DESIGN A LOW COST TABLE FAN USING DFMA ANALYSIS

NURUL FARMIRA BINTI ZAKARIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

DESIGN A LOW COST TABLE FAN USING DFMA ANALYSIS

NURUL FARMIRA BINTI ZAKARIA

A report submitted In fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this project report entitled "Design A Low Cost Table Fan Using DFMA Analysis" is the result of my work except as cited in the references.

Signature	:	
Name	:	NURUL FARMIRA BT ZAKARIA
Date	:	

APPROVAL

I hereby that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Design & Innovation).

Signature	:.	
Name of Superviso	r:	DR MOHD AHADLIN BIN MOHD DAUD
Date	:	

DEDICATION

To my beloved mak and abah.

ABSTRACT

This project deals with study of Boothroyd Dewhurst Design for Manufacturing and Assembly (DFMA) method in terms of design efficiency to design a low cost table fan. DFMA is a method for designing or redesign product. The advantage of DFMA is able to deliver a systematic procedure to analyzing a proposed design from the point of view of assembly and manufacture, improve the design efficiency, minimize the cost production and fulfill customers' need. The total of part number table fan affecting the design efficiency of the product. To improve the design efficiency, the table fan is analyzed using DFMA method. The result of DFMA analysis is implemented in order to propose a new design of low cost table fan. The project was carried out through dismantle the unit of product, determined the function of each component by evaluating and compare the existing product using DFMA analysis. Lastly is implementing the DFMA analysis result and design guidelines to create a new design by generating a 3D modelling using CATIA V5R20 software. The selection criteria for a good design are based on number of part and operation time. DFMA analysis of optimized design is done and comparative analysis is made between the current and proposed design. The existing product design efficiency is 10.39% for National brand and 11.12% for Pensonic. Result shows that the design efficiency for proposed new design of table fan is obtained better percentage which is 16.61% rather than the existing design. . The final result shows that design efficiency for new design is increased by 5.49 to 6.22%. From the project findings, the number of parts is reduced to 15 parts and the operation time is 180.56s. Eventually, the improvement of table fan design that implemented from DFMA analysis result finally will be able to meet user requirements and satisfactions to design a low cost table fan

ABSTRAK

Projek ini berkaitan dengan kajian Boothrovd Dewhurst Design for Manufacturing and Assembly (DFMA) dari segi kecekapan reka bentuk untuk mereka bentuk kipas meja berkos rendah. DFMA adalah kaedah untuk mereka bentuk atau produk reka bentuk semula. Kelebihan DFMA mampu menyampaikan suatu prosedur yang sistematik untuk menganalisis reka bentuk yang dicadangkan dari sudut pandangan berhimpun dan pembuatan, meningkatkan kecekapan reka bentuk, mengurangkan kos pengeluaran dan memenuhi kehendak pelanggan. Jumlah bilangan bahagian kipas meja menjejaskan kecekapan reka bentuk produk. Untuk meningkatkan kecekapan reka bentuk, kipas tersebut dianalisis menggunakan kaedah DFMA. Hasil analisis DFMA yang dilaksanakan untuk mencadangkan reka bentuk baru kos rendah kipas meja. Projek ini telah dijalankan melalui pengurangan unit produk, ditentukan melalui fungsi setiap komponen dengan menilai dan membandingkan produk yang sedia ada dengan menggunakan analisis DFMA. Akhir sekali sedang melaksanakan hasil analisis DFMA dan garis panduan reka bentuk untuk menghasilkan reka bentuk yang baru melalui menjana pemodelan 3D menggunakan perisian CATIA V5R20. Kriteria pengambilan reka bentuk yang baik adalah berdasarkan kepada beberapa bahagian dan operasi semasa. Analisis DFMA reka bentuk dioptimumkan dilakukan dan analisis perbandingan dibuat antara reka bentuk semasa dan yang dicadangkan. Kecekapan reka bentuk produk sedia ada adalah 10.39% bagi jenama National dan 11.12% untuk Pensonic. Keputusan menunjukkan bahawa kecekapan reka bentuk untuk reka bentuk baru cadangan kipas meja diperolehi peratusan yang lebih baik iaitu 16.61% daripada reka bentuk yang sedia ada. . Keputusan akhir menunjukkan bahawa kecekapan reka bentuk untuk reka bentuk baru meningkat 5,49-6,22%. Dari dapatan projek, jumlah bahagian dikurangkan kepada 15 bahagian dan masa operasi adalah 180.56s. Akhir sekali, peningkatan reka bentuk kipas meja yang dilaksanakan dari hasil analisis DFMA akhirnya akan dapat memenuhi keperluan dan kepuasan pengguna dalam mereka bentuk kipas meja berkos rendah

