DEVELOPMENT OF THE WATER QUALITY MONITORING AND NOTIFICATION SYSTEM

TENG TECK WEE

This Report Is Submitted In Partial Fulfillment Of Requirements For The Bachelor Degree of Electronic Engineering (Industrial Electronics)

Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer

University Teknikal Malaysia Melaka

June 2017

FAKULTI KI	UNIVERSTI TEKNIKAL MALAYSIA MELAKA EJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II
DEVELOPME Tajuk Projek NOTIFICAT	ENT OF THE WATER QUALITY MONITORING AND ION SYSTEM
Sesi Pengajian : 16	/ 1 7
Saya <u>TENG TECK WEE</u>	(HURLIF BESAR)
1993년 개월 1993 · · · · · · · ·	
mengaku membenarkan Laporan Projek syarat kegunaan seperti berikut:	Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
1. Laporan adalah hakmilik Univers	siti Teknikal Malaysia Melaka.
2 Perpustakaan dibenarkan membu	at salinan untuk tujuan pengajian sahaja
3 Pernustakaan dibenatkan membu	at salinan langran ini sabagai bahan pertukaran antara
3. Terpustakaan dibenarkan membu	a saman aporan nii sooagai bahan perukaran antara
institusi pengajian tinggi.	
4. Sila tandakan (V) :	
SULIT*	*(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD**	**(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Tarikh:	Tarikh:

"I hereby declare that the work in this project is my own expect for summaries and quotation which have been duly acknowledge."

Signature	:
Author	: TENG TECK WEE
Date	: 1 JUNE 2017

iii

"I acknowledge that I have read this report and in my opinion this report is sufficient in term of scope and quality for the award of Bachelor of Electronic Engineering (Industrial Electronics) with Honors."

Signature	<u></u>
Supervisor's Name	: DR. FARID ARAFAT BIN AZIDIN
Date	:

A very special dedication for my beloved family especially to my parent,

Teng Boon Cheng and Thee Guat Kim.

Also for my gracious supervisor Dr. Farid Arafat Bin Azidin

C	I limit como idi	Takaikal	Malavaia	Malaka
C	Universiti	lekuikai	walaysia	weiaka

ACKNOWLEDGEMENT

In the period time of final year project at Universiti Teknikal Malaysia Malaysia, I have gain a lot of experience and knowledge. That's all produce from cooperation many people until I have successfully completely the final year project.

First of all, I want to wish grateful to the God for all His blessing and I would like to take this opportunity to express my sincere appreciation and gratitude to my family for their all support along my final year project.

A special thanks to my supervisor Dr. Farid Arafat Bin Azidin for his consistent encouragement, guidance, assistance, cooperation, advice and invaluable knowledge that has brought to the completion of this final year project.

A lot of appreciation to Faculty of Electronic and Computer Engineering (FKEKK) for giving us a lot of useful knowledge, skill and provides many facilities for us when doing the Final Year project.

ABSTRACT

The high use of fertilizers and other sectors such as mining and construction have caused the reduction of water quality globally. Water is an essential need for human to survive. Drinking contaminated water can caused water-borne disease. Hence, we need to design a water quality monitoring system to measure the water quality parameter in real time to notify the user whether the water quality is normal or abnormal. The monitoring system is constructed by using turbidity sensor, pH sensor and temperature sensor. All the surrounding reading is sense by the different sensor and processed by microcontroller. In this project, we will be uses Arduino microcontroller because it an open-source prototyping platform based on easy-to-use. This system is a combination of water quality monitoring system and notification system. The notification system is developed by using GSM system (Global System for Mobile Communication). The water quality monitoring system can implement to measure the water quality parameter. The system will not release any chemical to the sources of water when measuring. The water quality monitoring system can implement into the different places to check the water quality parameter in real time. It also can implement into reservoir in town to ensure the water is maintained at the safety level for human drinking.

ABSTRAK

Penggunaan baja dengan terlampau dan sektor-sektor lain seperti perlombongan dan pembinaan telah menyebabkan pengurangan kualiti air di peringkat global. Air adalah keperluan penting bagi manusia untuk terus hidup. Minum air yang tercemar boleh menyebabkan penyakit bawaan air. Oleh itu, kita perlu membentuk suatu sistem pemantauan kualiti air untuk mengukur parameter kualiti air dalam masa nyata untuk memberitahu pengguna sama ada kualiti air adalah normal atau tidak normal. Sistem pemantauan dibina dengan menggunakan sensor kekeruhan, sensor pH dan sensor ORP. Semua bacaan sekitar adalah perasaan oleh sensor yang berbeza dan diproses oleh pengawal mikro. Dalam projek ini, kita akan menggunakan mikropengawal Arduino kerana ia platform prototaip sumber terbuka berdasarkan penggunaan yang mudah. Sistem ini adalah gabungan sistem pemantauan kualiti air dan sistem pemberitahuan. Sistem pemberitahuan dibangunkan dengan menggunakan sistem GSM (Global System for Mobile Communication). Sistem pemantauan kualiti air boleh melaksanakan untuk mengukur parameter kualiti air. Sistem ini tidak akan mengeluarkan sebarang kimia kepada sumber-sumber air apabila mengukur. Sistem pemantauan kualiti air boleh melaksanakan ke dalam tempat-tempat yang berbeza untuk memeriksa parameter kualiti air dalam masa nyata. Ia juga boleh melaksanakan ke dalam takungan di bandar untuk memastikan air dikekalkan pada tahap keselamatan untuk minum manusia.

