in very different ways [6] by increased 

environmental awareness in terms of water pollution anticipation. The constricted laws 

and requirements toward quality of water are fortunately acting like a driving force for 

the development of wastewater treatment plants (WWTPs) [7]. The complex, 

interrelated and highly nonlinear of its biological, physical and chemical phenomena 

make the WWTP become more difficult to be controlled while optimizing operating and 

management costs [8]. 

 

 Meanwhile, the activated sludge process (ASP), a biological processes are 

usually popular methods used to remove carbon as well as components of nitrogenous 

from wastewater beforehand it being released [9]. ASP has been widely case study in 

the automatic control perspective, for example by Yong et al. [10] the concentration of 

ammonia in the fluent of the wastewater plant is reducing by implementation of 

cascading PI-like controllers with feed-forward actions. Different with the model 

predictive control (MPC) by Holenda et al. [11] proposed that MPC method 

determining and controlling the dissolved oxygen concentration only. A decreasing of 

more than 25% in power usage and an increasing in plant efficiency are the significant 

benefits that can be obtained of using the MPC system [12]. 

 

 A previous study done by Shen et al. [13] where a multiple input approach is 

implemented, by the recycle flow rates, the oxygen transfer coefficient of three aerated 

tanks and a complementary carbon source. Fuzzy controller has proved its efficiency to 

be implemented at WWTPs for improving the denitrification or nitrification process but 

these methods gives a highly cost and behaves relatively rough toward its control 

actions [14].  
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Rojas et al. [15] proposed that in order to be able to actuate based on the 

measurements of the disturbance, a three degree of freedom controller, tuned with the 

Virtual Reference Feedback Tuning (VRFT) is offered and applied to the WWTP. The 

three degree of freedom controller is an extended from a two degree of freedom PI 

which where control of nitrate concentration by manipulating the internal recycle flow 

rate, plus disturbance feed-forward action that can control ammonia using ammonia 

measurements from the influent. This methodology viewing the usability of model-free 

approach for WWTP control although there are no clear rules to select neither an 

appropriate close-loop target function nor the correct parameterization of the controllers 

 

2.4 Multivariable PID 

 

 PID stands for Proportional Integral Derivative is a type of controller that 

encouraging to be used with more than 90% of industrial controllers due to its well-

known robustness and its straightforwardness where the structure is easy to understand 

[16]. The structure of PID a combination of “three terms” and the transfer functions are 

given by (2.4.1) and (2.4.2) where proportional term represented gain factor, integral 

term by an integral and derivative term by a differentiator. Each of them has their own 

specific character to make sure better system performance. P-term decreases error but 

does not remove it. I-term eliminates the error but have a tendency to make the system 

oscillate while D-term improves the speed of the responses [17]. 

 

 ( )     
  
 
                                                                                                          (     ) 

 ( )    (  
 

   
    )                                                                                              (     ) 

[
  
  
]  [

   ( )    ( )

   ( )    ( )
] [
  
  
]      

 (2.4.3) 

 



11 
 

 
 

 Along the implementation of PID controller due to the popularity of its 

advantages, this controller has limitation to control multivariable system. Multivariable 

process is a system with combination more than one variables at the input or output to 

be controlled in a system and a type of MIMO system which means multi-input, multi-

output system. Figure 2.3 shows a multivariable system with PID controller and its 

transfer function matrix is stated at (2.4.3). 

 

Figure 2.3: Multivariable System with PID Controller 

 

 MIMO system can be divided into two, centralized and decentralized controller. 

Centralized controller only involves one loop while decentralized controller involves 

several loops. The multivariable system is the system that apply centralized controller 

since its deal with MIMO by using single controller. Then, the decentralized controller 

was applied to another system called Multi-loop where each control variables are 

controlled by different controller [18]. Figure 2.4 shows a centralized controller for 

multivariable system, while Figure 2.5 shows a decentralized controller for multi-loop 

system. 
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Figure 2.4: Centralized Controller for Multivariable System 

 

Figure 2.5: Decentralized Controller for Multi-loop System 

 

Unfortunately, sometimes interactions phenomena can be occurred in MIMO 

system and it happen when loop gain in one loop also depends on other loop gains, 

particularly multivariable system [19]. Differ to the multi-loop system that does not 

acknowledge the interaction phenomena due to the structure of loop control which base 

on a single loop basis [20]. An interaction effect can be shown in (2.4.4) and (2.4.5). 

Besides, another factor which is quite important in multivariable system is input/output 

pairing problem. A number of quantitative techniques can be used to determine the right 

pairing of the manipulated and controlled variables [19]. So, the MPID is challenging to 
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build rather than PID that implement in SISO system because it is does not involved an 

interaction [21].  

        ( )       ( )       (2.4.4) 

        ( )       ( )       (2.4.5) 

 

 

2.5 Multivariable PID Tuning Method 

 

 

Multivariable PID tuning method can be classified into two parts; parametric 

and non-parametric methods. Parametric methods use whichever model or experiment 

data to determine the controller parameters and are mostly defined as offline tuning 

methods, through online approaches have also been tested. While, non-parametric 

methods only partly use models such as critical states and are suitable for online use as 

well as for application without previous extensive plant studies [22]. The example of 

parametric tuning methods are Biggest Log modulus Tuning (BLT), gain and phase 

margin, minimum variance control, internal model control, and robust decentralized 

method whereas Davison, Penttinen-Koivo and Maciejowski are categorized on non-

parametric tuning methods. Figure 2.6 shows the PID turning method classification. 

 

 Virtual Reference Feedback Tuning (VFRT) is an example of one-shot 

technique which means only one set of data required to define the controller. Campi et 

al. said that VRFT method converts the model reference control problem into an 

identification problem, where the controller is the transfer function to be identified 

based on some “virtual signals” figured from a batch of data taken directly from an open 

loop system [23]. This method has been implemented to a variety of cases [24, 25, 26] 

including in the field of WWTPs [27] because of its easiness of implementation, 

flexibility to be used in different kind of control systems and the characteristic of using 
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only data from the system to minimize a simple optimization problem before the 

parameters of digital controllers could be determined.  

 

 Another one-shot method is Correlation based Tuning (CbT) by Karimi et al. 

[28]. CbT can finds values of a limited order controller by minimizing the relationship 

between closed-loop error of the system (based on a desired closed-loop behavior) and 

the reference to the process. 

 

Figure 2.6: PID Turning Method Classification 

 

  Hjalmarsson et al. in [29] had study an Iterative Feedback Tuning (IFT) which 

is an example of iterative methods tuning (several experiments have to be performed in 

order to express the controller of the system). IFT work out on an unbiased gradient of a 

performance index to improve iteratively the tuning of the parameters of a reduced 

order discrete time controller. The multivariable IFT techniques with a multivariable 

step wise safe switching algorithm have been proposed by Ginestet [30]. The need for 
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identifying the MIMO linear models that describe the plant around trim points can be 

eliminates using the IFT algorithm for tuning safe switching controllers. 

 

 

 Davison, Penttinen-Koivo and Maciejowski are always been selected due to its 

capability in dealing with interaction in simple ways and involves only plant step tests 

or plant frequency responses at a single frequency [31]. The Davison method presents 

decoupling at low frequency by a constant gain compensator, also guarantees 

asymptotic stability and asymptotic tracking for a particular form of disturbances. 

Differs to the Penttinen-Koivo, this method decouples at high frequency. Maciejowski 

method, the plant is diagonalized at a particular bandwidth frequency to minimize the 

interaction around the system bandwidth. Instead of three methods mentioned, N. A. 

Wahab [32] was introduced The Proposed Combined method that uses the principles of 

Maciejowski in diagonalizing system near the bandwidth frequency to improve the 

control performance and ease the difficulties in finding a right bandwidth frequency.  
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2.6 Optimization Technique 

  

 Optimization is process of finding an ideal solution to get the best values of 

parameters for the problem under stated conditions by execute procedure in comparing 

several solutions till an optimum solution is found using an optimization algorithm. In 

other words, it is the process of modifying the inputs for a vector to find the maximum 

and minimum result. Problems in optimization can be classified into four groups; 

Metaheuristic, Combinatorial optimization, Linear Programming and Integer 

programming [33, 34].     

 

 Optimization problem can be settled by using two main methods; Stochastic and 

Deterministic algorithms [35]. Stochastic algorithms characterized on probability 

translation rules where it has randomness embedded in their nature. Even if the initial 

conditions are kept same, it will produce different solutions at every run. While for the 

deterministic algorithms, it makes use of certain rules for moving from one solution to 

other solutions. These algorithms have a tendency to get stuck in local optima because it 

will generate the same result for every run, if their starting conditions are the same. 

Therefore, outsider researchers are preferred the stochastic algorithms to avoid from 

local minima. 

 

Metaheuristic algorithms are solution approaches that conduct an interaction 

between local improvement procedures and higher level strategies to generate a process 

capable of escaping from local optima and performing a robust search of solution space. 

These algorithms are part of stochastic algorithms where it derives their inspiration 

based on nature world. Besides, the capability to handle complex non-linearity, 

discontinuities in the objective function, discrete handling and multi-objective 

optimization are the advantages of metaheuristic algorithms [36]. The easy 

implementation and accurate result production makes metaheuristic algorithms are 

proposed to be the most efficient algorithms to solve the optimization problems. 
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There are certain types of optimization algorithm that fall under metaheuristic 

technique. Figure 2.7 shows the metaheuristic algorithm for optimization where most of 

them are inspired by nature or animal. 

 

Figure 2.7: Metaheuristic Algorithm for Optimization 

 

In 1983, Kirkpatrick et al. was introduced one type of the metaheuristic 

technique, Simulated Annealing (SA), which popular with its trajectory-based [37]. Its 

working principles are based on the technique of nature performs an optimization of the 

energy of a crystalline solid when it is annealed to eliminate defects in the atomic 

arrangement. In other words, it based on the annealing process of metals during heat 

treatment. Fred Glover recommended a new approach, which he called Tabu search in 

1986. The main objective of this algorithm is to allow local search (LS) methods to 

overcome local optima. The advantage of Tabu search is improve efficiency of the 
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exploration process by keeping track of information and decisions used previously 

during the search [38].  

 

Meanwhile, Harmony search is a music-based metaheuristic optimization 

algorithm, proposed by Zong Woo Geem et al. in 2001 [39]. It was inspired by the 

observation that the aim of music is to find for a perfect state of harmony where the 

perfectly harmony is determined by an audio aesthetic standard. Evolutionary 

algorithms (EA) are the name for a subcategory of Evolutionary computation model 

using randomness and genetic operators to a specific degree [34]. Genetic algorithm 

(GA) and Differential evolution (DE) are categorized under evolutionary algorithm.  

