

# DESIGN FOR IMPROVEMENT OF METROLOGY AND INSPECTION OF INTEGRATED CIRCUIT FOR ACCURACY CHECK USING SMARTSCOPE APPLICATION

This report submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Engineering Design)(Hons.)

by

## FARAH NURHIDAYAH BINTI ALIAS B051310275 940902-01-6408

# FACULTY OF MANUFACTURING ENGINEERING 2017



# DECLARATION

I hereby, declared this report entitled "Design for Improvement of Metrology and Inspection of Integrated Circuit for Accuracy Check Using Smartscope Application" is the results of my own research except as cited in reference.

| Signature     | :                              |
|---------------|--------------------------------|
| Author's Name | : FARAH NURHIDAYAH BINTI ALIAS |
| Date          | : 1 July 2017                  |

## APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor Manufacturing Engineering (Manufacturing Design) (Hons.).

The members of the supervisory committee are as follow:-

.....

(WAHYONO SAPTO WIDODO)

.....

(FAUZI BIN MOHD SHAH)



UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

#### TAJUK: DESIGN FOR IMPROVEMENT OF METROLOGY AND INSPECTION OF INTEGRATED CIRCUIT FOR ACCURACY CHECK USING SMARTSCOPE **APPLICATION**

SESI PENGAJIAN: 2016/17 Semester 2

#### Saya FARAH NURHIDAYAH BINTI ALIAS (940902-01-6408)

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan ( $\sqrt{}$ )

| SULIT<br>TERHAD<br>TIDAK TERHAD                                                                                                                                                                    | (Mengandungi maklumat yang berdarjah keselamatan<br>atau kepentingan Malaysiasebagaimana yang termaktub<br>dalam AKTA RAHSIA RASMI 1972)<br>(Mengandungi maklumat TERHAD yang telah ditentukan<br>oleh organisasi/badan di mana penyelidikan dijalankan) |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                    | Disahkan oleh:                                                                                                                                                                                                                                           |  |
| Alamat Tetap:<br>NO. 244, Jalan Cengal 5,                                                                                                                                                          | Cop Rasmi:                                                                                                                                                                                                                                               |  |
| Bandar Putra,                                                                                                                                                                                      |                                                                                                                                                                                                                                                          |  |
| 81000, Kulaijaya, Johor.                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |
| Tarikh:                                                                                                                                                                                            | Tarikh:                                                                                                                                                                                                                                                  |  |
| ** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi<br>berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai |                                                                                                                                                                                                                                                          |  |

SULIT atau TERHAD.

## ABSTRAK

Tujuan projek sarjana muda ini adalah untuk mereka bentuk lekapan semakan pemeriksaan yang boleh digunakan dalam proses ketepatan semakan. Lekapan ini direka sebagai bantuan dalam menjalankan mod automatik dalam proses ketepatan semakan. Dalam peringkat mereka bentuk konsep, terdapat beberapa konsep reka bentuk yang telah dicadangkan dan dihasilkan yang mesti mengikut kekangan reka bentuk yang telah ditetapkan. Kemudian, semua konsep reka bentuk menjalani kaedah Pugh untuk pemilihan konsep yang terbaik. Pemilihan dilakukan berdasarkan 10 kriteria yang ditetapkan untuk memenuhi keperluan pelanggan. Konsep reka bentuk terbaik adalah Konsep Reka Bentuk 1 (CD-1) yang memperoleh skor tertinggi sebanyak 5. Konsep tersebut kemudiannya menjalani pembangunan selanjutnya dengan analisis Failure Mode Effect Analysis (FMEA). Analisis ini telah menambahbaik konsep reka betuk berdasarkan mod pontensi kegagalan yang dikesan. Selepas itu, konsep reka bentuk akhir dihasilkan. Reka bentuk itu kemudiannya dihantar untuk proses fabrikasi mengunakan kaedah percetakan 3D. Selepas prototaip difabrikasi, prototaip dibawa untuk pengesahan reka bentuk untuk mengesahkan funsi prototaip. Fasa ini dijalankan menggunakan aplikasi SmartScope dimana proses ketepatan semakan dilakukan. Keputusan yang dihasilkan daripada proses ini membuktikan dan mengesahkan bahawa reka bentuk yang dihasilkan adalah berjaya.

