DESIGN AND ANALYSIS OF HUMAN POWERED VEHICLE

TAN CHEE NIAN

This report is submitted in fulfillment of the requirement for the award Bachelor of Mechanical Engineering (Design and Innovation)

> Faculty of Mechanical Engineering University Teknikal Malaysia Melaka

> > **JUNE 2016**

SUPERVISOR DECLARATION

" I have checked this report and the report can now be submitted to JK-PSM to be

delivered back to supervisor and to the 2nd examiner"

Signature	:
Supervisor	MOHD NIZAM bin SUDIN
Date	:

DECLARATION

" I hereby declare that the work in this report is my own except for summaries and

recommendation which have been duly acknowledged."

Signature	:
Author	: TAN CHEE NIAN
Date	:

SPECIAL DEDICATION

ТО

My Beloved Parents

Mr.Tan See Boon @ Tan Peng Boon (Deceased) Mdm.Wong Yuet Choo

Also My Beloved Siblings

Tan Chee Ling Tan Chee Chee Tan Chee Li

ACKNOWLEDGEMENT

My heartfelt gratitude is extended to my dedicated supervisor; Dr Mohd Nizam bin Sudin for his supervision and constant support. His invaluable help of constructive comments and suggestions throughout the thesis works have contributed to the success of this research. Moreover, he gave me good guidance and help whenever I face problem or difficulty while completing this project.

My special thanks to my lovely family for their continuous support and encouragement throughout the process to complete this project. I would like special thanks to my friend Mr Ng Chee Keong for his assistance whenever I faced some problem.

Finally, my acknowledgement to those who directly or indirectly in helping with this project.

ABSTRACT

A human powered vehicle is one of the common products with the function as a mean of transportation or recreational use and etc. This project mainly to produce a new design of human powered vehicle with 4 wheels and its main purpose is for recreational use. Computer Aided Engineering (CAE) method is been used for analyze the safety of the critical part which is the chassis. In order to design the human powered vehicle with high safety and comforts, morphological chart, design selection method, weightage methods were used to choose the final concept design. The outcome of this project is to design a vehicle with highly comfort but not to forget the importance of safety for the riders and passengers.

ABSTRAK

Sebuah kenderaan berkuasa manusia adalah salah satu produk yang sama dengan fungsi sebagai pengangkutan atau kegunaan rekreasi dan lain-lain. Tujuan utama kertas ini adalah untuk menghasilkan reka bentuk baru kenderaan berkuasa manusia dengan 4 roda.Perisian CAE telah digunakan untuk menganalisis keselamatan bahagian kritikal iaitu casis. Dalam usaha untuk mereka bentuk kenderaan berkuasa manusia dengan keselamatan yang tinggi dan keselesaan, carta morfologi, kaedah pemilihan reka bentuk dan kaedah pemberat digunakan untuk memilih reka bentuk konsep akhir. Hasil projek ini adalah untuk mereka bentuk kenderaan yang selesa tetapi tidak melupakan kepentingan keselamatan untuk penunggang.

TABLE OF CONTENT

CHAPTER	TITI	LE	PAGE
	SUP	ERVISOR DECLARATION	ii
	DEC	LARATION	iii
	SPEC	CIAL DEDICATION	iv
	ACK	NOWLEDGEMENT	V
	ABS	TRACT	vi
	ABS	TRAK	vii
	TAB	LE OF CONTENT	viii
	LIST	OF TABLES	XV
	LIST	OF FIGURES	xviii
	LIST	OF ABBREVIATIONS / SYMBOLS	xxiv
CHAPTER 1	INT	RODUCTION	
	1.1	Project Background	1
	1.2	Problem Statement	2
	1.3	Objective	2
	1.4	Scope of project	2

