DESIGN AND DEVELOPMENT OF A 5-DOF ROBOTIC ARM AND MOVEMENT CONTROLLED BY ANDROID FOR PICK AND PLACE TASKS

TAN CHOON WHEY

This Report is Submitted in Partial Fulfillment of Requirement for the Bachelor Degree of Electronic Engineering (Wireless Communication)

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

JUNE 2017

UNIVERSTI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek	1	DESIGN	AND	DEVELOPMENT	OF	A	5-DOF	ROBOTIC	ARM	AND
--------------	---	--------	-----	-------------	----	---	-------	---------	-----	-----

MOVEMENT CONTROLLED BY ANDROID FOR PICK AND PLACE

TASKS

Sesi Pengajian

1	6	1	1	7
	100			

Saya TAN CHOON WHEY

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (√):

	SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
	TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
$\sqrt{}$	TIDAK TERHAD	

(TANDATANGAN PENULIS)

Disahkan oleh:

DR. KHAIRUDON BIN OSMAN
Pensyateh Kanan
Fariati Kejuruteran Elektronik Dan Kejuruteran Komputer
Unhversiti Tekahai Melaka (UTEM)
(COP DAN TANIDATIAN MELAN PENYELIA)
76100 Durian Tunggal, Melaka

Tarikh: 2/6/17

DECLARATION

"I hereby declare that the work in this project is my own except for summaries and quotations which have been duly acknowledge."

Signature

Author

: TAN CHOON WHEY

Date

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Wireless Communication) with Honours."

Signature

Supervisor's Name

Date

: DR. KHAIRUDDIN BIN OSMAN

2/6/17

Special thanks to my family, project supervisor, friends, and other staff in UTeM

ACKNOWLEDGEMENT

I would like to have this opportunity to thanks my parents for supporting me with mentality and financially.

Next, I would also like to express my deepest gratitude to my supervisor, Dr. Khairuddin Bin Osman. He has guide me throughout the semesters by providing advices, comments, encouragement, and ideas on my project whenever I felt lost. He is one of my motivation for keep on continuing this project. Furthermore, he also performs checking on the slide, draft report and were asked to demonstrate before the actual presentation. He has dedicatedly aiding me throughout the project.

Next, I would like to thank my friends especially my course mates whenever I was having trouble especially with the coding parts. They assist me and troubleshoot alongside with me which motivate me for not giving out easily.

Lastly, a huge graceful to Dr. Kok Swee Leong. His words have always inspired me and motivate me especially after PSM seminar talk. He as well is one of my motivation. Again, Thank You.

ABSTRACT

In this century, Robot has been widely used especially in Industrial Area. Robot is used in repetitive tasks where error take account. Robot can be either controlled by user or to perform autonomously. In this project, the mobile robot has a 5-DOF robotic arm to perform the pick and place task. Besides that, the mobile robot has 4 wheels for mobility. The mobile robot is powered up by 2200mAH Li-PO Battery which can last for an hour. Furthermore, it is built with an Arduino UNO and controlled by Android Smartphone with an app called "JoyStick Controller". Bluetooth is used as a connection between the Arduino and Android Smartphone. The User Interface of the application is designed in a way to allow the user to handle the mobile robot easier.