## ABSTRACT

The aim of this project is to design an inspection checking fixture that can be used in accuracy check process. The fixture is designed as an aid in conducting automatic mode of the process. In conceptual design stage, there are several proposed conceptual designs are generated which must follow design constraints that are set. Then, all of the conceptual designs underwent Pugh's Method for concept selection to come out with the best conceptual design. The selection is done based on 10 criteria that are set to meet customer's requirement. The best conceptual design underwent further development with Failure Mode Effects Analysis (FMEA). The analysis has improved the design based on potential failure mode that are detected. After that, the final design is generated. The design is then sent for fabrication process using 3D printing method. After the prototype is fabricated, the prototype went of design validation to verify the functionality of the prototype. This phase is conducted using SmartScope application which the real accuracy check process is performed. The results generated from this process proved the design is validated.

## **DEDICATION**

This report is dedicated to my strong father, Alias bin Mamat

my late mother, Zainon Binti Husin

my brothers and sisters, Deen, Jaja, Amir, Azila and Hafiz

and my other loved ones and friends

for giving me continuous motivation, financial support, cooperation and understandings

Thank you all!

### ACKNOWLEDGEMENT

In the name of ALLAH, the Most Gracious, the Most Merciful, with the highest praise to Allah that I manage to complete this final year project successfully without difficulties.

I would like to express my deepest gratitude to my respected supervisor, Mr. Wahyono Sapto Widodo, for guiding me throughout the journey. Besides that, I would like to thank the Design Team at Cohu Malaysia, Mr. Fauzi bin Mohd Shah and Mr. Hafizuddin bin Baharom for helping me a lot, giving the best advices and exposing me with new experiences in semiconductor industry.

Last but not least, I also would like to thank my family and friends whom had given me endless motivation and support in completing this report especially to Fatin Hanani, Amirah Afina, and Khairusy. Thank you for all the kindness.

Finally, I would like to thank everyone who was important to this project directly or indirectly, as well as expressing my apology that I could not mention personally each one of you.

# **TABLE OF CONTENTS**

| Abstrak               | i   |
|-----------------------|-----|
| Abstract              | ii  |
| Dedication            | iii |
| Acknowledgement       | iv  |
| Table of Contents     | v   |
| List of Tables        | xi  |
| List of Figures       | xii |
| List of Abbreviations | xiv |

### **CHAPTER 1: INTRODUCTION**

| Background            | 1 |
|-----------------------|---|
| Problem Statement     | 3 |
| Objectives of Project | 5 |
| Scope of Project      | 6 |

#### **CHAPTER 2: LITERATURE REVIEW**

| Introduction                        | 7 |
|-------------------------------------|---|
| Semiconductor Industry              | 8 |
| Integrated Circuit (IC)             | 8 |
| Inspection Machines                 | 9 |
| Coordinate Measuring Machines (CMM) | 9 |

| Customer's design specifications          | 10 |
|-------------------------------------------|----|
| Fixtures                                  | 11 |
| Definition 11                             |    |
| Inspection Checking Fixtures              | 11 |
| Computer Aided Design (CAD)               | 13 |
| Design Concept Selection                  | 14 |
| Pugh Matrix (PM)                          | 14 |
| Finite Element Analysis (FEA)             | 16 |
| Application of FEA and Working Principles | 16 |
| Material selection                        | 18 |
| Failure Mode and Effect Analysis (FMEA)   | 19 |
| Type of FMEA                              | 20 |
| Fabrication Process                       | 21 |
| Multi-Jet Printing                        | 21 |
| SmartScope Application                    | 22 |
| Summary                                   | 23 |
|                                           |    |
| CHAPTER 3: METHODOLOGY                    |    |
| Project Planning                          | 24 |
| Planning Phase                            | 26 |
| 3.2.1 Defining the Objectives             | 26 |
| 3.2.2 Problem Statement                   | 26 |
| 3.2.3 Scope of the Project                | 27 |

|              | Literature Review                                  | 27 |
|--------------|----------------------------------------------------|----|
|              | Methodology                                        | 27 |
|              | Relationships between Objectives and Methodology   | 28 |
| Designin     | g Phase                                            | 29 |
|              | 3D Modelling Design                                | 29 |
|              | Material Selection                                 | 29 |
| 3.3.2        | Design Constraint                                  | 29 |
| Analysis     | Phase                                              | 30 |
|              | Pugh's Method Flowchart                            | 30 |
|              | Failure Mode and Effects Analysis (FMEA) flowchart | 31 |
| Result Phase |                                                    | 32 |
|              | Result and Discussion                              | 32 |
| Fabricatio   | on Phase                                           | 33 |
|              | Multi-Jet Printing                                 | 33 |
|              | Validation of Prototype                            | 33 |
| Program      | Programming Phase                                  |    |
|              | SmartScope Application                             | 34 |
| Preparati    | on Report & Presentation Phase                     | 35 |