 

Swarm intelligent (SI) is inspired based on the nature collective behavior of likes 

flocks of birds or social insects. Their characteristics such as co-evolution, self-

organization and learning during iteration process makes SI become more popular 

among metaheuristic algorithms. Groups of metaheuristic technique based on SI are Ant 

Colony Optimization (ACO), Firefly Algorithm (FA), Cuckoo Search (CS), Bee 

Algorithm and Particle Swarm Optimization (PSO).  

 

Ant Colony Optimization (ACO) was introduced by Dorigo and further 

developed by the others developers. The characteristic of behavior of social ants in 

searching the best and shortest path to the food source was became an inspiration of 

ACO [40]. In 2007, Xin-She yang was proposed another metaheuristic algorithm which 

is Firefly Algorithm. It was develop based on idealization of the flashing characteristic 

of swarming fireflies in the tropical summer [41]. While, the CS algorithm is a 

population based, on the brooding characteristic of bird types, named cuckoo that lay 

egg in nest of other birds. This algorithm was introduced by Yang and Deb in 2009. 

This algorithm also can be used competently for the removal noise from the network 

[42]. Last but not least, the other class of metaheuristic algorithms is bee algorithms. 

This bee algorithm was inspired by the foraging behavior of bees [43] and this 
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algorithm can be further expanding into another concept of bee-metaheuristic 

algorithms.  

 

2.6.1 Bat Algorithm 

   

 Bat Algorithm (BA) is another type of metheuristic swarm intelligent 

optimization algorithms. It was introduced by Yang in 2010 and was inspired by the 

behavior of micro bats which use echolocation pulses with different emission and 

sound. On the other hands, it is based on the echolocation capability of micro bats 

guiding them on their foraging actions [44]. Yang who idealized rules of this algorithm 

presents that all bats use echolocation to sense distance. Besides, they can differentiate 

between victim and surrounding barriers in some unknown way because Yang found 

that the bats can automatically adjust their speed depending on the proximity of their 

target although they actually are fly randomly with uncertainly speed.  In [45] stated 

that BA also contributed in development of the global numerical optimization where it 

is inspired by the social manners of bats and the phenomenon of echolocation to sense 

distance. 

 

2.6.2 Genetic Algorithm 

 

 In a period of time between 1960s and 1970s, Genetic algorithms (GA) were 

presented by John Holland based on the supposition of natural selection and genetics, 

also known as population-based. Its working principles are used techniques inspired by 

evolutionary biological like crossover (recombination), mutation and selection for 

adaptive and artificial systems [46]. GA technique is widely used and quite popular 

among evolutionary algorithms due to its advantages of GA over traditional 

optimization algorithms are the ability of dealing with complex problems and 
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parallelism. GA is also a popular approach to optimize non-linear systems with a large 

number of variables. 

 

2.6.3 Particle Swarm Optimization  

 

  James Kennedy and Russel Eberhart was developed an optimization technique 

for continuous nonlinear functions in 1995, and it called Particle Swarm Optimization 

(PSO) which it is categorized under population-based metaheuristic algorithms [36]. 

The working principle of PSO based on social sharing of swarm for example fish 

schooling or birds flocking. It can be imagined that each particle symbolizes a bird, 

while the swarm model as particle in space. The swarm of particle communicates 

through adjustment of velocity and position. PSO concept can be explained in more 

details by using this example situation, for the bird to hunt food in the field. Each of the 

birds that fly around will remember their last history, if they found the other location 

that much better before the past and they will capture that memory to make a selection 

towards that place with more source of food. The effectiveness of PSO makes it widely 

used in several of field. Moreover, PSO has been found modest, quite easy to 

understand and it keeps an eye on the principles of natural selection and search 

algorithm [47].  

 

 

 

 . 
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2.7 Performances of BA, GA and PSO based on Previous Research 

 

 Bat algorithms seem quite popular among optimization techniques because 

there are some enhancement towards this algorithm from the previous researcher to 

improve the performance of system such as a Binary Bat Algorithm (BBA) [48], Bat 

Algorithm for Multi-objective Optimization (MOBA) [49] and others [50]. In [51], 

Jonathan Perez et al. used a fuzzy system to make some enhancement of the BA to 

improve the performance of the algorithm compared to other metaheuristic 

optimization. 

 

In previous research by Shubham et al. [52], they came with strong conclusion 

that GA based optimization on PID controller gives least rise time and settling time 

among Particle Swarm Optimization (PSO) and Bacteria Foraging Optimization (BFO). 

GA also has been proven to be more efficient in many fields such as fuzzy logic control 

design, system identification and others. 

 

 A study of performance between conventional gain tuning and modern heuristic 

approach was done on the model of a DC motor in 2011 by Mahmud et al. [53]. A 

Ziegler-Nichols method of conventional gain tuning and PSO of modern heuristic 

approach was being selected in this study. From the results obtained, the came with a 

strong conclusion that conclude that the designed PID controllers using PSO-based 

optimization have less overshoot compared to that of the classical method, Ziegler-

Nichols although the classical method is good for giving us as the starting point of what 

are the PID values. Therefore, the advantage of using a modern optimization approach 

is observed as an effective method to improve performance of the PID system and PSO 

is the one of the current and effective optimization tools among of them. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1 Introduction 

 

 This topic comprises the methodological issues that had been used in this 

project. The main resolution of this topic is to gather information that related to the 

approaches and techniques that have been used in this chapter development. Each stages 

of the work are divided into several sections which are activated sludge process, MPID, 

optimization technique and objective function and simulation. 

 

3.2 Project Flow 

 A flow chart is used to illustrate the flow of this study and it shows in Figure 3.1 

and Gantt chart in Appendix A1. After the selection a proper title from the offered title 

list was done, a project planning and outcome was determined with the monitor from 

supervisor, such as the objectives, project scope, methodology and project report 

summary of this project. Then, a literature review is done based on each subject related 

in order to understand better about the study and previous work of a researcher about 

the topic. From a lot of reading during collecting all the information, the ASP modeling 

from the most reliable previous research had been chosen.  
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Figure 3.1: Methodology Flowchart 
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 In this project, there are four methods of MPID turning has been selected which 

are Davison, Penttinen-Koivo, Maciejowski and Proposed Combine method. This 

selection is based on its ability in dealing with interaction in simple ways and involves 

only plant step tests or plant frequency responses at a single frequency [31]. From the 

previous research, optimization technique was already known and used in ASP control 

modeling for example GA and PSO. Based on the reading, Bat Algorithm (BA) was 

selected as new optimization technique that will be used for ASP. Therefore, they will 

also being applied to compare with the selected optimization technique. 

 

 After all the related point regarding to this project were determined, the system 

will be develop and simulate by using MATLAB Simulink software in the differences 

mode of system which are linear and nonlinear system. Then, the result will be analyzed 

and discussed before come out with a proper conclusion. 
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3.3 Activated Sludge Process 

 

 The non-linear Activated Sludge Process that has been selected and will be used 

for this research is taken from [18]. Activated sludge processes are biological that 

removes pollutant from the wastewater. The system comprise of aerator and settler as 

shown in Figure 3.2. The bioreactor (aerator) includes secondary clarifier to maintain 

the biomass in the system while producing high quality effluent. Part of settler output is 

recycled to allow the right concentration of microorganism the aerated tank. 

 

 

 

 

 

 

 

Figure 3.2: Block Diagram of Activated Sludge Process 

 

The model was derived based on component mass balance equation which yields a set 

of non-linear differential equation given by (3.3.2) - (3.3.5).  

 

Mass balance equation = Input – Output ± Reaction   (3.3.1) 

 ̇( )    ( ) ( )   ( )(   ) ( )    ( )  ( )   (3.3.2) 
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Where 

  ( )          (     ) 

  ( )            (     ) 
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  ) 

  ( )                   (     ) 

                  (   ) 

                 (     ) 

 

 ( ) , ( ) ,   ( ) and  ( ) are the state variables which represents the 

concentration, biomass, substrate, dissolved oxygen and recycled biomass respectively. 

    and     represents concentrations substrate and dissolved oxygen of the fluent 

stream. Ratio of recycled and waste flow to the influent flow rate are given by   and  . 

Specific growth rate   produced cell mass .    is constant, while    and     is 

maximum dissolve oxygen concentration and oxygen mass transfer coefficient. 

Relationship between maximum growth rate to substrate and to dissolve oxygen 

coefficient is given by Monod equation as shown in (3.3.6).      is the maximum 

specific growth rate,    is the affinity constant and    is the saturation constant. 
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For the purpose of this study it is assume that only two outputs are desired to be 

control, the substrate and dissolved oxygen. Another hypothesis is that, there is 

knowledge of parameter and constant value.  

 

The following step is to linearize the nonlinear model. For simplification the 

state space in (3.3.7) were represent in (3.3.8). Linearization of the system represented 

in (3.3.10) was linearization around the operating point described by the data 

represented in Table 3.1, while Table 3.2 show the other parameters value.  

 

 ̇                  

                (3.3.7) 

 ̇   (   )                   (3.3.8) 

 ̇  

[
 
 
 
 
 

 
  ̇
̇

̇
̇

]
 
 
 

      [

 
 
 
  

]      [
 
 
]     (3.3.9) 

   

[
 
 
 
 
 
 
 
 
   ̇

( )

  ( )
 

  ̇( )

  ( )

  ̇( )

  ( )

  ̇( )

   ( )

  ̇( )

  ( )

  ̇( )

  ( )

  ̇( )

  ( )

  ̇( )

   ( )

  ̇( )

  ( )
 
  ̇( )

  ( )
 

  ̇( )

  ( )

  ̇( )

   ( )

   ̇ ( )

  ( )

   ̇ ( )

  ( )

   ̇ ( )

  ( )

   ̇ ( )

   ( )]
 
 
 
 
 
 
 
 
 

   

[
 
 
 
 
 
 
 
 
   ̇

( )

  ( )
     
  ̇( )

  ( )

  ̇( )

  ( )
     
  ̇( )

  ( )

  ̇( )

  ( )
     
  ̇( )

  ( )

  ̇( )

  ( )
     
  ̇( )

  ( )]
 
 
 
 
 
 
 
 
 

         (      ) 

 

 

 

 



28 
 

 
 

Table 3.1: Initial condition value 

Parameter Value 

 ( )    (     ) 

 ( )   (     ) 

 ( )  (     ) 

  ( )    (     ) 

   ( )    (     ) 

   ( )    (     ) 

        (   ) 

    (    ) 

 

Table 3.2: Kinetic parameter value 

                        
   

          (   
  )        

            (   
  )      (   

  ) 

 

 

The results of linearization yields linearized matrices A, B, C and D given in (3.3.11). 