ABSTRAK

Pada abad ini, Robot telah digunakan secara meluas terutamanya di kawasan perindustrian. Robot digunakan dalam tugas-tugas yang berulang-ulang di mana setiap kesilapan diambil kira. Robot boleh digunakan sama ada dikawal oleh pengguna atau digunakan secara automatik. Dalam projek ini, robot mudah alih mempunyai 5-DOF lengan robot untuk melaksanakan tugas mengambil dan meletak. Selain itu, robot mudah alih ini mempunyai 4 roda untuk bergerak. Robot mudah alih ini dikuasakan oleh 2200mAh Bateri Li-PO yang boleh bertahan selama satu jam. Tambahan pula, ia dibina dengan Arduino Uno sebagai mikropengawal dan dikawal oleh telefon pintar Android dengan aplikasi yang dipanggil "JoyStick Controller". Bluetooth digunakan sebagai jaringan antara Arduino dan telefon pintar Android. Aplikasi mesra pengguna telah direka sebagai satu cara bagi membolehkan pengguna untuk mengendalikan robot mudah alih lebih mudah.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	PROJECT'S TITLE	Il
	REPORT STATUS APPROVAL FORM	II
	DECLARATION ERROR! BOOKMARK N	NOT DEFINED.
	SUPERVISOR'S DECLARATION	III
	DEDICATION	V
	ACKNOWLEDGEMENT	VI
	ABSTRACT	VII
	ABSTRAK	VIII
	TABLE OF CONTENT	IX
	LIST OF TABLE	XIII
	LIST OF FIGURE	XIV
	LIST OF APPENDICES	XIX

CHAPTER 1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Project Overview	2
	1.3 Problem Statement	2
	1.4 Objectives	2
	1.5 Scope of Work	3
	1.6 Limitation	3
CHAPTER 2	LITERATURE REVIEW	4
	2.1 LITERATURE REVIEW	4
	2.1.1 Review of the existing robot	4
	2.1.2 Comparison among the project	7
	2.1.3 Verdict	7
	2.2 Microcontroller	8
	2.3 Arduino	8
	2.3.1 Arduino Board	9
	2.3.2 Digital I/Ps	10
	2.3.3 Analog I/Ps	11
	2.3.4 Arduino Architecture	11
	2.4 Android	11
	2.5 Android Studio	12
	2.6 Robotic Arms	13
	2.7 Servo Motor	13
	2.8 Motor Driver	14
	2.8.1 L293D DC Motor Driver Shield	15
	2.0 Rhiotooth	16

	2.10 PCA 9685	18
	2.10.1 Configure PCA 9685	20
	2.11 5A CV Step Down Module	21
	2.12 Proteus Design Suite	22
	2.13 Li-Po Battery	23
CHAPTER 3	METHODOLOGY	24
	3.1 Overview	24
	3.2 Project Planning	24
	3.3 Overall Project Flowchart	25
	3.4 Block Diagram	26
	3.5 Flow Chart of Mobile Robot	27
	3.6 Flow Chart of the Robotic Arm	31
	3.7 Construction of the chassis of mobile Robot	35
	3.8 Construction of the Robotic Arm	40
	3.8.1 Upper Arm Design	42
	3.8.2 End effector Design	44
	3.9 Hardware Wiring	49
	3.10 Design of Android Application	52
	3.10.1 Design Layout	52
	3.10.2 Java Coding	53
	3.10.3 Android Manifest	53
CHAPTER 4	RESULTS AND DISCUSSIONS	54
	4.1 Overview	54
	4.2 Structure of the Constructed Mobile Robot	54
	4.2.1 Construction of End-Effector	54

	4.2.2 Construction of Mobile Robot	55
	4.2.3 Dimension of the Mobile Robot	57
	4.3 Development of the Application	58
	4.4 Calculation for the Servo Motor	36
	4.5 Movement of Each Servo Motor	61
	4.5.1 Robotic Arm Analysis	61
	4.5.2 Mobile Robot Analysis	63
	4.5.3 Analysis on the speed of mobile robot	64
	4.6 Analysis on the Gripper	65
	4.7 Analysis on the Battery Lasting	66
	4.8 The Ability of the Robotic Arm	66
CHAPTER 5	CONCLUSIONS AND RECOMMENDATIONS	68
	5.1 Conclusions	68
	5.2 Recommendations	68
REFERENCE	S	70
APPENDICES	S	73
APPENDICES	S A: MICROCONTROLLER SOURCE CODE	73