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere acknowledgement to my supervisor, Dr. Mohd Ahadlin bin Mohd Daud from the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential guidance, advices, support and encouragement throughout the completion of this project report.

Special thanks to my family, friends, beloved one, lecturers and technicians for their moral support in completing this degree. Lastly, thank you to everyone that involve during this project is done.

CONTENT

CHAPTER	CON	NTENT	PAGE
	DEC	CLARATION	
	APP	ROVAL	
	DED	DICATION	
	ABS	TRACT	i
	ABS	TRAK	ii
	ACK	KNOWLEDGEMENT	iii
	TAB	BLE OF CONTENT	iv
	LIST	Γ OF FIGURES	viii
	LIST	Γ OF TABLES	X
	LIST	Γ OF ABBREVIATIONS	xii
	LIST	Γ OF APPENDICES	xiii
	LIST	Γ OF SYMBOLS	xiv
CHAPTER 1	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	1
	1.3	Objective	2
	1.4	Scope of Study	2
CHAPTER 2	LITI	ERATURE REVIEW	3
	2.1	Introduction	3
	2.2	Design for Manufacturing and Assembly	3
	2.3	Design for Manufacturing (DFM)	5
		2.3.1 DFM Guidelines	6

2.4	Design for Assembly (DFA)		
	2.4.1	Manual Assembly	11
		2.4.1.1 Manual Assembly	12
		2.4.1.2 Insertion and Fastening	13
	2.4.2	DFA Guidelines	19
	2.4.3	Design Efficiency	20
2.5	Table	Fan	21
2.6	DFM/	A: Case Studies	22
	2.6.1	An Integrated DFMA-PDM Model for	22
		the Design and Analysis of	
		Challenging Similar and Dissimilar	
		Welds	
	2.6.2	Software Development of Assembly	23
		Sequence Approach for Table Fan by	
		Using Integrated Triz, Axiomatic	
		Design and Boothroyd-Dewhurst DFA	
	2.6.3	Design for Manufacturing and	24
		Assembly (DFMA) of Industry Product	
MET	HODO	LOGY	25
3.1	Introd	uction	25
3.2	Projec	t Flowchart	26
3.3	Produ	ction Selection and Identification	27
3.4	Product Disassembles 27		

3.4.1 Bill of Materials (BOM) of Table Fan 27 (National) 3.4.2 Bill of Materials (BOM) of Table Fan 30 (Pensonic) CAD Modelling 3.5 34 DFA Analysis for Existing Product 3.6 34 Theoretical Minimum Part 3.6.1 34 3.6.2 Alpha and Beta Symmetry 36 3.6.3 Classification System 36