By using (3.3.12) the matrices manipulated into transfer functions matrix form which 

represent by (3.3.13) - (3.3.16). 
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 In multivariable system, interaction effect are taken into consideration, hence 

RGA calculation is compulsory. RGA calculations are given by equation below and the 

calculation result is shown in (3.3.20) – (3.3.22). Since the result near to diagonal 

matrix, hence it can be conclude that manipulated variable 1 (MV1) controlled by 

control variable 1 (CV1) and manipulated variable 2 (MV2) controlled by control 

variable 2 (CV2). 
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3.4 Multivariable PID Tuning 

 

 This section will discuss the method used to tune the parameter of MPID 

controller. MPID controller is used due to consideration of multivariable system. Then, 

four types of MPID tuning have been selected which are Davison, Penttinen-Koivo, 

Maciejowski and Proposed Combined. These methods had been chosen due to its ability 

in dealing with interaction in simpler ways and it also required only step or frequency 

test. The aims are to obtain the substrate and dissolved oxygen concentrations at desired 

level. 
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3.4.1 Davison method 

 

 Davison is one of the MPID tuning methods and it is known to diagonalizing 

plant at low frequency. In Davison, only integral term is taken into consideration and 

the expression given by (3.4.1). 

 

 ( )    
 

 
 ( )            

  ( )                                                                                 (     ) 

 

 where    is the integral feedback gain,  ( ) is the open loop transfer function matrix 

and   as the scalar tuning parameter. Parameter tuning,   Davison is adjusted in order to 

obtain a better closed loop system performance. 

 

3.4.2 Penttinen-Koivo method  

 

 For the Penttinen-Koivo method, the plant is diagonalized at high frequency. 

Based on the controller given in (3.4.2), proportional and integral terms are taken into 

accounts. It also can be observed that the equation is an extension of Davison method. 
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   and    is given by (34) and (35).   and   value can be obtained from output and 

input matrices in state space equations. In this method, two scalar parameter can be tune 

which are   and  . 

 

3.4.3 Maciejowski method  

 

 Maciejowski method also use the proportional and integral term of PID, it differ 

with Penttinen-Koivo method in the way of Maciejowski try to diagonalize the system 

near to bandwidth. The expression of the controller can be given by (3.4.5). 

 

  (     
 

 
)                                                                                                                  (     ) 

     
  (   )                 (3.4.6) 

     
  (   )                   (3.4.7) 

 

where    is the proportional gain,    is an integral gain,    is the bandwidth frequency. 

The    (   ) results in a complex number, with that a real approximation given in 

(3.4.8) are necessary. In this method, three parameters can be tune which are   ,    and 

   .  But for the purposed of the study only scalar tuning will be tuned.  

 

 (   )  [ (   )   
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3.4.4 Proposed method 

 

 The Proposed Combined method is introduced by [18]. In this method it uses the 

criteria of Maciejowski in diagonalizing system near bandwidth frequency. Proposed 

Combined method is being developed to reduce the difficulties in finding the suitable 

bandwidth frequency. Nevertheless, it is shows similar behavior with Maciejowski. The 

expression of Proposed Combined controller is shown in (3.4.9). 

 

 ( )   ( )(     )
 

 
                                                                                                  (     ) 

  [  ( )  (   )  ]               (3.4.10) 

  

where   is given in (3.4.10) and   is a constant value between [0, 1]. By that, three 

scalar tuning will be tuned in this method which are  ,   and  . 
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3.5 Optimization Technique 

 

 Optimization technique can be considered as the main part in this study. There 

are three of optimization techniques that have been selected for the purpose of the 

studies which are PSO, GA and BA. PSO and GA are the most popular optimization 

technique available in this moment while BA is the latest optimization technique. All of 

them are used to tune the scalar parameter tuning of MPID that has been discussed 

earlier. 

 

 

3.5.1  Bat Algorithm 

 

 The BA is a novel metaheuristic swarm intelligence optimization method 

developed for global numerical optimization. This algorithm is inspired by the social 

behavior of bats and the phenomenon of echolocation to sense distance. The idea rules 

of BA originally presented by Yang et al. in 2010. The approximate rules of BA can be 

categorized into three. First, all the bats use echolocation to sense distance, and they 

also know the difference between food or prey and background barrier in some 

unknown way. Second, bats fly randomly with velocity at position with a fixed 

frequency, varying wavelength and the loudness to search for prey. They can 

automatically adjust the wavelength of their emitted pulses and adjust the rate of pulse 

emission depending on the proximity of their target. Lastly, the third rule is although 

loudness can vary in many ways, we assume that the loudness varies from a large to a 

minimum constant value.  

 

The overall flow of BA is shown in Figure 3.3. Based on that, it can be seen that 

the basic or standard BA being used and further explanation will also discuss. 
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1. Initialize the initial population of bats 

2. Setting the parameters; pulse frequency, pulse rate, loudness 

3. Generate the position and velocity for initial bats 

4. If result of rand>pulse rate is yes, select the solution among best solution 

5. If result of rand>loudness and Fnew<=fmin is yes, accept new solution 

6.  Rank the bats and determine the best one 

7. Go back to step 3 and repeat all the step until stopping criteria is met 

 

 The optimization of BA algorithm is started by initialize the number of 

population, number of iteration and search range. Then, a certain parameters need to be 

setting which are pulse frequency, loudness and pulse rate. All the related initializing 

parameters that will be used in this algorithm are tabulated in Table 3.3. For the process 

on finding the initial solution, the initialization will be based on the random value with 

the range search is set in earlier stage by using the equation given in (3.5.1). This 

process will be repeated depending on the number population size of bats. The fitness of 

each population also will be determined during this process and the initial best solution 

is obtained from the minimum fitness of each population. The minimum fitness also will 

be indicated as the initial minimum frequency, fmin. 

                        (                 )                         (     ) 

 

Table 3.3: Parameter initialization in BA 

Initialization 

Population size = 50 No. of iteration = 100 

Search range = 0-10 

BA initialization 

Loudness = 0.95 Max. frequency = 2 

Pulse rate = 0.9 Min. frequency = 0 
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 Next is the process of generating the position and velocity for initial solution. In 

order to determine the position and velocity, the frequency of the bats, Fnew must be 

evaluate first with the random number in the range of [0, 1] by using the equation given 

by (3.5.2). The algorithm continued with finding the new velocity and position for each 

particle in order to improve the search for solution. The new velocity will be calculated 

by using the equation given in (3.5.3). However, the new particle position is obtained by 

summing the current position with the new velocity value which express in (3.5.4). 

 

             (         )                                                                  (     ) 

             (          )                                                                              (     ) 

                                                                                                                       (     )

  

where 

     : New frequency of bats 

  
  : Velocity of the     individual at iteration   

  
  : Best position of the     individual at iteration   

      : Position of the     individual at iteration   

 

 The comparing process between random number and pulse rate must be done in 

order to select the solution of bats among the best solution and local solution also is 

generate. If the result comparison of random is larger than pulse rate is true, the solution 

of bats among the best solution is selected. Otherwise, the step will straight go to next 

comparison process. If the result comparison between random is larger than loudness 

and Fnew is less than fmin is true, the new solution is selected. Then, the bat will rank 

and the best one is determined.  
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 Lastly, the algorithm will continue the iteration until the stopping criteria is met. 

The performance index of BA is determined by the value of fitness function. The better 

the fitness function, the better the performance index with smaller error (ITSE value). 

 

 

3.5.2 Genetic Algorithm 

 

 Genetic algorithm (GA) introduced by John Holland in 1975 is an intelligent 

techniques which inspired by evolutionary biology such as inheritance, mutation, 

selection, and crossover. GA also is a local search technique that used to search 

approximate optimal solutions for an optimization and search problems. It starts from a 

population of completely random individuals and occurs in generations where each 

generation of GA, the fitness of the whole population is evaluated. Then, multiple 

individuals are stochastically selected from the current population based on their fitness 

and they are modified to form a new population. For the next iteration of the algorithm, 

the new population obtained is then used.   

 

 There are two popular selection mechanisms in GA that used to help in the 

reproduction stages, roulette wheel and tournament wheel. For this project, roulette 

wheel has been selected to be used as selection mechanism. The concept of roulette 

wheel selection can be expressed by imagining a wheel where each chromosome 

occupies an area that is related to its fitness value. A fixed marker will determine which 

chromosomes will be selected to reproduce into the mating pool when a spinning wheel 

stops. However, this selection mechanism needs more numerical computations. 

 

The overall flow of GA is shown in Figure 3.4. Based on that, it can be seen that 

the basic or standard GA being used and further explanation will also discuss. 
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Figure 3.4: GA Flow Chart 
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1. Initialize a group of random population with set of different chromosomes 

2. Obtain the fitness function for each random chromosomes 

3. Select half from the total population to be produce 

4. Randomly assign each of the chromosomes as parent 1 and parent 2 

5. By using one cut point method, cut both parents into random cut-point and 

exchange between cut-point of parents 1 and parents 2 

6. Do mutation by flipped a random bit 

7. Evaluate the new population fitness function 

8. Combine the new population with the previous population that selected to 

reproduce and record the best performance index 

9. Go back to step 2 and repeat all the step until stopping criteria is met 

 

 A binary type of GA algorithm is being used for this study because binary are 

easier to alter when it comes to crossover and mutation process. Since the parameter 

tuning will be parameter tuning will be the real number, hence conversion from binary 

to real and real to binary is compulsory. First of all, it is required to know the bit 

number that is required based the maximum and minimum range of search which 

defined by the user. Since, it is strongly belief that the values in four decimal places, 

hence equation (3.5.5) is use. After the number of bit are known, the chromosomes can 

start to be initializing by assigning randomly 0 to 1 according to the number of bit 

calculated earlier. The processes are repeated until one complete population is 

generated. If there is parameter need to be tune the total bit number will be summation 

of bit number of gene 1 and gene 2. The other important thing of genetic algorithm is 

that the number of population must be in an even number, so that the reproduction 

process will be easier. All data in GA initialization is given in Table 3.4. 
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Table 3.4: Parameter initialization in GA 

Initialization 

No. of particles = 50 No. of counter = 10 

Search range = 0-10 No. of iteration = 100 

GA initialization 

   = 0.6    = 0.1 

  

 After the initialization process is done, it is required to calculate performance 

index of each initial chromosome. A binary to real conversion in (3.5.6) is required as 

fitness evaluation in real number. Conversion from real to binary again required after 

the fitness value is obtained. 