## **CHAPTER 4: DEVELOPMENT OF INSPECTION CHECKING FIXTURE**

| Customer's Requirement   | 36 |
|--------------------------|----|
| Conceptual Designs Stage | 37 |

| Concept Evaluation                                                 |    |
|--------------------------------------------------------------------|----|
| Pugh Matrix (Pugh's Method)                                        | 38 |
| Proposed conceptual designs of inspection checking fixture         | 38 |
| Datum design                                                       | 38 |
| Description of conceptual design 1 (CD-1)                          | 39 |
| Description of conceptual design 2 (CD-2)                          | 40 |
| Description of conceptual design 3 (CD-3)                          | 41 |
| Method of controlled convergence (Pugh's Method)                   | 42 |
| Integration of Pugh's Method and Failure Mode and Effects Analysis | 44 |
| (FMEA)                                                             |    |
| Failure Mode and Effects Analysis (FMEA)                           | 45 |
| Suitability of design (functionality and ergonomics)               | 46 |
| Manufacturing consideration                                        | 46 |
| Recommended Action and RPN                                         | 46 |
| Risk Priority Numbers (RPN)                                        | 47 |
| Product Design Specification (PDS) for FMEA designs                | 47 |
| Improvement of part design                                         | 49 |
| Determine new RPN value                                            | 49 |
| Concept Further Optimization                                       | 51 |
| Final Design                                                       | 51 |
| Fabrication of Prototype                                           | 51 |
| Flowchart of fabrication process                                   | 52 |
| Fabrication process of inspection checking fixture prototype       | 53 |

## 8

# Summary CHAPTER 5: RESULT AND DISCUSSION

| Results   |                                                                      | 57 |
|-----------|----------------------------------------------------------------------|----|
|           | Pugh's method result                                                 | 57 |
|           | Analysis on conceptual design 1 (CD-1)                               | 58 |
|           | Finite Element Analysis (FEA) using CATIA V5 simulation              | 59 |
|           | OCTREE Tetrahedron Mesh                                              | 59 |
|           | Restraint                                                            | 60 |
|           | Distributive Forces                                                  | 60 |
|           | Result of Finite Element Analysis (FEA)                              | 61 |
|           | Failure Mode and Effects Analysis (FMEA) result                      | 62 |
|           | Result of base plate and clamper                                     | 62 |
|           | Severity per Failure Mode (SEV)                                      | 63 |
|           | Occurrence per Failure Mode (OCC)                                    | 64 |
|           | Detection per Failure Mode (DET)                                     | 65 |
|           | Risk Priority Numbers (RPN)                                          | 66 |
|           | RPN percentage reduction                                             | 67 |
|           | Design validation                                                    | 68 |
| Discussio | on                                                                   | 71 |
|           | The comparison among conceptual designs in Pugh's Method approach    | 71 |
|           | Finite Element Analysis (FEA) for critical part (clamper)            | 71 |
|           | Design Failure Mode Effects Analysis (dFMEA) for selected conceptual | 72 |
|           | design                                                               |    |

## **CHAPTER 6: CONCLUSION**

| Conclusion                                    | 73 |
|-----------------------------------------------|----|
| Design for Sustainability                     | 74 |
| Design Limitations                            | 74 |
| Recommendation                                | 74 |
| Improvement of design concept                 | 75 |
| Improvement on fabrication process            | 75 |
| REFERENCES                                    | 76 |
| APPENDIX A Gantt Chart                        | 79 |
| APPENDIX B FMEA Design Team Cohu Malaysia     | 80 |
| APPENDIX C FMEA Guidelines on Ranking Indices | 81 |
| APPENDIX D 2D drawing for conceptual designs  | 84 |