C Universiti Teknikal Malaysia Melaka

CHAPTER 2LITERATURE REVIEW2.1Definition of Human Powered Vehicle62.2History of Human Powered Vehicle62.3Types of Human Powered Vehicle92.31 Types of Human Powered Vehicle102.32.3.1 Three Wheels Vehicle112.4The Application of Human Powered Vehicle112.4.1 Recreational112.4.2 Tourism Use122.5Consideration of Quadra cycle Design142.5.1 Ergonomics and Anthropometric Characteristic in HPV Design152.5.2 Vibration Response in HPV162.5.3 Suspension of HPV162.5.4 Wheel Disc152.5.5 Power Transmission System in HPV222.6Safety222.6.1 Causes of Accident and Prevention Methods24		1.5	Project Schedule	4
2.1Definition of Human Powered Vehicle62.2History of Human Powered Vehicle62.3Types of Human Powered Vehicle92.3.1 Three Wheels Vehicle102.3.2 Quadra Cycle112.4The Application of Human Powered Vehicle112.4.1 Recreational112.4.2 Tourism Use122.5Consideration of Quadra cycle Design132.5.1 Ergonomics and Anthropometric14Characteristic in HPV Design152.5.2 Vibration Response in HPV152.5.3 Suspension of HPV162.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24	CHAPTER 2	LITE	RATURE REVIEW	
2.2History of Human Powered Vehicle62.3Types of Human Powered Vehicle92.3.1 Three Wheels Vehicle102.3.2 Quadra Cycle112.4The Application of Human Powered Vehicle112.4The Application of Human Powered Vehicle112.4.1 Recreational112.4.2 Tourism Use122.5Consideration of Quadra cycle Design132.5.1 Ergonomics and Anthropometric14Characteristic in HPV Design162.5.2 Vibration Response in HPV162.5.3 Suspension of HPV162.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24		2.1	Definition of Human Powered Vehicle	6
 2.3 Types of Human Powered Vehicle 2.3.1 Three Wheels Vehicle 2.3.2 Quadra Cycle 2.4 The Application of Human Powered Vehicle 2.4.1 Recreational 2.4.2 Tourism Use 2.5 Consideration of Quadra cycle Design 2.5.1 Ergonomics and Anthropometric 2.5.2 Vibration Response in HPV 2.5.3 Suspension of HPV 2.5.4 Wheel Disc 2.5.5 Power Transmission System in HPV 2.6 Safety 2.6 Safety 2.6.1 Causes of Accident and Prevention Methods 		2.2	History of Human Powered Vehicle	6
 2.3.1 Three Wheels Vehicle 2.3.2 Quadra Cycle 2.3.2 Quadra Cycle 2.4 The Application of Human Powered Vehicle 2.4.1 Recreational 2.4.2 Tourism Use 2.5 Consideration of Quadra cycle Design 2.5.1 Ergonomics and Anthropometric 2.5.2 Vibration Response in HPV 2.5.3 Suspension of HPV 2.5.4 Wheel Disc 2.5.5 Power Transmission System in HPV 2.5.6 Safety 2.6.1 Causes of Accident and Prevention Methods 		2.3	Types of Human Powered Vehicle	9
2.3.2 Quadra Cycle 11 2.4 The Application of Human Powered Vehicle 11 2.4.1 Recreational 11 2.4.2 Tourism Use 12 2.5 Consideration of Quadra cycle Design 13 2.5.1 Ergonomics and Anthropometric 14 Characteristic in HPV Design 15 2.5.2 Vibration Response in HPV 15 2.5.3 Suspension of HPV 16 2.5.4 Wheel Disc 19 2.5.5 Power Transmission System in HPV 22 2.6 Safety 24 2.6.1 Causes of Accident and Prevention Methods 24			2.3.1 Three Wheels Vehicle	10
 2.4 The Application of Human Powered Vehicle 2.4.1 Recreational 2.4.2 Tourism Use 2.4.2 Tourism Use 2.5 Consideration of Quadra cycle Design 2.5.1 Ergonomics and Anthropometric 2.5.1 Ergonomics and Anthropometric 2.5.2 Vibration Response in HPV 2.5.3 Suspension of HPV 2.5.4 Wheel Disc 2.5.5 Power Transmission System in HPV 2.6 Safety 2.6.1 Causes of Accident and Prevention Methods 			2.3.2 Quadra Cycle	11
2.4.1 Recreational112.4.2 Tourism Use122.5Consideration of Quadra cycle Design132.5.1 Ergonomics and Anthropometric14Characteristic in HPV Design142.5.2 Vibration Response in HPV152.5.3 Suspension of HPV162.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24		2.4	The Application of Human Powered Vehicle	11
2.4.2 Tourism Use 12 2.5 Consideration of Quadra cycle Design 13 2.5.1 Ergonomics and Anthropometric 14 Characteristic in HPV Design 15 2.5.2 Vibration Response in HPV 15 2.5.3 Suspension of HPV 16 2.5.4 Wheel Disc 19 2.5.5 Power Transmission System in HPV 22 2.6 Safety 24 2.6.1 Causes of Accident and Prevention Methods 24			2.4.1 Recreational	11
 2.5 Consideration of Quadra cycle Design 2.5.1 Ergonomics and Anthropometric Characteristic in HPV Design 2.5.2 Vibration Response in HPV 2.5.3 Suspension of HPV 2.5.4 Wheel Disc 2.5.5 Power Transmission System in HPV 2.6 Safety 2.6.1 Causes of Accident and Prevention Methods 			2.4.2 Tourism Use	12
2.5.1 Ergonomics and Anthropometric14Characteristic in HPV Design152.5.2 Vibration Response in HPV152.5.3 Suspension of HPV162.5.4 Wheel Disc162.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24		2.5	Consideration of Quadra cycle Design	13
Characteristic in HPV Design2.5.2 Vibration Response in HPV152.5.3 Suspension of HPV162.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24			2.5.1 Ergonomics and Anthropometric	14
2.5.2 Vibration Response in HPV152.5.3 Suspension of HPV162.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24			Characteristic in HPV Design	
2.5.3 Suspension of HPV162.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24			2.5.2 Vibration Response in HPV	15
2.5.4 Wheel Disc192.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24			2.5.3 Suspension of HPV	16
2.5.5 Power Transmission System in HPV222.6Safety242.6.1 Causes of Accident and Prevention Methods24			2.5.4 Wheel Disc	19
2.6Safety242.6.1 Causes of Accident and Prevention Methods24			2.5.5 Power Transmission System in HPV	22
2.6.1 Causes of Accident and Prevention Methods 24		2.6	Safety	24
			2.6.1 Causes of Accident and Prevention Methods	24