 

      (                 )     
                                                         (     ) 

             (             )  
     

    
                                                (     )    

                         (             )                                      (     )

  

 

 The selection process will then takes places. Roulette Wheel selection is used as 

selection technique in this study. Each chromosome in the population will allocate in 

section of roulette wheel and the area is depending of the performance index. The 

bigger the performances index value the bigger its section, hence the bigger it’s change 

to be selected. The probability can be calculated using equation in (3.5.8). With the 

cumulative probability is equal to 1. Roulette wheel will then turn by mean random 

probability assignments. The process repeated until number of assigned turn complete. 

The number of assigned turn in this study would be half from the population size. 
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 The process will then continuous with crossover stages. Based on the selection, 

randomly assigned each of the chromosomes as parents 1 and parents 2. Pair the parent 

1 and parent 2 randomly. By using One-point method crossover is performed with 

Pc=0.6. A new offspring’s will generate after process is done with the probabilities of it 

become completely better compared to parents or just the same. By using mutation rate, 

Pm=0.1, the mutation process is initialize. After all three main stages are complete, 

again the fitness functions of the new offspring’s need to be done. 

 

 The offspring’s will then combine with the parents to form a new and better 

population. In this stages the best performance index will be memorize as the reference. 

In GA the fitness function is not the same with the performance index. The fitness 

expression is given in (3.5.10) and can be summarized that, the better the fitness 

function, the bigger the performance index value with large error. 

 

                 
 

                 
                                                 (      )             
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                                           (      )          
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3.5.3 Particle Swarm Optimization (PSO) 

 

 The first optimization that will be discussed is PSO. Particle Swarm 

Optimization is an optimization technique which is its working principle based on social 

sharing of a swarm such as fish schooling or bird flocking. The information sharing can 

be happen while searching for food where in PSO each single solution is a “bird” in the 

search space which referred as a “particle”. The swarm is modeled for optimization of 

nonlinear functions in multi-dimensional space where it follows the principles of natural 

selection and search algorithm. The particles have the memory of their own best 

position and knowledge of the global best. The swarms of particle communicate through 

adjustment of position and velocity. In order to give a better understanding is 

developing PSO algorithm a flow chart is presented in Figure 3.5. Based on that, it can 

be seen that the basic or standard PSO being used. Further explanation will also discuss.  
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Figure 3.5: PSO Flow Chart 
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1. Initialize a group of particles including the random positions, velocities and 

acceleration of particles 

2. Evaluate the fitness of each particle 

3. Compare the individual fitness of each particle with previous Pbest. If it is 

better, update as new Pbest  

4. Compare the individual fitness of each particle with previous Gbest. If it is 

better, update as new Gbest 

5. Update velocity and position for each particle 

6. Go back to step 2 and repeat all the step until stopping criteria is met 

 

 The process of PSO to optimize the parameter tuning of MPID will start with the 

initializing a group of particles including the random positions, velocities and 

acceleration of particles. A group of particles will be initializing on the number of 

tuning parameter. The initialization will be based on the random values with the range 

search is set in earlier stage and the equation are given by (3.5.12), where random 

number are value from 0 to 1. All the related initializing parameters that will be used in 

the PSO are given in Table 3.3.  

 

                        (                 )                (3.5.12) 

 

 Then, PSO will start its work in finding parameters that will give optimum 

performance. After checking the number of counter and iteration, PSO algorithm will 

start its looping to find the particle best (Pbest) in the iteration by evaluating the fitness 

function. The algorithm will be continued with comparing the individual fitness of each 

particle with the previous Pbest. If the result is better, the new Pbest will be update 

which is means only the particle with the best performance index will be selected as the 

Pbest.  
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 Next is to find the global best (Gbest). In order to determine the Gbest, the Pbest 

will compare with previous Gbest. The new Gbest will be updated if the result is better, 

if not the previous Gbest will remain. The algorithm continued with finding the new 

velocity and position for each particle in order to improve the search for solution. The 

new velocity will be calculated by using the equation given in (3.5.14), with an inertia 

weight,   was added to the velocity equation. However, the new particle position is 

obtained by summing the current position with the new velocity value which express in 

(3.5.15). The algorithm will continue the iteration until the stopping criteria is met, 

which is the maximum number of iteration. Lastly, as a quick conclusion for PSO 

algorithm, the better the fitness function, the better the performance index with smaller 

error (ITSE). 

 

Table 3.5: Parameter initialization in PSO 

Initialization 

No. of particles = 50 No. of counter = 10 

Search range = 0-10 No. of iteration = 100 

Velocity initialization 

      = 2 Max. weight = 0.9 

Max. velocity =       Min weight = 0.4 
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        ((          (         )             )                  (      )

  

                   (               )      (               )              (      ) 

                                                                                                               (      )

          

where 

  
  : Velocity of the     individual at iteration   

   : Inertia weight at iteration   

   and   : uniform random number of [0,1] 

   and   : uniform random number of [0,1] 

  
  : Position of the     individual at iteration   

           : Best position of the     individual at iteration   

           : Best position of the group at iteration   
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3.6 Objective Function 

 

 The objective function is to evaluate the performance index of the system where 

it can be found in various form such as time-domain specifications, frequency domain 

specifications and time-integral performance. It is also representing system criteria that 

desired by the user. In this study, no specific criteria of the system as long as it give the 

optimum value of the objective function. Thus, the smaller the error or the objectives 

function, the better the system or performance index. 

 

 Time- integral performance or more specifically Integral Time Square Error 

(ITSE) has been chosen as the objective function. ITSE expression is given in (3.6.1) 

and from the equation, ITSE only required system error and the answer represents the 

area of the output and desired output. This selection is due to ITSE behavior that 

provides a better dynamic performance with good settling time.  

     ∫ (  ( ))
 
    

 

 

                                                                                                    (     ) 

 ( )   ( )   ( )                                     (3.6.2) 

  

Where 

 ( ) is an error given in (54) 

 ( ) is output of system 

 ( ) is desired output  
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3.7 Simulation 

 

 In this study, simulations need to be carried out to achieve the objective of this 

research. The simulation of using PSO, GA and BA to tune MPID controller for ASP 

will be simulate by using MATLAB/SIMULINK software and the MPID control 

methods as previously mentioned will be implemented to ASP transfer function. 

Furthermore, PSO, GA and BA will be applied to tune the MPID and the results from 

this simulation will be compared. The simulation for this research is divided into two 

parts. The first part is about analyzing optimization techniques using linear model. The 

second part is about using the nonlinear model to analyze the optimization techniques. 

 

 There are some criteria have been considered in simulating the algorithm. All 

selected optimization used in this study are known as stochastic algorithm, where 

different result obtained for every time the algorithm is executed, even though the same 

initial point is used. Hence, each optimization technique was executed for 20 times to 

make fair observation for further analysis. The result was selected based on the 

execution that gives the best performances index and this process called constant 

parameter initialization for optimization technique. 

 

 The other criteria that must be take care when simulating the algorithm is the 

stopping criteria. A repeated process will be done in optimization technique to obtain an 

optimum result. Therefore, in order for the system knows that it has found the best 

result; the stopping criteria should be introduced. For this study, the stopping criteria 

used is when the maximum iteration is reached. The repetition process of the algorithm 

will stopped when the maximum number of iteration is achieved.  

 

 



50 
 

 
 

 This study is using multiple inputs and multiples output system. Therefore, there 

is four transfer function matrix to be consider for system with two input two output. 

Within that only the output transfer function, the other two shows a transfer function of 

an interaction. Hence, for the objective function purpose the ITSE will be summation 

between two closed loop performances (                  ). 

 

 The result of the best performance index will come with the value of the scalar 

tuning, depending which MPID are use. The parameter tuning will be replaced to the 

non-linear system (Figure 3.6) in order to observe the system performance. To execute 

the nonlinear model, an m-file is required to be executed first. The system is an offline 

tuning. 

 

Figure 3.6: Nonlinear Activated Sludge System 

 

 

 



51 
 

 
 

CHAPTER 4 

 

RESULT AND DISCUSSIONS 

 

4.1 Introduction 

 

 The aim of this study is to show the performance of the MPID in controlling the 

concentration of substrate and dissolved oxygen of ASP. This chapter briefly discuss on 

the results and discussions of the simulation including the simulation of open loop 

response of ASP, initialization parameter to be used for all optimization technique, 

comparison result between optimization used and the performances of system by using 

linear system and nonlinear system. The system performances that being evaluated are 

in term of transient response which are rise time, settling time and percentage overshoot 

have been determined for each method. Later, the best MPID with the best optimization 

technique will be selected for activated sludge process. 

 

 

4.2 Open Loop Response 

 

 In this subchapter, it shows the open loop response of the system. Figure 4.1 

shows the open loop response with step input, while Figure 4.2 shows open loop system 

Bode plot. The data performance of open loop system based on transient response is 

shown in Table 4.1 and Figure 4.2. This result will be used as a reference on how the 

system can be improves with additional controller and proper tuning. 
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 From Figure 4.2 and Table 4.1, the simulation has been compared with four 

selected MPID tuning methods for every system in ASP (g11, g12, g21, g22) but the only 

g11 and g22 of the system are given attention because they are indicated the desired 

outputs of plant which are concentration of substrate, S and dissolved oxygen, DO. 

While, the g12 and g21 system also can be assumed as neglected parts because of the 

interaction of them are too small. 

 

 

Figure 4.1: Open loop step response of ASP 
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Figure 4.2: Open loop step response of ASP with system performance 

 

Table 4.1: Open loop system performance data 

Open Loop System 

Output Substrate DO 

Settling Time, Ts (s) 378 51.6 

Rise Time, Tr (s) 166 1.29 

Overshoot, OS% 0 2.53 
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4.3 MPID Parameters Initialization and Selection 

 

 The initialization parameters of MPID must be done before simulation of 

optimization technique being simulate to get the best result of performance index. The 

purpose of this stage is in order to get a have a good performance of system by choosing 

the best initial parameters to be used for all selected optimization techniques. The 

results from simulating the PSO, GA and BA algorithm can be referred in Appendix B. 

These simulations were done for all four MPID methods, Davison, Penttinen-Koivo, 

Maciejowski and Proposed method. The simulations for choosing the final initialize 

parameters like number of particles, upper boundary and numbers of iteration are shown 

from Figure 4.3 until Figure 4.5. 