10

# LIST OF TABLES

| 1.1 | Comparison of results from SmartScope and NV Core                            | 3  |
|-----|------------------------------------------------------------------------------|----|
| D   | mension for SOIC PSSO16                                                      | 10 |
| Fa  | ilure mode examples                                                          | 19 |
| G   | eneric FMEA worksheet                                                        | 20 |
| 3.1 | Relationships between objectives and methodology                             | 28 |
| Ev  | valuation chart for conceptual designs of fixture for accuracy check process | 43 |
| Re  | esult of Pugh's conceptual designs selection                                 | 44 |
| D   | esign Failure Mode Effects Analysis (dFMEA) worksheet                        | 48 |
| In  | provement of part design                                                     | 49 |
| Re  | ecalculation of Design Failure Mode Effects Analysis (dFMEA) worksheet       | 50 |
| D   | escription of fabrication process of prototype                               | 53 |
| Re  | esult of Pugh's conceptual design selection                                  | 57 |
| Ca  | alculation for force distribution                                            | 58 |
| Re  | ecalculated FMEA result for base plate                                       | 62 |
| Re  | ecalculated FMEA result for clamper                                          | 62 |
| Pe  | ercentage reduction of RPN for base plate                                    | 67 |
| Pe  | ercentage reduction of RPN for clamper                                       | 67 |
| Τe  | erminal distance for each lead                                               | 69 |

# LIST OF FIGURES

|    | Dir                                        | nensions for accuracy check process          | 2  |  |  |  |  |  |
|----|--------------------------------------------|----------------------------------------------|----|--|--|--|--|--|
|    | Gri                                        | d feature in MeasureMind software            | 4  |  |  |  |  |  |
|    | Res                                        | sult for pitch of first lead of a component  | 5  |  |  |  |  |  |
| 2. | 1                                          | SOIC-16                                      | 8  |  |  |  |  |  |
| 2. | 2                                          | NY32                                         | 9  |  |  |  |  |  |
|    | Fix                                        | ture for discrete component                  | 12 |  |  |  |  |  |
|    | Interface of CATIA in 3D drawing           |                                              |    |  |  |  |  |  |
|    | Example of a completed Pugh Matrix         |                                              |    |  |  |  |  |  |
|    | General flow of FEA                        |                                              |    |  |  |  |  |  |
|    | Summary flow of tension tutorial using FEA |                                              |    |  |  |  |  |  |
|    | Vo                                         | n Misses stress for the shaft                | 17 |  |  |  |  |  |
|    | Vis                                        | siJet M3 Crystal material properties         | 18 |  |  |  |  |  |
|    | XH                                         | ID ProJet 3500 3D printer                    | 21 |  |  |  |  |  |
|    | Exa                                        | ample of prototype printed using ProJet 3500 | 22 |  |  |  |  |  |
|    | Sm                                         | artScope Flash CNC 300                       | 23 |  |  |  |  |  |
|    | Flo                                        | wchart of project                            | 25 |  |  |  |  |  |
|    | Pug                                        | gh's method flowchart                        | 30 |  |  |  |  |  |
|    | FM                                         | IEA flowchart                                | 31 |  |  |  |  |  |
|    | Sm                                         | artScope Flash CNC 300                       | 34 |  |  |  |  |  |
|    | Lay                                        | yout of CMM machine with fixture             | 37 |  |  |  |  |  |
|    | Dat                                        | tum design                                   | 38 |  |  |  |  |  |
|    | Co                                         | nceptual design 1 (CD-1)                     | 39 |  |  |  |  |  |
|    | Co                                         | nceptual design 2 (CD-2)                     | 40 |  |  |  |  |  |
|    | Co                                         | nceptual design 3 (CD-3)                     | 41 |  |  |  |  |  |

| First fabricated prototype from conceptual design 1 (CD-1) |    |  |  |  |  |
|------------------------------------------------------------|----|--|--|--|--|
| Final design of inspection checking fixture                |    |  |  |  |  |
| OCTREE Tetrahedron mesh                                    | 59 |  |  |  |  |
| Restraint points on the clamper                            | 60 |  |  |  |  |
| Applied distributive forces on the clamper                 | 60 |  |  |  |  |
| FEA with displacement of IC size                           | 61 |  |  |  |  |
| FEA with maximum displacement of spring                    | 61 |  |  |  |  |
| Comparison of severity for base plate                      | 63 |  |  |  |  |
| Comparison of severity for clamper                         | 63 |  |  |  |  |
| Comparison of occurrence for base plate                    | 64 |  |  |  |  |
| Comparison of occurrence for clamper                       | 64 |  |  |  |  |
| Comparison of detection for base plate                     | 65 |  |  |  |  |
| Comparison of detection for clamper                        | 65 |  |  |  |  |
| Comparison of RPN values for base plate                    | 66 |  |  |  |  |
| Comparison of RPN values for clamper                       | 66 |  |  |  |  |
| Process flow of design validation                          | 68 |  |  |  |  |
| Fixed x and y positions of prototype on SmartScope table   |    |  |  |  |  |
| Program file in RTN format that is created by the user     |    |  |  |  |  |
| Results generated by SmartScope in txt file                | 70 |  |  |  |  |