LIST OF TABLE

TABLE	CONTENT		PAGE
Table 2.1: Fea	atures for each of the project		7
Table 2.2: Spe	ecification of Arduino UNO [9]		10
Table 2.3: Spe	ecification of Different Type of Se	ervo Motor	14
Table 2.4: Spe	ecification of Wireless Device		17
	ection of DC Motor and Correspon	_	_
Table 3.2: Sig	anal Received by Each Part of Rob	botic Arm	31
Table 3.3: Inp	out Signal and Pin attached for each	ch part of Robotic Arm	38
Table 3.4: Info	formation of Each Part of Base and	d Lower Arm	41
Table 3.5: Info	formation of Each Part of Base and	d Lower Arm	42
Table 4.1: The	e analysis for each part of the robo	otic arm for the angle and total	angle62
Table 4.2: An	alyze on the time taken for each s	speed to reach 200m	64
Table 4.3 The	different load that can be lifted b	by the robotic arm	65
Table 4.4: Cur	rrent used by each part of Mobile	Robot	66

LIST OF FIGURE

FIGURE	CONTENT	PAGE
Figure 2.1: Stru	ucture of the robotic arm [1]	4
Figure 2.2: Rob	bot with a gripper [3]	5
Figure 2.3: Han	nd Gesture [3]	6
Figure 2.4: Rob	bot with Robotic Arm Lifting Object from Higher Place	6
Figure 2.5: Ard	luino UNO	9
Figure 2.6: Ard	duino ATmega328P Board Architecture [10]	11
Figure 2.7: Sch	nematic Diagram of L293D Motor Shield	16
Figure 2.8: HC-	-05 Module	16
Figure 2.9: PCA	A 9685	18
Figure 2.10: Bl	lock Diagram of PCA 9685 [19]	19
Figure 2.11: De	efinition of START and STOP conditions [19]	19
Figure 2.12: W	Then writing to the specific register [19]	20
Figure 2.13: Ho	ow PWM control the LED to turn on and off	21
Figure 2.14: 5A	A CV Step Down Module	22

Figure 2.15: Application Circuitry of XL4005 (24V \sim 5V/ 5A) [20]	22
Figure 2.16: Start Logo of Proteus Design Suite	23
Figure 3.1: General Flow Chart of the Project	25
Figure 3.2: Block Diagram of the Mobile Robot	26
Figure 3.3: The Flow of the Process when Controlling the DC Motor of the Mobile R	
	30
Figure 3.4: 8 directional of the joystick with respective direction.	31
Figure 3.5: Flow Chart of Android Sends Value Based on the Respective Seek Bar	32
Figure 3.6: Flow Chart of the Arduino Receives Signal from Android and Contro	ol the
Respective Servo Motor.	33
Figure 3.7: The interface of seek bar for each part of Robotic Arm.	34
Figure 3.8: Flow Chart of controlling the mobile robot by Android	34
Figure 3.9: Declaration of the variable and include the source code from library	35
Figure 3.10: Setting up the Startup of Arduino.	35
Figure 3.11: Execute the signal received.	36
Figure 3.12: Function used to find the pulse width for the servo motor	37
Figure 3.13: Control the rotate part of the Robotic Arm	37
Figure 3.14: Coding for controlling the servo motor	38
Figure 3.15: Coding for Arm Mode and Normal Mode	38
Figure 3.16: Component of the chassis	39
Figure 3.17: Robot Chassis	40