 

 

Figure 4.3: Performance Index vs. No. of Particles  
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 Figure 4.3 shows that the ITSE obtained from varies of the number of particles 

for Davison method. Then, the chosen value to be the parameter initialization is 50, 

where that value can give better value of ITSE among others for all optimizations.  This 

value is being selected for all MPID control method to have a consistent parameter 

value. The consistent parameter value makes sure that the comparison made between all 

MPID controllers is fair. 

 

 

Figure 4.4: Performance Index vs. Range 

 

 From the results simulation of Davison method through all optimization 

technique, the chosen value to be selected as parameter initialization of range is 10. 

Although the BA optimization gives the best value of ITSE when the number of range is 

being increased, the results for PSO and GA must be considered before the final value is 

selected because they will give larger amount of ITSE compared to BA when the range 

of the system become larger. So, the minimum value of range is picked to compensate 

for all optimization and secure the system to be obtained the best performance index in 

term of ITSE. 
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Figure 4.5: Performances index vs. No. of Iteration 

 

 Number of iteration is important in order to state the number for the system to 

continue repeating a process with the aim of approaching a desired goal or result. 

Therefore, the chosen number of iterations for all MPID method control is 100. The 

selected is based on the number of iteration that will give the lower result of ITSE. 

From Figure 4.5, PSO and BA will give the lower result of ITSE when the numbers of 

iteration become higher. However, the GA algorithm gives the higher value of ITSE. 

Then, a hundred of iterations are seemed equivalent and suitable to be selected and used 

for this study. All the final selected parameters initialization are tabulated in a Table 4.2 

and they are used for all the MPID method for each optimization. 

 

Table 4.2: Parameter initialization for PSO, GA and BA algorithm 

Initialization 

No. of particles = 50 No. of iteration = 100 Search range = 0-10 

10 50 100

PSO 111.2652 105.6575 26.8364
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BA 132.6107 132.6097 11
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4.4 Linear System of Activated Sludge Process 

 

4.4.1 Result of MPID Tuning using BA 

 

 This subchapter will explain about the system performances of MPID control 

tuning by using bat algorithm. The results of this simulation are presented in a 

waveform for each types of control tuning as shown in Figure 4.6. Its data are tabulated 

in Table 4.3 and Figure 4.7 in a form of bar chart. The simulation was done by using the 

selected parameter from constant scalar parameter initialization for BA. 

 

 

Figure 4.6: System Performances of MPID Control Tuning using BA 
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 From the BA output result, the system performances of bat algorithm are quite 

similar to the PSO and GA algorithm and it gives the better performances compared to 

the open loop system. Each MPID control methods are being compared by transient 

response in terms of rise time, settling time and percentage of overshoot from to make 

an analysis on which methods will the best performances for the ASP system.  

 

Table 4.3: MPID tuning parameter data using BA 

Optimization 
Type BA 

Controller 
Tuning 

Davison Penttinen-
Koivo 

Maciejowski Proposed 

Fitness 
Function 132.6092 0.0075 1.5119 9.8716 

Epsilon,   10.2245 10.0027 7.9816 9.9900 

Rho,   - 4.1857 9.9988 6.0562 

Alpha,   - - - 0 

Output S DO S DO S DO S DO 
Rise Time, 

   0.814 0.274 0.476 0.285 0.596 0.144 0.249 0.415 

Settling 
Time,    

28.1 3.75 2.10 1.15 3.48 1.40 1.65 1.01 

Overshoot, 
OS% 

73.0 48.4 2.4 10.6 8.66 1.36e-6 11.1 6.2e-6 
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Figure 4.7: Transient Response between MPID Control Method of BA 

 

 Based on the time response data, it can be seen clearly that Davison on BA 

algorithm also give the worst response with the longer settling time and rise time. The 

reason on it is due to the missing proportional term in its equation where it only used the 

integral term. The advantages of having proportional term in a system are where it can 

help to reduce the rise time and settling time. The Davison also give the worst result in 

terms of overshoot and fitness function compared to the others. 

 

 While, the other three methods control tuning of BA algorithm, Penttinen-

Koivo, Maciejowski and Proposed method shows the similar results. The similarity of 

the result is because of the same property of equation that they are used, which is 

proportional and integral term. However, the Proposed method give the better 

performance compared to Maciejowski even though they are having similarities in the 

expression. This is because the complexity in finding suitable bandwidth in 

Maciejowski method has been reduces by the Proposed method.  
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4.4.2 Result of MPID Tuning using GA  

 

 This subchapter will explain about the system performances of MPID control 

tuning by using genetic algorithm. The results of this simulation are presented in a 

waveform for each types of control tuning as shown in Figure 4.8. Its data are tabulated 

in Table 4.4 and Figure 4.9 in a form of bar chart. The simulation was done by using the 

selected parameter from constant scalar parameter initialization for GA. 

 

 

Figure 4.8: System Performances of MPID Control Tuning using GA 
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 From the GA output result, the system performances of genetic algorithm are 

quite similar to the PSO algorithm and it gives the better performances compared to the 

open loop system. Each MPID control methods are being compared by transient 

response in terms of rise time, settling time and percentage of overshoot from to make 

an analysis on which methods will the best performances for the ASP system.  

 

Table 4.4: MPID tuning parameter data using GA 

Optimization 
Type GA 

Controller 
Tuning 

Davison Penttinen-Koivo Maciejowski Proposed 

Fitness 
Function 26.7134 0.0104 17.8869 12.9856 

Epsilon,   0.1666 7.5632 6.0449 9.9178 

Rho,   - 7.5609 9.9784 4.2566 

Alpha,   - - - 0.0196 

Output S DO S DO S DO S DO 

Rise Time,    13.4 12.0 0.302 0.291 0.655 0.154 0.305 0.446 
Settling 

Time,    
69.8 21.7 0.619 0.517 3.77 2.11 1.62 0.684 

Overshoot, 
OS% 4.42 0 0.053 0.29e-3 5.95 1.70e-6 18.5 1.10 
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Figure 4.9: Transient Response between MPID Control Method of GA 

  

 Based on the time response data, it can be seen clearly that Davison on GA 

algorithm also give the worst response with the longer settling time and rise time. The 

reason on it is due to the missing proportional term in its equation where it only used the 

integral term. The advantages of having proportional term in a system are where it can 

help to reduce the rise time and settling time. The Davison also give the worst result in 

terms of overshoot and fitness function compared to the others. 

 

 The other three methods control tuning of GA algorithm, Penttinen-Koivo, 

Maciejowski and Proposed method shows the similar results. The similarity of the result 

is because of the same property of equation that they are used, which is proportional and 

integral term. However, the Proposed method give the better performance compared to 

Maciejowski even though they are having similarities in the expression. This is because 

the complexity in finding suitable bandwidth in Maciejowski method has been reduces 

by the Proposed method.  
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4.4.3 Result MPID Tuning using PSO 

 

 This subchapter will explain about the system performances of MPID control 

tuning by using particle swarm optimization algorithm. The results of system interaction 

responses are interpret in waveforms for each types of control tuning as shown in Figure 

4.10. All the data are tabulated in Table 4.5 and Figure 4.11 in a form of bar chart. The 

simulation was done by using the selected parameter from constant scalar parameter 

initialization process for PSO.  

 

 

Figure 4.10: System Performance of MPID Control Tuning using PSO 
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 From the PSO output result, there are differences data result between open loop 

system and activated sludge process with controller tuning system where it give better 

performances rather than open loop system. Then, the transient response in terms of rise 

time, settling time and percentage of overshoot from each MPID control methods are 

being compared to make an analysis on which methods will the best performances for 

the ASP system. 

 

Table 4.5: MPID Tuning Parameter Data using PSO 

Optimization 
Type 

PSO 

Controller 
Tuning Davison Penttinen-Koivo Maciejowski Proposed 

Fitness 
Function 

20.7512 0.0173 17.8477 46.5445 

Epsilon,   0.1932 4.7946 6.0323 9.3153 

Rho,   - 4.7927 10 8.4862 

Alpha,   - - - 0.0698 

Output S DO S DO S DO S DO 

Rise Time,    11.5 10.2 0.488 0.458 0.655 0.154 0.264 0.364 
Settling Time, 

   
36.8 18.4 1.14 0.816 3.77 2.12 1.92 1.75 

Overshoot, 
OS% 

5.69 0 0.084 9.68e-5 5.90 1.71e-6 7.19 6.30e-6 
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Figure 4.11: Transient Response between MPID Control Method of PSO 

 

 Based on the time response data, it can be seen clearly that Davison give the 

worst response with the longer settling time and rise time. The reason on it is due to the 

missing proportional term in its equation where it only used the integral term. The 

benefit of having proportional term in a system is where it can help to reduce the rise 

time and settling time. While the other three methods shows the similar results. The 

similarity of the result is because of the same property of equation that they are used, 

which is proportional and integral term. However, the Proposed method give the better 

performance compared to the others instead of having an unstable fitness function 

(ITSE).  
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4.4.4 Comparisons between BA, GA and PSO 

 

 The more details comparison between BA, GA and PSO in terms of transient 

response and standard deviation based on fitness function will discuss in this subtopic. 

The comparison is made according to the types of MPID tuning for each optimization 

techniques. Then, the results are presented in a bar graph from Figure 4.12 until Figure 

4.15 for a better viewing and understanding. 

 

 

Figure 4.12: Comparison of BA, GA, and PSO for Davison method 
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Figure 4.13: Comparison of BA, GA, and PSO for Penttinen-Koivo method 

 

 

Figure 4.14: Comparison of BA, GA, and PSO for Maciejowski method 
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Figure 4.15: Comparison of BA, GA, and PSO for Proposed method 

 

 The bar graph shown from Figure 4.12 until Figure 4.15 demonstrate that 

between the four MPID controllers tuning method, it can be assumed that Proposed 

method is the best method to be implement in activated sludge process. This is because 

the result of transient responses for all optimization shows fairly even the results except 

for some irregularities but if comparison made between the other methods, the Proposed 

method still give the best transient responses. 

 

 Then, the comparison of system performances of using BA, GA and PSO 

optimization technique are continued by comparing its standard deviation and average 

mean values of parameter. The data of standard deviation and average mean are 

tabulated in Table 4.6. While, the more details data can be referred to the Appendix C. 
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Table 4.6: Comparisons of Standard Deviation and Average of BA, GA and PSO 

Control Tuning Davison PK 

Optimization Type BA GA PSO BA GA PSO 

Standard Deviation 3.6634e-5 38.6806 204.5965 0.3469 0.1463 0.2901 

Average 132.6093 109.4487 122.9387 0.5068 0.5847 0.7968 

Control Tuning Maciejowski Proposed 

Optimization Type BA GA PSO BA GA PSO 

Standard Deviation 5.6088 0.0576 0.6954 14.7309 9.7544 58.454 

Average 15.3331 17.9626 18.5054 15.0585 23.339 87.377 

 

 From Table 4.6, Davison method again gives the worst result but now in terms 

of standard deviation and average of parameters where Davison created the highest 

value among the other MPID control methods. This might be caused by the solutions 

generated by BA, GA and PSO varied greatly. The other three MPID control still give 

the similar results among them. However, the Proposed method stills the best method 

for ASP system. 