		2.6.2 Steering	25
		2.6.3 Visibility	25
CHAPTER 3	МЕТ	HODOLOGY	26
	3.1	Introduction	26
	3.2	Flow Chart	27
	3.3	Conceptual Design	28
		3.3.1 Product Design Specifications	29
		3.3.2 Generation of Sub-Function	30
		3.3.3 Generation of Method to Accomplish the	30
		Sub Function	
		3.3.4 Construction Morphological Chart	31
		3.3.5 Concept Generation through Sketching	32
	3.4	Embodiment Design	33
	3.5	Detail Design	33
	3.6	Design Tool	34
		3.6.1 CATIA V5	34
CHAPTER 4	CON	CEPTUAL DESIGN + ANALYSIS	35
	4.1	Introduction	35
		4.1.1 Drawing	35
		x	

C Universiti Teknikal Malaysia Melaka

	4.1.1.1 Concept 1	35
	4.1.1.2 Concept 2	38
	4.1.1.3 Concept 3	40
	4.1.1.4 Concept 4	42
4.2	Concept Selection	44
4.3	Stress Analysis	47
	4.3.1 Introduction	47
	4.3.2 Von Mises and Translational Displacement	48
	4.3.2.1 Concept 1	48
	4.3.2.2 Concept 2	51
	4.3.2.3 Concept 3	54
	4.3.2.4 Concept 4	57
	4.3.3 Results	60
4.4 De	etail Parts of Human Powered Vehicle	64
	4.4.1 Power Transmission	64
	4.4.2 Design of Steering System	67
	4.4.2.1 Working Principle	67
	4.4.3 Brakes	68

4.4.4 Seats	70
4.4.5 Tire and Rims	71
4.4.6 Steering Wheels	72
4.4.7 Pedal	73
4.4.8 Drive Shaft	74
4.4.9 Gear	74
4.4.9.1 Drive Gear	74
4.4.9.2 Driven Gear	75
4.4.10 Bolts and Nuts	75
4.4.11 Suspension System	76
4.4.12 Front Bearing	77
4.4.13 Back Bearing	77
4.5 Design of Human Powered Vehicle	79
4.5.1 Isometric View	79
4.5.2 Top View	79
4.5.3 Bottom View	80
4.5.4 Back View	80
4.5.5 Front View	81