Figure 3.18: Swivel Mechanism	40
Figure 3.19: Front view of Base and Lower Arm of Robotic Arm	41
Figure 3.20: Side View of the Lower Arm and Upper Arm of Robotic Arm	42
Figure 3.21: Dimension of the Side View of Lower and Upper Arm	43
Figure 3.22: Top view of Structure of Left Gear with Dimension	44
Figure 3.23: Side view of Structure of Left Gear with Dimension	44
Figure 3.24: Top view of Structure of Right Gear with Dimension	45
Figure 3.25: Side view of Structure of Right Gear with Dimension	45
Figure 3.26: Top view of Structure of Rear Bar with Dimension	45
Figure 3.27: Side view of Structure of Rear Bar with Dimension	45
Figure 3.28: Front view of Structure of Left Gripper with Dimension	46
Figure 3.29: Side view of Structure of Left Gripper with Dimension	46
Figure 3.30: Front view of Structure of Right Gripper with Dimension	47
Figure 3.31: Side view of Structure of Right Gripper with Dimension	47
Figure 3.32: Front view of Structure of Base with Dimension	48
Figure 3.33: Side view of Structure of Base with Dimension	48
Figure 3.34: Expected output of end effector after assembling	49
Figure 3.35: Schematic Diagram of constructed circuitry	50
Figure 3.36: Layout Diagram of constructed circuitry	50
Figure 3.37: Complete Circuitry of all the Components in Schematic Diagram	51

Figure 3.38: Project List for the Application	52
Figure 4.1: 3D printer is fabricating the left gear	55
Figure 4.2: End-effector of the robotic arm	55
Figure 4.3: Mobile Robot was lifting the water bottle	56
Figure 4.4: Mobile Robot leans forward while lifting the water bottle	56
Figure 4.5: Mobile Robot in gripping position	57
Figure 4.6: Mobile Robot Lifting the Water Bottle with U-bracket metal sugurderneath.	
Figure 4.7: Side View of Mobile Robot with Label and Dimension	58
Figure 4.8: Permission to turn on Bluetooth	58
Figure 4.9: Device List	59
Figure 4.10: Control Interface for the Mobile Robot	59
Figure 4.11: Mobile Robot in Normal Position	60
Figure 4.12: Mobile Robot in Arm Position	60
Figure 4.13: Shows the direction used to determine the angle pointed by the servo	
Figure 4.14: Analyze the angle for each parts of the robotic arm	62
Figure 4.15: The Height of the Mobile Robot and the End Effector when in Position	
Figure 4.16: The Height of the Mobile Robot and the End Effector when in Arm I	Position 63

Figure 4.17: The Highest Reaching Point of the End Effector when in Arm Position	64
Figure 4.18: Graph of Distance over Time or each Speed	65
Figure 4.19: The gripper is holding the test tube tightly	67
Figure 4.20: The gripper is rotating the test tube.	67

LIST OF APPENDICES

NO	CONTENT	PAGE	
٨	MICDOCONTROLLED SOURCE CODE	72	
A	MICROCONTROLLER SOURCE CODE	/3	

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this century, Robots are significantly increase as robots being immersed into our daily tasks, machines are replacing human especially in industrial area whereas the automation of process has increase the efficiency while decreasing time consume and human labor. As the technologies getting more advance, the improvement of technologies has inspired a whole generation of engineer to push the barriers of technology. Challenge such as to develop a robotic arm to work the way human arm does.

Human are restricted by physical and mental limitation whereas robots are inversible. They can work repetitively and way more effectively and efficiently compare to human. They replace human to outperform a duty which human unable to do. Robots do not have soul, they are lifeless. They perform what they are programmed to be and they can work 24/7. They can lift heavy weight and can accurately perform the job with less error. Robots are widely used in many fields of applications including office, industrial automation, military task, hospital operations, security systems, dangerous environment, and agriculture.

Generally, industrial robotic arm is widely used for pick and place task where it is programmed to execute the task to be fast and accurate. From SMT machine to automation, it can work independently or cooperate with human force especially in a large scale or heavy weight which human unable to handle. This can greatly reduce the risk factor as well as increase the efficiency of work done.

Furthermore, robots are deployed especially in hazardous situation such as terrorist bomb threat, land mine patrol and nuclear disaster. They are often used to deal with hazardous materials to enhance the human safety especially in hazardous environment such as extremely hot or cold temperature, polluted air, and radioactivity. Human is unable to endure these hazardous environments for a long time.