xiii

# LIST OF ABBREVIATIONS

| CAD   | - | Computer Aided Design                                   |
|-------|---|---------------------------------------------------------|
| CATIA | - | Computer Aide Three-dimensional Interactive Application |
| СММ   | - | Coordinate Measuring Machines                           |
| CNC   | - | Computer Numerical Control                              |
| CD    | - | Conceptual Design                                       |
| FEA   | - | Finite Element Analysis                                 |
| FMEA  | - | Failure Mode and Effects Analysis                       |
| IC    | - | Integrated Circuit                                      |
| IT    | - | Information Technology                                  |
| LED   | - | Light-emitting Diode                                    |
| MJP   | - | Multi-Jet Printing                                      |
| OGP   | - | Optical Gaging Products                                 |
| PM    | - | Pugh Matrix                                             |
| QVI   | - | Quality Vision International                            |
| SOIC  | - | Small Outline Integrated Circuit                        |
| TTL   | - | Through the Lens                                        |

14

## **CHAPTER 1**

#### **INTRODUCTION**

This chapter provides brief ideas about the research study of the project, which is divided into four major sections; background, problem statement, objectives and scope of the project.

#### 1.1 Background

Semiconductor industry plays an important role in digital globalization era nowadays; the era which everything is at one's fingertips. This industry is facing many challenges to be confronted include reducing cost of designing and manufacturing Integrated Circuit (IC) without downgrading its quality, meeting production deadlines, minimizing time-to-market and time-tovolume, and maximizing profitability. Industry revolution has made electronic devices become essential in easing one's daily routine. High quality of ICs in these electronic devices are very crucial for the devices to be functional maximally. The failure of these ICs can lead to many fatalities especially when it involves automotive components. However, the high demand from the market forces this industry to massively produce the ICs which might affect its quality. There are many methods used to control and maintain the quality of these ICs. Numerous inspection machines are invented to check and make sure the quality of the ICs meet the requirements. One of the machines are coordinate measuring machine (CMM) which a device for measuring the physical geometrical characteristics of any objects. For example, Optical Gaging Products (OGP), one of the world's leading multi-sensor metrology solutions provider, has created SmartScope Flash Systems which are high-accuracy metrology systems designed to measure any objects in automatic mode with a high quality, 12:1 zoom lens. These systems helps manufacturers across the world to improve the quality of their products in term of its metrology.

Results obtain from these systems are then used as references for inspection machine in the company by altering the machine settings to attain nearly similar results as the SmartScope Flash Systems. The process of checking metrology of the ICs is called accuracy check. Figure 1.1 shows the desired dimensions for accuracy check process. Therefore, the results from this process have to be very accurate as it might affect the machine performance.



Figure 1.1: Dimensions for accuracy check process (Wikipedia, 2006)

#### **Problem Statement**

SmartScope Flash Systems is used to carry out accuracy check process by taking several IC samples from customers and measuring the desired dimensions of the ICs. In order to obtain most accurate results which will be used as reference by inspection machines, the orientation of ICs on the SmartScope must be in a correct position. However, current process of Accuracy Check is carried out manually which the ICs are placed on the SmartScope without any tooling aids to hold the ICs. This might cause misalignment of the ICs that will affect the reading of its dimensions.