 

 

4.5 Comparison of Best MPID Control between BA, GA and PSO 

 

 The Proposed method has selected as the best method among the other MPID 

control methods because it tends to achieve all the requirements of selected criteria by 

undergoes a certain comparisons. Unfortunately, there is a last comparison need to be 

done which is comparison of Proposed method between BA, GA and PSO to choose the 

Proposed method with the best optimization technique. 
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Table 4.7: Comparisons of Proposed Method between BA, GA and PSO 

Optimization 
Type BA GA PSO 

Fitness 
Function 9.8716 12.9856 46.5445 

Epsilon,   9.9900 9.9178 9.3153 

Rho,   6.0562 4.2566 8.4862 

Alpha,   0 0.0196 0.0698 

Output S DO S DO S DO 

Rise Time,    0.249 0.415 0.305 0.446 0.264 0.364 

Settling Time, 
   

1.65 1.01 1.62 0.684 1.92 1.75 

Overshoot, 
OS% 

11.1 6.2e-6 18.5 1.10 7.19 6.30e-6 

Standard 
Deviation 14.7309 9.7544 58.4544 

Average 15.0585 23.3395 87.3779 

 

 

Figure 4.16: Proposed Method Comparison between BA, GA and PSO 
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 Based on Table 4.7 and Figure 4.16, the Proposed method tuning using PSO 

gives the worst result of fitness function, standard deviation, average and transient 

response in terms of rise time, settling time and overshoot. It shows clearly that the 

particle swarm optimization technique is not suitable to be used in the activated sludge 

process.  

 

 Therefore, the comparison is now only between two others optimization 

techniques which are GA and BA. The GA technique tends to a give system short 

period of time to settle because of its low value of settling time but it caused increasing 

value of rise time and overshoot. Genetic algorithm also cannot give a lower fitness 

function in terms of ITSE because of its low standard deviation and high mean average. 

 

  While BA technique has a smaller value overshoot and rise time compared to 

the GA but a bit late settle which means the system required a longer time to achieve a 

steady state condition. Bat optimization also has a low value of fitness function in terms 

of ITSE which means the BA will give a better response compared to GA but the BA 

cannot give a precise result to the system because of its high level of standard deviation. 

Both optimizations have their own strengths and weakness but the best optimization that 

will give a better system performance for ASP system is Bat Algorithm with Proposed 

MPID controller. 
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4.6 Nonlinear System of Activated Sludge Process 

 

4.6.1 MPID Tuning Result using BA 

 

 This subchapter will explain about the system performances of MPID control 

tuning by using bat algorithm for the nonlinear system of ASP. The results of this 

simulation are presented in a waveform for each types of control tuning as shown in 

Figure 4.17 for substrate and Figure 4.18 for dissolved oxygen, while the data are 

tabulated in Table 4.8. The simulation was done by using the selected parameter from 

constant scalar parameter initialization for BA. 

 

 

Figure 4.17: Nonlinear System Performances of MPID Control Tuning using BA 
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Figure 4.18: Nonlinear System Performances of MPID Control Tuning using BA 

Table 4.8: Nonlinear MPID Tuning Parameter Data using BA 

Optimizatio
n Type BA 

Controller 
Tuning 

Davison 
Penttinen-

Koivo 
Maciejowski Proposed 

Fitness 
Function 5.2768e3 5.0801e3 5.0500e3 5.0721e3 

Epsilon,   10.2245 10.0027 7.9816 9.9900 

Rho,   - 4.1857 9.9988 6.0562 

Alpha,   - - - 0 

Output S DO S DO S DO S DO 
Rise Time, 

   0.0146 0.2239 0.0754 0.2245 0.0816 0.0983 0.0816 0.2796 

Settling 
Time,    

39.1850 10.3095 14.624 5.9617 9.9422 5.6372 9.9422 5.4777 

Overshoot, 
OS% 

1.6692 48.6055 0.2914 48.607 0.4138 48.607 0.4138 48.607 
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 Based on the time response data on Table 4.8 and Figure 4.19, it can be seen 

clearly that Davison on BA algorithm also give the worst response with the longer 

settling time and rise time when simulate on a nonlinear ASP system. The reason on it is 

due to the missing proportional term in its equation where it only used the integral term. 

The advantages of having proportional term in a system are where it can help to reduce 

the rise time and settling time. The Davison also give the worst result in terms of 

overshoot and fitness function compared to the others. 

 

 While, the other three methods control tuning of BA algorithm, Penttinen-

Koivo, Maciejowski and Proposed method shows the similar results. The similarity of 

the result is because of the same property of equation that they are used, which is 

proportional and integral term. However, the Proposed method give the better 

performance compared to Maciejowski even though they are having similarities in the 

expression. This is because the complexity in finding suitable bandwidth in 

Maciejowski method has been reduces by the Proposed method.  

 

 

Figure 4.19: Transient Response of BA for Nonlinear System 

0.0146 

39.185 

1.6692 
0.0754 

14.6246 

0.2914 
0.0816 

9.9422 

0.4138 
0.0816 

9.9422 

0.4138 0.2239 

10.3095 

48.6055 

0.2245 
5.9617 

48.6074 

0.0983 

5.6372 

48.6074 

0.2796 5.4777 

48.6074 

0

10

20

30

40

50

60

Rise Time Settling Time Overshoot

A
m

p
lit

u
d

e
 

Transient Response 

Transient Response of BA 

DAV(S)

PK(S)

MACIE(S)

PRO(S)

DAV(DO)

PK(DO)

MACIE(DO)

PRO(DO)



75 
 

 
 

4.6.2 MPID Tuning Result using GA 

 

 This subchapter will explain about the system performances of MPID control 

tuning by using genetic algorithm for the nonlinear system of ASP. The results of this 

simulation are presented in a waveform for each types of control tuning as shown in 

Figure 4.20 for substrate and Figure 4.21 for dissolved oxygen, while the data are 

tabulated in Table 4.9. The simulation was done by using the selected parameter from 

constant scalar parameter initialization for GA. 

. 

 

Figure 4.20: Nonlinear System Performances of using GA – Substrate 
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Figure 4.21: Nonlinear System Performances using GA – Dissolved Oxygen 

 

Table 4.9: Nonlinear MPID Tuning Parameter Data using GA 

Optimizati
on Type GA 

Controller 
Tuning 

Davison Penttinen-
Koivo 

Maciejowski Proposed 

Fitness 
Function 9.9800e3 5.0656e3 5.0512e3 5.0836e3 

Epsilon,   0.1666 7.5632 6.0449 9.9178 

Rho,   - 7.5609 9.9784 4.2566 

Alpha,   - - - 0.0196 

Output S DO S DO S DO S DO 
Rise Time, 

   0.6581 6.4767 0.0024 0.2114 0.2540 0.1044 0.0060 0.3256 

Settling 
Time,    

37.272 14.728 27.686 5.3199 11.832 6.0587 7.7026 6.1863 

Overshoot, 
OS% 

3.5389 48.600 0.1593 48.607 0.4113 48.607 0.3972 48.607 
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  Based on the time response data from Table 4.9 and Figure 4.22, it can be seen 

clearly that Davison on GA algorithm also give the worst response with the longer 

settling time and rise time. The other three methods control tuning of GA algorithm, 

Penttinen-Koivo, Maciejowski and Proposed method shows the similar results. The 

similarity of the result is because of the same property of equation that they are used, 

which is proportional and integral term. However, the Proposed method give the better 

performance compared to Maciejowski even though they are having similarities in the 

expression. This is because the complexity in finding suitable bandwidth in 

Maciejowski method has been reduces by the Proposed method.  

 

 

Figure 4.22: Transient Response of GA for Nonlinear System 
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4.6.3 MPID Tuning Result using PSO 

 

 This subchapter will explain about the system performances of MPID control 

tuning by using particle swarm optimization for the nonlinear system of ASP. The 

results of this simulation are presented in a waveform for each types of control tuning as 

shown in Figure 4.23 for substrate and Figure 4.24 for dissolved oxygen, while the data 

are tabulated in Table 4.10. The simulation was done by using the selected parameter 

from constant scalar parameter initialization for PSO. 

 

 

Figure 4.23: Nonlinear System Performances using PSO - Substrate 
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Figure 4.24: Nonlinear System Performances using PSO – Dissolved Oxygen  

 

Table 4.10: Nonlinear MPID Tuning Parameter Data using PSO 

Optimizati
on Type 

PSO 

Controller 
Tuning Davison 

Penttinen-
Koivo Maciejowski Proposed 

Fitness 
Function 

9.1184e3 5.0826e3 5.0512e3 5.0628e3 

Epsilon,   0.1932 4.7946 6.0323 9.3153 

Rho,   - 4.7927 10 8.4862 

Alpha,   - - - 0.0698 

Output S DO S DO S DO S DO 
Rise 

Time,    0.3500 5.4908 0.0094 0.3248 0.2574 0.1040 0.0105 0.2334 

Settling 
Time,    

45.756 13.196 28.011 5.4758 11.862 6.0633 9.0212 5.9621 

Overshoot
, OS% 3.4745 48.620 0.2470 48.607 0.4106 48.607 0.2713 48.607 
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 Based on the time response data on Table 4.10 and Figure 4.25, it can be seen 

clearly that Davison give the worst response with the longer settling time and rise time. 

The reason on it is due to the missing proportional term in its equation where it only 

used the integral term. The benefit of having proportional term in a system is where it 

can help to reduce the rise time and settling time. While the other three methods show 

the similar results. The similarity of the result is because of the same property of 

equation that they are used, which are proportional and integral term. However, the 

Proposed method give the better performance compared to the others although the 

system is nonlinear ASP. 

 

 

Figure 4.25: Transient Response of PSO for Nonlinear System 
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4.6.4 Comparisons between BA, GA and PSO 

 

 The more details comparison between BA, GA and PSO in terms of transient 

response and performances index in terms of ITSE will discuss in this subtopic. The 

comparison is made according to the types of MPID tuning for each optimization 

techniques. Then, the results are presented in a bar graph from Figure 4.26 until Figure 

4.29 for transient response and Figure 4.30 for performances index. The purpose of 

presenting the result in a bar graph is to give a better viewing and understanding about 

the comparisons between BA, GA and PSO. 