	4.5.6 Side View	81
	4.5.7 Exploded View	82
CHAPTER 5	DETAIL DESIGN + CALCULATION	83
	5.1 Wheel Shaft	83
	5.1.1 Critical Speed (N _c)	83
	5.1.2 Torque	89
	5.1.3 Fatigue Strength	90
	5.1.4 Bending Stress	94
	5.2 Gear	96
	5.2.1 Driver Gear	96
	5.2.2 Driven Gear	101
	5.3 Chassis (Static Weight Distribution)	102
	5.4 Chain	105
	5.5 Factor of Safety	106
CHAPTER 6	CONCLUSION + RECOMMENDATION	110
	6.0 Conclusion	110
	6.1 Recommendation	110

APPENDICES

116

112

LIST OF TABLES

TABLE	NO TITLE	PAGE
1.1	Semester 1 PSM Gantt-Chart	4
1.2	Semester 2 PSM Gantt-Chart	5
2.1	The linkage of tourist expenditure for all sectors (Syakir Amir et al, 2014)	13
2.2	The Advantages and Disadvantages of Front Wheel Drive Transmission	22
2.3	The Advantages and Disadvantages of Rear Wheel Drive Transmission	22
2.4	The Advantages and Disadvantages of Mooving Bottom Bracket	23
	Transmission	
2.5	Mechanism of Injury (Katalin Kiss et al., 2010)	25
3.1	Characteristics of product design specification	29
3.2	Morphological Chart	31
4.1	The characteristic of Concept 1	37
4.2	The characteristic of Concept 2	39
4.3	The characteristic of Concept 3	41
4.4	The characteristic of Concept 4	43
4.5	The relationship between design criteria and its corresponding parameter	44
4.6	Weighted Decision Method	45
4.7	Evaluation Schema for Design Alternatives or Objectives	46
	xv	

C Universiti Teknikal Malaysia Melaka

4.8	Characteristic of Steel Material	47
4.9	The Characteristic of OCTREE Tetrahedron Mesh	48
4.10	Von Mises Stress and Translational Displacement of 4 concepts	60
4.11	The relationship (Area, Volume, Density, Mass) versus concept respectively	61
4.12	The combination of details and information for Concept 1-4	62
4.13	Relative Mass, Volume, Stress and Displacement are compared	62
	with Concept 1	
4.14	Matrix Evaluation of the Chassis Used to Select the Best Concept	63
4.15	Similarities and Differences between Chain Drive and Belt Drive	65
4.16	The matrix table between chain drive and belt drive	66
4.17	Comparison between Hydraulic Brake and Mechanical Brake	69
5.1	Ka based on surface finish.	92
5.2	Kb based on diameter of shaft.	92
5.3	K _c as load factor.	93
5.4	Reliability factor, Ke corresponding to 8 Percent Standard Deviation of the	94
	Endurance Limit	
5.5	Gear information for driver gear	97
5.6	Relationship between numbers of teeth with form factor, Y	98
5.7	Interpolation	99
5.8	ASTM Minimum Tensile and Yield Strength for Hot-Rolled (HR)	100

xvi C Universiti Teknikal Malaysia Melaka

and Cold-Drawn (CD) Steels

5.9	Gear information for Driven gear	102
5.10	Factor of safety on 4 concepts (Single Side)	107
5.11	Factor of safety on 4 concepts (Double Sides)	108

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	A man riding on a tricycle	7
2.2	Michaux's son on a velocipede 1868	7
2.3	A penny-farthingor ordinary bicycle photographed in	8
	the Skoda Automuseum in theCzech Republic	
2.4	Bicycle in Plymouth, England at the start of the 20th century	8
2.5	A tricycle or velomobile	10
2.6	Existing design of Human Powered Quadra Cycle	11
2.7	(a) Bicycle Model, (b) Rear Suspension, (c) Front Suspension	n 16
	(Yuen-Cheng, et al, 2013)	
2.8	Modeling Skeleton (Yuen-Cheng, et al, 2013)	17
2.9	Vibration accelerations of hands for riding rigid bicycle	18
	(Yuen-Cheng, et al, 2013)	
2.10	Vibration accelerations of hands for riding full suspension	18
	bicycle (Yuen-Cheng, et al, 2013)	
2.11	Foam disc	20
2.12	The top and bottom sides of the mold, after the mold release	20
	agent has been applied.	