The results from SmartScope will be compared with machine results. The fail results which both results from SmartScope and machine (NV Core software) are out of tolerance, will have to be rechecked and recalculated its dimensions again under SmartScope. The new readings might vary from the recent ones. This variation of results is now a problem to this process. Table 1.1 shows the comparison of both results with a tolerance of  $\pm$  20 µm and correlation offset of -0.030 for minimum and maximum terminal distance, T<sub>D</sub> of 20 Small Outline Integrated Circuit (SOIC) samples. The full result is attached in Appendices.

| TD Min/Max (+- 20um / 0.020mm) |        | Correlat | ion Offse | et TD Miı | Correlation Offset TD Max: -0.030 |        |        |       |        |        |       |        |        |       |        |
|--------------------------------|--------|----------|-----------|-----------|-----------------------------------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|
| Comp                           | 1      |          | 2         |           |                                   | 3      |        |       | 4      |        |       | 5      |        |       |        |
|                                | NVCore | Scope    | Diff      | NVCore    | Scope                             | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   |
| TD Min                         | 6.049  | 6.003    | -0.046    | 6.028     | 6.008                             | -0.020 | 6.004  | 6.014 | 0.010  | 6.008  | 5.985 | -0.023 | 6.011  | 6.011 | 0.000  |
| TD Max                         | 6.071  | 6.070    | -0.001    | 6.053     | 6.054                             | 0.001  | 6.023  | 6.025 | 0.002  | 6.045  | 6.055 | 0.010  | 6.036  | 6.026 | -0.010 |
|                                |        |          |           |           |                                   |        |        |       |        |        |       |        |        |       |        |
| Comp                           | 6      |          | 7         |           |                                   | 8      |        |       | 9      |        |       | 10     |        |       |        |
|                                | NVCore | Scope    | Diff      | NVCore    | Scope                             | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   |
| TD Min                         | 6.010  | 5.995    | -0.015    | 6.008     | 5.998                             | -0.010 | 6.008  | 6.015 | 0.007  | 6.009  | 6.008 | -0.001 | 6.009  | 6.008 | -0.001 |
| TD Max                         | 6.034  | 6.051    | 0.017     | 6.024     | 6.035                             | 0.011  | 6.039  | 6.026 | -0.013 | 6.044  | 6.051 | 0.007  | 6.073  | 6.053 | -0.020 |
|                                |        |          |           |           |                                   |        |        |       |        |        |       |        |        |       |        |
| Comp                           | 11     |          |           | 12        |                                   | 13     |        |       | 14     |        |       | 15     |        |       |        |
|                                | NVCore | Scope    | Diff      | NVCore    | Scope                             | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   |
| TD Min                         | 6.011  | 6.008    | -0.003    | 5.990     | 6.005                             | 0.015  | 5.997  | 6.012 | 0.015  | 6.019  | 6.017 | -0.002 | 6.020  | 6.027 | 0.007  |
| TD Max                         | 6.036  | 6.037    | 0.001     | 6.018     | 6.024                             | 0.006  | 6.036  | 6.033 | -0.003 | 6.048  | 6.044 | -0.004 | 6.091  | 6.089 | -0.002 |
|                                |        |          |           |           |                                   |        |        |       |        |        |       |        |        |       |        |
| Comp                           | 16     |          |           | 17        |                                   |        | 18     |       |        | 19     |       |        | 20     |       |        |
|                                | NVCore | Scope    | Diff      | NVCore    | Scope                             | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   | NVCore | Scope | Diff   |
| TD Min                         | 6.017  | 6.005    | -0.012    | 6.019     | 6.017                             | -0.002 | 5.979  | 5.980 | 0.001  | 6.017  | 6.015 | -0.002 | 6.007  | 6.010 | 0.003  |
| TD Max                         | 6.028  | 6.025    | -0.003    | 6.035     | 6.031                             | -0.004 | 6.004  | 6.005 | 0.001  | 6.041  | 6.024 | -0.017 | 6.019  | 6.015 | -0.004 |
|                                |        |          |           |           |                                   |        |        |       |        |        |       |        |        |       |        |

Table 1.1: Comparison of results from SmartScope and NV Core (Cohu Inc. 2016)



As the process of taking dimensions of SOIC is done manually, person-in-charge of this process has to readjust the orientation of the component using a holder, as SOIC is very small and sensitive, so that it fits perfectly inside the grid in SmartScope software called MeasureMind as shown in Figure 1.2. This manual handling process must be carried out carefully to avoid any damages happen to the components which might change the dimensions of component leads. Therefore, this tedious work consumes a lot of time which one component takes approximately about one hour to finish taking all the dimensions. Besides that, the productivity of the person-in-charge also decreases as the person has to spend a week to completely finish 40 samples in one project. If the components are missed while undergoing inspection in the machine, the person-in-charge has to take new samples and carry out accuracy check on the new samples.



Figure 1.2: Grid feature in MeasureMind software (Cohu Inc., 2016)