CHAPTER 3

		3.6.4	Design Efficiency of Product	41
	3.6	New C	Concept Design Evaluation	42
	3.7	Analy	sis of New Concept Design	42
CHAPTER 4	RES	ULT AN	D DISCUSSION	43
	4.1	Backg		43
	4.2	e	sis of the Existing Product	43
		4.2.1	Theoretical Minimum Part of Table	43
			Fan (National)	
		4.2.2	Theoretical Minimum Part of Table	47
			Fan (Pensonic)	
		4.2.3	Alpha and Beta Symmetry of Table	50
			Fan (National)	
		4.2.4	Alpha and Beta Symmetry of Table	53
			Fan (Pensonic)	
		4.2.5	Design Efficiency of Table Fan	56
			(National)	
		4.2.6	Design Efficiency of Table Fan	58
			(Pensonic)	
		4.2.7	Comparison between Two Difference	60
			Brands of Products	
	4.3	New C	Conceptual Design	60
		4.3.1	Bill of Materials (BOM New Design of	61
			Table Fan	
		4.3.2	CAD Modelling (New Design of Table	64
			Fan)	
	4.4	2	sis of the New Design	64
		4.4.1	Theoretical Minimum Part	64
		4.4.2	Alpha and Beta Symmetry	67
		4.4.3	Design Efficiency	70
	4.5	Discus		71
		4.5.1	Introduction	71
		4.5.2	Comparison between Two Difference	72

			Brands of Products	
		4.5.3	Comparison between Existing Products	73
			Design and New Design	
CHAPTER 5	CON	ICLUSI	ON AND RECOMMENDATIONS	75
	5.1	Conclu		75
	5.2	Recon	nmendation	76
	REF	ERENC	E	78
	APP	ENDICE	ES	80

LIST OF FIGURES

FIGURE TITLE

PAGE

2.1	Who casts the biggest shadow?	4
2.2	Time delivery comparison between DFMA and traditional design process	5
2.3	Geometrical features affecting part handling	12
2.4	Some other features affecting part handling	13
2.5	Incorrect geometry can allow a part to jam during insertion	14
2.6	Provision of air-relief passages to improve insertion into blind holes	15
2.7	Design for ease of insertion—assembly of long-stepped bushing into counterbored hole	15
2.8	Provision of chamfers to allow easy insertion	16
2.9	Standardize parts	16
2.10	Provision of self-locating features to avoid holding down and alignment	17
2.11	Provision of self-locating features to avoid holding down and alignment	17
2.12	Design to aid insertion	18

2.13	Common fastening methods	18
2.14	Insertion from opposite direction requires repositioning of the assembly	19
3.1	Project flowchart	26
3.2	Image of table fan (National)	27
3.3	Image of table fan (Pensonic)	31
3.4	The steps of theoretical minimum part count	35
3.5	Alpha and Beta rotational symmetries for various parts	36
4.1	CAD modelling of new design	64

LIST OF TABLES

TABLE TITLE

PAGE

3.1	Bill of material (BOM) of table fan (National)	28
3.2	Bill of material (BOM) of table fan (Pensonic)	31
3.3	Original classification system for part features affecting manual handling time	39
3.4	Original classification system for part features affecting insertion and fastening	40
3.5	Design for manual assembly worksheet	41
4.1	Theoretical minimum part count of table fan (National)	44
4.2	Theoretical minimum part count of table fan (Pensonic)	47
4.3	Alpha and Beta symmetric of table fan (National)	50
4.4	Alpha and Beta symmetric of table fan (Pensonic)	53
4.5	Design efficiency of table fan (National)	56
4.6	Design efficiency of table fan (Pensonic)	58
4.7	Bill of Material (BOM) for new design of table fan	61
4.8	Theoretical minimum part count for new design of table fan	65
4.9	Alpha and Beta symmetric of new design	67

4.10	Design efficiency for new design of table fan	70
4.11	Comparison between existing products and new design	73

LIST OF ABBEREVATIONS

ТМ	=	Assembly time
TK	=	Operation cost
ТРС	=	Theoretical minimum part count
NM	=	Theoretical minimal part
DE	=	Design Efficiency

LIST OF APPENDICES

APPENDIX TITLE

PAGE

А	Gantt chart for PSM I	95
В	Gantt chart for PSM II	96
С	Blade	97
D	Bolt	98
Е	Coupling Head	99
F	Front Fan Cover	100
G	Knob	101
Н	Lower Part Stand Casing	102
Ι	Motor Housing	103
J	Nut	104
K	Rear Fan Cover	105
L	Rear Plate Fastener	106
М	Screw	107
Ν	Shaft	108
0	Stand	109
Р	Switch	110