xviii C Universiti Teknikal Malaysia Melaka

2.13	A fiberglass disc with compass on it.	21
2.14	Plastic wire ties to attach the disk to the spokes.	21
3.1	Flowchart of the methodology for project development	27
3.2	Conceptual Design Stages (Arunachalam et al, 2004)	28
3.3	Top view of draft sketching on 2-Dimensional	32
3.4	Side view of draft sketching on 2-Dimensional	33
4.1	(A) Draft sketching, (B) CAD drawing with seats and steering,	37
	and (C) chassis CAD drawing	
4.2	(A) Draft sketching, (B) CAD drawing with seats and steering,	39
	and (C) chassis CAD drawing	
4.3	(A) Draft sketching, (B) CAD drawing with seats and steering,	41
	and (C) chassis CAD drawing	
4.4	(A) Draft sketching, (B) CAD drawing with seats and steering,	43
	and (C) chassis CAD drawing	
4.5	Chassis is clamped and force applied.	48
4.6	(A) Von Mises Stress of chassis (Single side) and (B) Von	49
	Mises Stress of chassis (Double Sides)	
4.7	(A) Translational Displacement Magnitude of chassis (Single	50
	Side) and (B) Translational Displacement Magnitude of chassis	
	(Double Sides)	

4.8	Chassis is clamped and force applied.	51
4.9	(A) Von Mises Stress of chassis (Single Side) and (B)Von Mises Stress of chassis (Double Sides).	52
4.10	(A) Translational Displacement Magnitude of chassis (Single	53
	Side) and (B) Translational Displacement Magnitude of chassis	
	(Double Sides)	
4.11	Chassis is clamped and force applied.	54
4.12	(A) Von Mises Stress of chassis (Single Side) and (B)	55
	Von Mises Stress of chassis (Double Sides).	
4.13	(A) Translational Displacement Magnitude of chassis (Single	56
	Side) and (B) Translational Displacement Magnitude of chassis	
	(Double Sides)	
4.14	Chassis is clamped and force applied.	57
4.15	(A) Von Mises Stress of chassis (Single Side) and (B)	58
	Von Mises Stress of chassis (Double Sides).	
4.16	(A) Translational Displacement Magnitude of chassis (Single	59
	Side) and (B) Translational Displacement Magnitude of	
	chassis (Double Sides)	
4.17	Steering System.	67
4.18	Dual Pull Brake Handle.	68

4.19	Brake Level.	69
4.20	Details parts of a brake level.	70
4.21	Brake System.	70
4.22	An agronomic seats.	71
4.23	Wheel and Rims	72
4.24	A steering wheel with friction pad.	73
4.25	A friction grabbed leg pedal.	73
4.26	Back Shaft.	74
4.27	Drive Gear.	74
4.28	Driven Gear.	75
4.29	Bolt.	75
4.30	Nuts	76
4.31	The suspension system of human powered vehicle.	76
4.32	Front Right /Left Bearing.	77
4.33	Parts of bearing.	78
4.34	Back Bearing.	78
4.35	Isometric View.	79
4.36	Top View.	79
4.37	Bottom View.	80
4.38	Back View.	80

4.39	Front View.	81
4.40	Side View.	81
4.41	Exploded View.	82
5.1	The Dimension of Rear Shaft	84
5.2	The dimension of of the real tire to the centre of weight.	85
5.3	Schematic Diagram of the Load	86
5.4	Left (Maximum static deflection on load) & Right	86
	(Maximum static deflection on shaft)	
5.5	Stress-strain curve (1.True elastic limit, 2.Proportionality	89
	limit, 3.Elastic limit, 4.Offset yield strength)	
5.6	Fatigue strength friction, f , of S_{ut} at 10^3 cycles for	92
	$S_e=S'_e=0.5S_{ut}$ at 10^6 cycles.	
5.7	Schematic Diagram of the Load.	94
5.8	The details of shaft in steel material.	95
5.9	Details of Driver Gear	96
5.10	Details of Driven Gear	101
5.11	The forces distribution of entire human powered vehicle	102
5.12	Line Graph on Concept (1-4) against Factor of Safety on	107
	Chassis (Single Side Force)	
5.13	Line Graph on Concept (1-4) against Factor of Safety on	108
	Chassis (Double Sides Force)	

5.14 Line Graph on Concept (1-4) against Factor of Safety on 108 Chassis (Single and Double Sides)

LIST OF ABBREVIATION/ SYMBOLS

- PSM Projek Saujana Muda
- HPV Human Powered Vehicle
- CAD Computer Aided Design
- CAE Computer Aided Engineering
- CAM Computer Aided Manufacturing
- CATIA Computer Aided Three Dimensional Interactive Application