LIST OF ABBREVIATIONS

GSM	-	Global System for Mobile communication
SMS	-	Short Message Service
SIM	-	Subscriber Identity Module
PIC	-	Programmable Integrated Chip
SD	-	Secure Digital
LCD	-	Liquid Crystal Display
ORP	-	Oxidation Reduction Potential
pН	-	Potential of Hydrogen

TABLE OF CONTENT

CHAPTER	TITLE	PAGES
	PROJECT TITLE	i
	PROJECT STATUS APPROVAL FOAM	ii
	DECLARATION	iii
	SUPERVISOR'S DECLARATION	iv
	DECLARATION	V
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	LIST OF ABBREVIATIONS	ix
	TABLE OF CONTENT	x-xiv
	LIST OF TABLE	XV
	LIST OF FIGURE	xvi-xiii

	1.1	Project overview	1-2
	1.2	Problem statement	3
	1.3	Objective	4
	1.4	Scope of project'	4
	1.5	Methodology of project	5-7
CHAPTER 2	LITE	RATURE REVIEW	8
	2.1	Radio frequency identification (RFID) system	8
		approaches	
	2.2	IOT remote sensing technique	8-10
	2.3	Zigbee, Wireless network system	10-11
	2.4	Nephelometric turbidity system	11
		2.4.1 Turbidity measuring technique	11
		2.4.2 Design and development	12
	2.5	Working principles of pH sensor	12
		2.5.1 How does pH sensor work	13
		2.5.2 Calibration of pH sensor	14
	2.6	Microcontroller	14

CHAPTER 1

INTRODUCTION

1

2.7	Devices and emergency notification	15
2.8	Human Machine Interface for water quality	15-16
	monitoring	
2.9	Integration of the developed system in cloud	17
	ready system	
2.10	Wireless acquisition system	18
	2.10.1 Block diagram of transmitter section	18
	2.10.2 Block diagram of receiver section	19
	2.10.3 Circuit schematic of transmitter section	19
	2.10.4 Circuit schematic of receiver section	20
2.11	Online data measurement and automatic	20-21
	sampling system	
	2.11.1 The sensing block	21
	2.11.2 Data logger	22
	2.11.3 PC based graphical display	23
2.12	Low cost autonomous water quality monitoring	24-25
	system	
2.13	Hardware design	25
	2.13.1 Turbidity sensor interfacing	26

2.13.3	Solar panel interfacing	27

2.13.4 General workflow 28

CHAPTER 3	METH	IODOLOGY	29
	3.1	Arduino Mega	29
	3.2	GSM module (SIM 900A)	30
	3.3	pH sensor	31
	3.4	Turbidity sensor	32
	3.5	Programming the microcontroller	33
CHAPTER 4	RESU	LT	34
	4.1	Testing pH sensor module	34
		4.1.1 Measured boiled water	34-36
		4.1.2 Measured tap water	37-38
	4.2	Testing turbidity, pH and ORP sensor	39
		4.2.1 Measured tap water	39-40
		4.2.2 Measured waste water from washing	41-42
		Machine	
	4.3	Notification based on GSM SIM900A	43-44
	4.4	Sustainability	45

CHAPTER 5	CON	CLUSION AND RECOMMENDATION	46
	5.1	Conclusion	46
	5.2	Recommendation	46-47
	REFE	RENCES	48-50
	APPE	NDICES	51-54

LIST OF TABLE

- Table 1Compare between microcontroller
- Table 2Compare sending device
- Table 3Explain the parameter and the description

XV

LIST OF FIGURE

- Figure 1.1.1 The river water quality Malaysia from year 2001-2008.
- Figure 1.1.2 The standard value of the water quality parameter.
- Figure 2.2.1 The proposed schematic diagram of the smart water quality monitoring system.
- Figure 2.2.2 Overall block diagram of the system operation.
- Figure 2.4.2.1 Cross section view of the turbidity sensor.
- Figure 2.5.1.1 Electrode of pH sensor.
- Figure 2.8.1 Design of monitoring system.
- Figure 2.9.1 Block diagram for cloud based system.
- Figure 2.9.2 Hardware for cloud based system.
- Figure 2.10.1.1 Block diagram of transmitter section.
- Figure 2.10.2.1 Block diagram of receiver section.
- Figure 2.10.3.1 Circuit schematic of transmitter section.
- Figure 2.10.4.1 Circuit schematic of receiver section.
- Figure 2.11.1 Concept of online water quality monitoring.