1.2 Project Overview

This project is about the design and development of 5 Degree of Freedom (DOF) robotic arm with mobility to move around. This mobile robot will be powered up by a LiPo Battery which does not rely on the power plug. It is controlled using Android Smartphone through an application called "JoyStick Controller" via Bluetooth. Besides, Arduino acts as a control station for the mobile robot to function. Furthermore, it has a servo motor mounted underneath to act as a stab to increase the stability. Overall, this mobile robot can pick the object from any angle, lift and place from one destination to another with the help of its wheels, and the control is manually done by the user.

1.3 Problem Statement

Hazardous chemical is defined as a chemical that is health hazard or physical hazard by OSHA. In chemical manufacturing company, the sample must be periodically checked to ensure it meets the standard requirements. These checking will be done by the laboratory technician. Although human body can excrete the chemicals from human body by the help of the liver. However, when human is exposed to these harmful substances for a periodical time, it will adverse the health effects. This means the laboratory technician will in risk of having cancerous cell when testing the sample periodically.

1.4 Objectives

The objectives of this project are:

- a. To design and develop a mobile robot with robotic arm which can hold and tilt the test tube.
- To control the mobile robot using Android Smartphone through Android Application.

1.5 Scope of Work

The project scopes are:

- a. To determine the complexity and degree of freedom (DOF) level of the robotic arm.
- b. To design a mobile robot with robotic arm.
- c. To determine and choose the most appropriate microcontroller and wireless communication
- d. To create an application with a user-friendly interface.

1.6 Limitation

- a. The robotic arm can lift an object up to 100g.
- b. The mobile robot is unable to climb up or down the stair.

CHAPTER 2

LITERATURE REVIEW

2.1 LITERATURE REVIEW

This section will review and compare the existing project. Then, a verdict is made on how to design the robot, follows by introducing the components used.

2.1.1 Review of the existing robot

Arian Faravar [1] constructed a 5-DOF Robotic Arm using PIC 16F877A Microcontroller. It uses 2 servo motors to lift the upper part of the robotic arm as he mentioned the power, torque and size of the servo motor will affect the dimension of the robotic arm. Furthermore, he uses PIC 16F877A microcontroller is because it has a good range of interfaces which are analogue, digital pins and pulse width modulation (PWM) and in-circuit debugging. Figure 2.1 shows the robotic arm for this project.

Figure 2.1: Structure of the robotic arm [1]

Mohammed Shoeb Shah and P. B. Borole [2] built a Surveillance and Rescue Robot using Android Smartphone. The robot itself has a robotic arm with 4 wheels. It only moves forward, backward, left, or right turn. Arduino is used to control the robot movement, robotic arm, and sensors. They mounted the android smartphone on the rescue robot to provide vision, connectivity to the Arduino. Therefore, the robot can be remotely controlled using laptop through the internet with the help of GSM of the android smartphone.

Kavita P. More [3] propose a Wireless Hand Gesture to control the robot. The robot consists of 4 wheels and a Robotic Arm, an end-effector. It uses the flex sensor to capture the movement of the hand to control the Robot by converting the raw mechanical data into electrical form. The author chose Arduino UNO as the microcontroller because ATmega328 which reside in the Arduino UNO is commonly used as it is simple, low-powered, and low cost. The robot required two Xbee modules which will be placed at transmitter and receiver section for the communication. The range of the operation is up to 20 to 30 meters only. Besides, it uses L293D as the motor driver to control the DC motor. L293D acts as a H-Bridge which allow the voltage to flow either direction. Thus, allowing to control the rotation of the DC motor. It also provides current up to 600-mA at voltage from 4.5V to 36V. Figure 2.2 shows the mobile robot with a gripper of this project and Figure 2.3 shows the Wireless Hand Gesture used to control the robot.

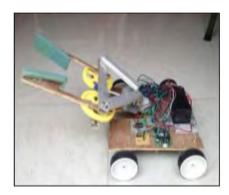


Figure 2.2: Robot with a gripper [3]