 

 

Figure 4.26: Comparison of BA, GA, and PSO for Davison method 
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Figure 4.27: Comparison of BA, GA, and PSO for Penttinen-Koivo method 

 

Figure 4.28: Comparison of BA, GA, and PSO for Maciejowski method 
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Figure 4.29: Comparison of BA, GA, and PSO for Proposed method 

 

 

Figure 4.30: Nonlinear Comparison between BA, GA and PSO 
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 Figure 4.30 shows nonlinear comparison between BA, GA and PSO in terms of 

performance index (ITSE). The Davison method gives the worst result of ITSE for 

every optimization technique. However, the other methods give a similar results but the 

Proposed method with BA optimization can be conclude as the best choice to tune the 

parameters of nonlinear ASP system. This is because the Proposed method come out 

with the best results of rise time and settling time among others. Then, when the 

comparison between optimization had done, the BA also was given a better result in 

terms rise time and settling time although it tends to give a high percentage of 

overshoot. All the analysis of comparing each optimization for every MPID control 

tuning method can be referred to the Figure 4.26 until Figure 4.29.   
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CHAPTER 5 

 

CONCLUSION AND FUTURE WORKS 

 

5.1 Introduction 

 

 This chapter will discuss the conclusion of overall work has been done in this 

study and future works that can be done based on this study for next generation. 

 

5.2 Conclusion 

 

 This aim for this project is to study the performances of MPID control using 

optimization technique for activated sludge process. Four MPID control tuning methods 

have been used in this study; Davison, Penttinen-Koivo, Maciejowski and Proposed 

method. All the results obtained for this study is based on selected criteria which are 

performances index in terms of fitness function (ITSE), transient responses in terms of 

rise time, settling time and overshoot, standard deviation and average mean value. 

Besides, the result from all four MPID tuning methods based on selected optimization 

techniques; Particle Swarm Optimization, Genetic Algorithm and Bat Algorithm.  

  

 After all the analysis being made, it show that Davison method give the worst 

performance. However, Penttinen-Koivo, Maciejowski and Combined method produce 

quite similar results. This is because Davison’s method only involves with integral term 

only while the other methods consider the part of proportional and integral terms. The 
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importance of having proportional term in MPID is where the rise time and settle time 

can be reduced.  

 This study also proves that by using optimization technique, a system can be 

tuned to obtain better performance responses. The system response by using the 

optimization technique produce a better and refined response compared to the open loop 

response system. The comparison analysis is continued by comparing the MPID tuning 

method with all optimization technique to select which tuning method will give the best 

performance to the ASP system. Then, the result concludes that the BA optimization 

with the Proposed method is the best medium to tuned multivariable PID of activated 

sludge process. It is because the BA has advantage with its ability to further find a 

solution with lower fitness function. Thus, the ASP performance can be improved in 

order to have a great wastewater treatment plant. 

 

 

 This study also has been simulated on the two different mode of ASP system; 

linear and nonlinear. The purpose of using the linear ASP system is to make a part of 

linearization of system and part of initialization of parameter become easier. However, 

the purpose of having nonlinear ASP system in this study is to test whether the MPID 

controller tuning using optimization can be adapt to the real plant of ASP because the 

real plant of ASP is design in nonlinear system. From the analysis that had been done, 

the linear and nonlinear system gives a similar results and a minor conclusion can be 

made that the MPID controller tuning using BA optimization can be implementing to 

the real plant of activated sludge process in order to improve the system to have a better 

quality of water. 
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5.3 Future Works 

 

 Activated sludge process is part of system in wastewater plant. The 

improvement towards a system in wastewater plant is important nowadays because of 

the increasing demand on clean environment. Therefore, there are further works can be 

done to make this study more complete and also the need to seek out the better and 

efficient way to accomplish this study. 

 

 For this study, the BA optimization is only covered the velocity at position 

solution of the system with fixed frequency. Therefore, the BA optimization in this 

study can be improved by continue the simulation using the others criteria of bat 

algorithm which are by varies the loudness, pulse rate and wavelength for the BA to 

search a better solution.  

 

 Other than that, this study also can be better if the system with MPID tuning 

using PSO, GA and BA optimization techniques are further testing by including a 

disturbance in the system. This testing process can determine whether the MPID 

controller can resist with the disturbances or not. It also can prove that whether the 

system can fix the error caused by the disturbances. 
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APPENDIX A 

 

Gantt Chart 

Year 2016 
Project Activities SEPT 0CT NOV DEC 

First Stage     
Brainstorming idea     
Project planning and find supervisor     
Project Outline     

Second Stage     
Collect data     
Define objective, procedure and 
simulation 

    

Third Stage     
Article and journal review     
Books for reference     
Define problems     

Fourth Stage     
MPID selection     
Optimization technique selection     
Software development     
Result analysis     

Fifth stage     
Show studies to the supervisor     
Prepare for presentation     
Viva presentation     

Report writing     
Final proposal     
Submit proposal writing      
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Year 2017 
Project Activities FEB MAR APR MAY JUNE 

First Stage      
Brainstorming idea      
Project Development      
Project Outline      

Second Stage      
Start writing MATLAB command      
Finalizing the MATLAB coding      

Third Stage      
Project executions      
Collect data      
Organized the data      

Fourth Stage      
Result analysis      
Prepare second project proposal      

Fifth stage      
Show studies to the supervisor      
Prepare for presentation      
Viva presentation      

Report writing      
Final report      
Submit final report       
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APPENDIX B 

NO. OF PARTICLES 

(Max iteration=100, Range= 0-10) 

 

DAVISON METHOD 
No. of 
Particle 

PSO GA BA 
ITSE   ITSE   ITSE   

10 132.6113 10.0000 132.6228 9.8687 132.6107 10.0338 
20 132.6483 9.3914 132.6221 9.9759 132.6113 10.0796 
30 132.6227 9.8884 132.6115 9.9870 132.6113 10.1132 
40 132.6113 10.000 87.3580 0.0702 132.6094 10.1615 
50 103.3477 1.9084 56.4336 0.0877 132.6092 10.2143 

 

PENTTINEN-KOIVO METHOD 
No. of 
Particle 

PSO GA BA 
ITSE     ITSE     ITSE     

10 0.6813 8.7641 3.7091 0.0395 9.8927 8.8377 0.0391 10.0405 9.2122 
20 0.7584 9.0242 3.5199 0.0400 9.8557 8.2617 0.0455 10.0854 9.2312 
30 0.6393 9.2259 3.8526 0.3090 9.9976 9.2174 0.0385 10.1076 9.1301 
40 1.1201 9.7506 9.2674 0.0394 9.9307 9.7598 0.0384 10.1604 9.3145 
50 1.1170 6.6325 2.7980 0.0394 9.8946 9.3713 0.0383 10.1866 9.3081 

 

MACIEJOWSKI METHOD 
No. of 
Particle 

PSO GA BA 
ITSE     ITSE     ITSE     

10 21.1952 8.1282 9.0379 18.1326 6.7833 9.8940 0.9118 10.003 10.0577 
20 19.3312 9.8389 9.3226 18.1603 4.8423 9.9861 0.8706 5.8458 10.0741 
30 19.2056 9.9617 9.7224 17.9153 6.5732 9.9958 0.8658 5.7378 10.1316 
40 18.7801 9.8764 9.6455 18.0315 6.6217 9.9358 0.8637 5.8861 10.1552 
50 17.9837 5.5824 9.0379 17.8994 5.9301 9.9711 0.8637 5.7866 10.1571 
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PROPOSED METHOD 
No. of 
Particle 

PSO GA BA 
ITSE     ITSE     ITSE     

10 50.4093 8.2288 0.3427 2.4373 4.2157 2.8021 10.283 10.0038 4.1372 
20 42.4762 2.7785 2.6440 3.7614 4.6885 3.9272 8.2111 10.0102 4.2775 
30 47.7986 2.4616 5.3517 1.0401 7.6540 3.2257 0.0662 9.9968 4.2240 
40 38.0167 2.5755 8.2597 0.6038 9.6432 3.7312 8.2117 9.9834 4.2806 
50 47.8182 2.5816 6.4199 0.6705 8.5124 3.3843 8.1920 10.0068 4.3330 

 

 

 

RANGE 

(Max iteration=100, No. of particles=10) 

 

DAVISON METHOD 
Upper 

boundary 
PSO GA BA 

ITSE   ITSE   ITSE   
10 132.5201 9.6942 132.5331 9.9177 132.6108 10.0270 
50 132.6512 8.8704 132.6113 10.0000 0 11 
100 133.0421 15.9921 132.6225 16.0223 0 11 
500 139.5926 21.2563 132.5409 16.1452 0 11 
1000 388.0382 154.7523 132.5849 12.2166 0 11 

 

PENTTINEN-KOIVO METHOD 

UB PSO GA BA 
ITSE     ITSE     ITSE     

10 1.2627 9.5092 7.2235 0.7046 9.2950 3.6666 0.0390 10.0233 9.7897 
50 0.0042 22.350 29.378 0.0016 34.498 36.929 0.0076 49.9955 50.0063 
100 4.34e-8 93.161 78.310 4.28e-4 96.399 86.617 0.0038 99.9971 100.008 
500 8.40e-5 489.28 424.29 8.81e-5 486.23 456.86 7.74e-7 500.025 402.542 

1000 6.25e-5 763.67 558.82 4.50e-5 913.90 789.04 3.91e-7 1000.00 795.053 
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MACIEJOWSKI METHOD 

UB PSO GA BA 
ITSE     ITSE     ITSE     

10 18.865 5.7678 9.4403 18.2992 8.2036 9.9783 0.9119 9.9840 10.053 
50 0.9985 12.6456 44.1981 0.1949 2.4423 46.439 0.0356 0.2247 47.476 
100 0.5226 63.3333 93.0776 0.0064 0.9002 98.241 0.0095 0.7635 99.999 
500 0.1123 466.529 301.435 0.0020 25.442 405.40 0.0001 -1.94e-7 5000.0 
1000 0.1521 752.334 894.900 0.0450 674.69 463.92 0.0066 1.00e3 1000.0 

 

PROPOSED METHOD 

UB PSO GA BA 
ITSE     ITSE     ITSE     

10 102.87 8.9413 9.3399 67.0329 8.9093 8.5326 9.0138 10.0069 4.2389 
50 71.567 30.0771 19.3386 17.0656 43.204 43.204 2.2133 27.7800 49.994 
100 4.40e2 75.8112 87.1111 16.7145 23.098 48.748 0.4102 100.003 32.812 
500 2.69e2 203.363 333.465 0.0123 42.870 496.07 0.0799 113.720 499.99 