- Figure 2.11.2.1 The data logger diagram.
- Figure 2.11.3.1 Software interface for PC to data logger.
- Figure 2.11.3.2 Individual displays the temperature, DO, pH parameter.
- Figure 2.12.1 Data collection procedure.
- Figure 2.12.2 Flowchart of data acquisition process.
- Figure 2.13.1.1 Circuit diagram of turbidity sensor.
- Figure 2.13.2.1 Circuit diagram of zigbee.
- Figure 2.13.3.1 Solar panel interfacing.
- Figure 2.13.4.1 General workflow.
- Figure 3.1.1 Arduino mega 2560.
- Figure 3.2.1 Pinout diagram for SIM900A.
- Figure 3.3.1 pH sensor.
- Figure 3.4.1 Turbidity sensor.
- Figure 3.5.1 Example of coding in Arduino IDE.
- Figure 4.1.1.1 Measured boiled water with pH sensor.
- Figure 4.1.1.2 Data reading obtained from boiled water.
- Figure 4.1.1.3 Graph of reading obtained from boiled water.
- Figure 4.1.2.1 Data reading obtained from tap water.
- Figure 4.1.2.2 Graph of reading obtained from tap water.

- Figure 4.2.1.1 Measure tap water with turbidity, pH and ORP sensor.
- Figure 4.2.1.2 The LCD screen display the water quality parameter.
- Figure 4.2.2.1 Measure waste water with turbidity, pH and ORP sensor.
- Figure 4.2.2.2 The LCD screen display the water quality parameter.
- Figure 4.3.1 Set up notification system with GSM SIM900A.
- Figure 4.3.2 Receive SMS by the user from the GSM SIM900A.

CHAPTER 1

INTRODUCTION

This chapter will discuss about the project overview, problem statement, objective and scope of project.

1.1 Project overview

It is a well-known fact that clean water is absolutely essential for healthy living. Adequate supply of fresh and clean drinking water is a basic need for all human beings on the earth, yet it has been observed that millions of people worldwide are deprived of this [1]. Freshwater sources around the world are threatened by water pollution. Not only are we managing our resources poorly through wastage, we are also thoughtlessly dirtying it [2]. The Department of Environment (DOE) has been conducting monitoring of river since 1978, primarily to establish baselines and to detect water quality changes in river water quality and has since been extended to identifying of pollution sources as well. A total of 1,064 manual stations located within 143 river basins throughout Malaysia [3]. The figure 1.1.1 show the river water quality Malaysia from year 2001-2008 [4].

Year / Category	2001	2002	2003	2004	2005	2006	2007	2008
Very Polluted	13	14	9	9	15	7	7	7
Slightly Polluted	47	43	52	53	51	59	45	60
Clean	60	63	59	58	80	80	91	76
Total River Basin	120	100	120	120	146	146	143	143

River Water Quality, Malaysia, 2001-2008

Source: Adapted from Department of Environment, Environmental Quality Report, 2008, p. 50.

Figure 1.1.1: The river water quality Malaysia from year 2001-2008.

The Department of Environment (DOE) used Water Quality Index (WQI) to evaluate the status of the river water quality. The WQI serves as the basis for environment assessment of a watercourse in relation to pollution load categorization and designation of classes of beneficial uses as provided for under the National Water Quality Standards for Malaysia [5]. The figure 1.1.2 shows the standard value of the water quality parameter [6].

Parameters	Standard value (s _i)
Ph	6.5-8.5
Turbidity (NTU)	5
TDS (mg/l)	500
Total hardness (mg/l)	300
Sulphates (mg/l)	200
Magnesium (mg/l)	30
Nitrates (mg/l)	45
Chloride (mg/l)	250
Calcium (mg/l)	75

Figure 1.1.2: The standard value of the water quality parameter.

1.2 Problem statement

The high use of fertilizers and other sectors such as mining and construction have caused the reduction of water quality globally. Water is an essential need for human to survive. Drinking contaminated water can caused water-borne disease.

The main sources of water pollution are discharge of untreated raw sewage from households and factories, chemicals dumped from factories, agricultural run-offs that make their way into our rivers and streams and groundwater sources [2].

The main problem caused by water pollution is the effect it has on aquatic life. Dead fish, birds, dolphins, and many other animals often wind up on beaches, killed by pollutants in their habitat. Pollution disrupts the natural food chain as well [7].

Hence, we need to design a water quality monitoring system to measure the water quality parameter in real time to notify the user whether the water quality is normal or abnormal.

1.3 Objective

The objectives of this project are:

- a) To develop a real time water quality monitoring system.
- b) To design a notification system based on GSM (Global System for Mobile Communication) for notifies users.
- c) To analyze the data and reading obtained from water sample.

1.4 Scope of project

Design and develop a monitoring system that will check the quality of water in parameters of temperature, pH value and turbidity. The monitoring system is constructed by using turbidity sensor, pH sensor and temperature sensor. All the surrounding reading is sense by the different sensor and processed by microcontroller. In this project, we will be uses Arduino microcontroller because it an open-source prototyping platform based on easy-to-use. This system is a combination of water quality monitoring system and notification system. The notification system is developed by using GSM system (Global System for Mobile Communication). When the simulation is success, the circuit will be constructed and it will be tested. All the circuit, sensor and microcontroller will be embedded in a portable box. After that, this system will be installed in a prototype to show its application in real situation.

1.5 Methodology

5

6