1000 1.36e2 442.498 393.465 0.0470 77.466 501.49 0.0395 0.0013 999.99 
 

 

ITERATION 

(Upper boundary=10, No. of particles=50) 

 

DAVISON METHOD 
Upper 

boundary 
PSO GA BA 

ITSE   ITSE   ITSE   
10 111.2652 1.0355 104.6251 1.6197 132.6107 10.0192 
50 105.6575 1.4633 74.1422 0.0762 132.6097 10.1216 
100 26.8364 0.1662 132.6220 9.9832 132.6092 10.2015 
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APPENDIX C 

 

*Davison method 

No 
PSO GA BA 

ITSE   ITSE   ITSE   
1 105.1711 1.5309 132.6113 9.9986 132.6093 10.1766 
2 109.5547 1.1226 103.6481 1.8280 132.6093 10.1834 
3 113.6636 0.9373 132.6113 10 132.6093 10.1754 
4 132.6115 9.9882 15.1039 0.0613 132.6093 10.1879 
5 28.6429 0.1601 132.6113 9.9969 132.6093 10.1992 
6 27.9559 0.1623 106.3314 1.3763 132.6093 10.1893 
7 27.7129 0.1283 132.6114 9.9944 132.6093 10.1844 
8 22.0837 0.1862 132.6114 9.9948 132.6093 10.1850 
9 20.7512 0.1932 132.6114 9.9952 132.6092 10.2245 

10 26.1300 0.1688 104.8347 1.5839 132.6093 10.1940 
11 105.3699 1.5021 132.6113 9.9998 132.6093 10.1823 
12 112.9200 0.9641 105.6091 1.4697 132.6093 10.1978 
13 132.6113 10 132.6113 9.9968 132.6092 10.2070 
14 25.1175 0.1727 26.7134 0.1666 132.6092 10.2146 
15 24.6849 0.1744 132.6114 9.9953 132.6093 10.1766 
16 132.6356 9.6943 104.2763 1.6858 132.6093 10.1898 
17 104.2543 1.6903 31.1109 0.1204 132.6093 10.2010 
18 119.4712 0.7902 132.6221 9.9764 132.6093 10.1811 
19 117.4494 0.8328 132.6113 9.9968 132.6093 10.1922 
20 969.9822 1.8367 132.6113 9.9976 132.6093 10.1863 

Average 122.9387 

 

109.4487  132.6093  

Standard 
Deviation 204.5965 38.6806 3.6634e-5 

Variance 41859.74 1496.191 1.3421e-9 
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*Penttinen-Koivo method 

No 
PSO GA BA 

ITSE     ITSE     ITSE     
1 0.5954 9.5577 4.0055 0.6102 9.8767 3.9690 0.5504 10.0366 4.1882 
2 1.3259 9.9859 6.6104 0.5843 9.9702 4.0618 0.5497 10.0442 4.1909 
3 0.6774 9.0940 3.7332 0.5784 9.7498 4.0728 1.0105 10.0597 10.0811 
4 0.7815 8.1691 3.4351 0.5736 9.9178 4.0982 0.5500 10.0397 4.1897 
5 0.6038 9.9260 3.9923 0.5576 9.9802 4.1583 0.0076 10.0043 10.0009 
6 0.7098 8.5345 3.6231 0.6840 9.8903 3.7460 1.0127 10.0385 10.0604 
7 0.0173 4.7946 4.7927 0.5974 9.7114 4.0065 0.5507 10.0308 4.1868 
8 1.1451 9.5421 9.0503 0.5844 9.8286 4.0560 0.0075 10.0056 10.0555 
9 0.7306 9.5221 3.6075 0.6408 9.1980 3.8458 1.0124 10.0419 10.0625 
10 0.5920 9.7017 4.0247 0.6392 9.3636 3.8572 0.5492 10.0487 4.1934 
11 0.6138 9.3962 3.9375 0.8106 8.0383 3.3656 0.0075 10.0003 10.0002 
12 1.0846 9.3923 9.4194 0.0104 7.5632 7.5609 0.5512 10.0251 4.1845 
13 1.0676 7.8957 2.9066 0.6174 9.9193 3.9471 0.5503 10.0369 4.1887 
14 0.8768 7.4588 3.2101 0.5864 9.8700 4.0506 0.5509 10.0283 4.1857 
15 1.1595 6.2079 2.7344 0.6246 9.3779 3.9037 0.0075 10.0017 10.0016 
16 1.0414 7.9330 2.9464 0.5716 9.8238 4.1002 1.0106 10.0583 10.0799 
17 0.6723 9.2637 3.7537 0.5827 9.8861 4.0643 0.5511 10.0583 4.1847 
18 0.8092 9.3701 3.4170 0.6063 9.7175 3.9761 0.0075 10.0027 4.1857 
19 0.5961 9.9663 4.0201 0.5795 9.8864 4.0758 0.5483 10.0584 4.1970 
20 0.8368 7.7823 3.3016 0.6544 9.8800 3.8311 0.5508 10.0294 4.1862 

Average 0.7968 

  

0.5847 

  

0.5068   
Standard 
Deviation 0.2901 0.1463 0.3469 

Variance 0.0842 0.0214 0.1203 
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*Maciejowski method 

No 
PSO GA BA 

ITSE     ITSE     ITSE     
1 18.9681 7.9221 9.5949 17.9783 5.4315 9.9602 17.5556 6.0607 10.1791 
2 18.0579 5.3860 9.9170 17.9057 5.7966 9.9728 1.2394 7.9832 9.9999 
3 18.2682 4.7911 9.9390 17.9761 6.7643 9.9779 17.5681 6.1277 10.1710 
4 18.0566 6.6444 9.9210 17.8869 6.0449 9.9784 17.5378 5.9307 10.1918 
5 18.1897 7.6490 9.9646 17.8919 5.7033 9.9879 17.5885 6.0629 10.1595 
6 17.8483 5.9892 10 17.9643 6.0001 9.9322 4.4307 7.9834 10.000 
7 17.9126 6.0439 9.9632 17.9317 6.2056 9.9702 18.3287 9.9442 10.1896 
8 19.1257 8.6484 9.6070 18.0099 5.3682 9.9509 17.6112 6.0398 10.1455 
9 18.7382 7.0432 9.6034 17.8911 6.0437 9.9754 17.6220 6.1414 10.1392 
10 20.1291 6.4911 8.8805 17.9269 6.4486 9.9839 17.5678 5.9315 10.1737 
11 17.8476 6.0320 10 18.0108 5.3609 9.9513 17.5906 5.9921 10.1598 
12 18.3791 6.9713 9.7841 17.9130 6.2670 9.9847 17.6244 6.0741 10.1358 
13 18.7389 4.9482 9.5716 17.9742 6.1721 9.9445 17.5404 5.9146 10.1903 
14 17.8541 5.8744 10 18.0252 5.6553 9.9109 17.5316 5.9214 10.1956 
15 20.0170 6.4038 8.9203 18.0091 5.9362 9.9049 17.5877 6.0547 10.1598 
16 17.8477 6.0323 10 17.9415 5.3993 9.9718 17.5274 5.9250 10.1981 
17 18.1464 6.8350 9.8919 17.8934 6.2863 9.9969 17.5743 6.0745 10.1683 
18 18.8375 4.6841 9.6067 18.0266 6.6898 9.9423 17.5370 5.9351 10.1922 
19 19.1490 9.2911 9.3234 18.0940 5.3862 9.8952 1.5119 7.9816 9.9988 
20 17.9965 5.5063 9.9404 18.0010 6.1528 9.9284 17.5882 6.1265 10.1598 

Average 18.5054 

  

17.9626 

  

15.3331   

Standard 
Deviation 0.6954 0.0576 5.6088 

Variance 0.4835 0.0033 31.4586 
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*Proposed method 

No 
PSO GA BA 

ITSE     ITSE     ITSE     
1 94.5430 6.6966 8.5795 14.1003 8.2506 3.7218 1.8716 9.9900 6.0562 
2 57.8459 2.1161 9.1180 23.6414 8.1870 8.1870 8.2205 9.9900 4.2659 
3 299.2116 1.1269 0.1950 38.8428 9.4192 2.7353 8.2264 10.0071 4.2659 
4 97.8362 4.2608 3.5965 14.8539 9.8289 4.8003 9.8716 10.0000 6.0562 
5 52.6630 8.5788 8.3163 21.2018 7.0944 3.7542 8.2205 9.9900 4.2659 
6 55.8326 2.8024 3.6815 26.5399 9.5677 5.8656 8.2264 10.0071 4.2566 
7 71.6117 2.2380 5.0688 17.9636 8.2562 8.2562 8.2108 10.0025 4.2755 
8 58.2865 2.6811 6.0279 14.7777 9.3861 3.9527 8.2261 10.0075 4.2569 
9 59.8541 8.9019 7.8029 19.7671 8.7848 4.3940 8.1962 7.9933 4.3053 
10 74.4281 8.2464 7.0651 25.1652 2.3831 7.2406 42.0000 0 0 
11 82.3573 7.1812 7.6110 22.6377 8.6403 3.0471 8.2155 10.0017 4.2073 
12 57.2443 2.0517 1.8710 19.0648 8.5699 4.1416 8.2246 10.0188 4.2584 
13 58.3203 1.8017 7.9901 29.1700 9.2113 9.2113 45.1940 10.0024 10.0039 
14 173.0715 6.7966 4.9578 38.1746 7.6951 6.0685 8.1645 10.0067 4.3492 
15 80.1419 1.8239 5.0216 20.2511 6.6053 2.7119 42.0000 0 0 
16 46.5445 9.3153 8.4862 49.9341 7.2133 2.1942 8.1941 10.0033 4.3061 
17 48.1098 2.0331 1.4199 14.3352 8.8436 3.4832 8.2253 10.0030 4.2587 
18 128.6292 5.9043 9.1810 28.5299 9.3462 4.3503 8.2765 10.0196 4.2092 
19 90.1567 2.3840 9.1334 12.9856 9.9178 4.2566 8.2272 9.9988 4.2564 
20 60.8714 2.7185 9.8668 14.8539 9.8289 4.8003 45.1804 10.0082 10.0042 

Average 87.3779 

  

23.3395 

  

15.0585   

Standard 
Deviation 58.4544 9.7544 14.7309 

Variance 3416.916 95.1475 217.000 
 

 

 

 

 

 

 