LIST OF SYMBOLS

E _{ma}	=	Assembly Efficiency
N _{min}	=	Theoretical minimum number of part
t _a	=	Basic assembly time for one part
t _{ma}	=	Estimated time to complete the assembly of the product

CHAPTER 1

INTRODUCTION

1.1 Background

Design for Manufacturing and Assembly (DFMA) is considered one of the main approaches to concurrent engineering which help in minimize production costs and development time by simplify the components of product to give higher profit to the manufacturer. DFMA combines two concepts of Design for Manufacturing (DFM) and Design for Assembly (DFA) (H. Eskelinen, 2013). The aims of DFA are to improve the products assembly by minimizing the part count and variation as well as reducing the variety of assembly instructions and complexity. Meanwhile, DFM are focusing to improve the product design at minimum cost of manufacturing for maximum manufacturing quality by using the efficient techniques and practices that available (W.A. Knight, 2005). Therefore, DFMA serve a systematic procedure to analyzing a proposed design from the point of view of assembly and manufacture, improve the design efficiency, minimize the cost production and fulfill customers' need (Mendosa, N., Ahuett, H., & Monila, A, 2003).

1.2 Problem Statement

The total part of table fan affecting the design efficiency of the product. The solution to improve the design efficiency is by analyzing using DFMA method. The result of DFMA analysis is implemented in order to propose a new design of low cost table fan.

1.3 Objective

The main objective of this study is to perform a research and development for manufacturing process on low cost table fan of two different brands by evaluate and compare the design efficiency of the products using DFMA Analysis and suggest the improvement that can be made on the product.

1.4 Scope of Study

The scope of this project is make a comparison the design efficiency of the table fan used for Design of Manufacturing and Assembly (DFMA) for:

- 1. To identify and select the type of product to studied.
- To apply and analyse the design efficiency on table fan using Boothroyd Dewhrust (DFMA) method.
- 3. To compare both design efficiency of table fan.
- 4. To suggest the improvement to each design based on the DFMA Analysis.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter focuses about the Design for Manufacturing and Assembly (DFMA), Design for Assembly (DFA), Design for Manufacturing (DFM) and overview on previous study cases and perspective approach that related to this project.

2.2 Design for Manufacturing and Assembly

DFMA is the combination of Design for Manufacturing (DFM) and Design for Assembly (DFA). This means the concepts of DFM and DFA are working together which this method significant affects productivity, quality and cost of product and time to market. (Boothroyd, 2002). The fundamental concept of the DFMA paradigm is applied to analyse the manufacturing and assembly problems of a product on the early design stage. Generally, DFMA is used for three main activities as below:

- i. As the basic for concurrent engineering studies that to provide guidance to the design team in simplifying the product structure, to reduce manufacturing and assembly costs and to quantify the improvements.
- ii. As a benchmarking tool to study competitors' product and quantify manufacturing and assembly difficulties.
- iii. As a should-cost tool to help control cost and helps negotiate supplier contracts.

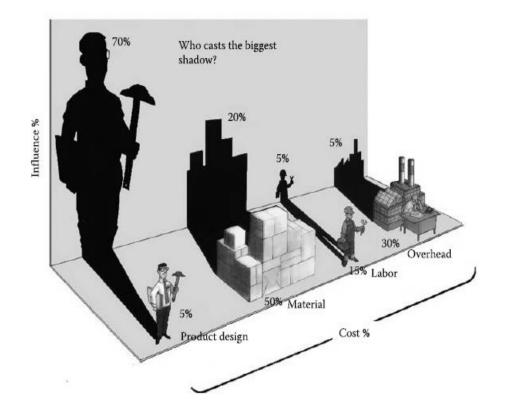


Figure 2.1: Who casts the biggest shadow? (Boothroyd, 2002)

In Figure 2.2, showing that the application of DFMA gives shorten percentage of design time to bring to market compared with traditional design process. Traditional design process is a process that divides in every single phase of development process. The development design process included engineering design, manufacturing, testing, marketing and production. The next phase can only proceed when the previous phase is completed. This process orderly step-by-step very slow and lead product lost sales in competitive market place.

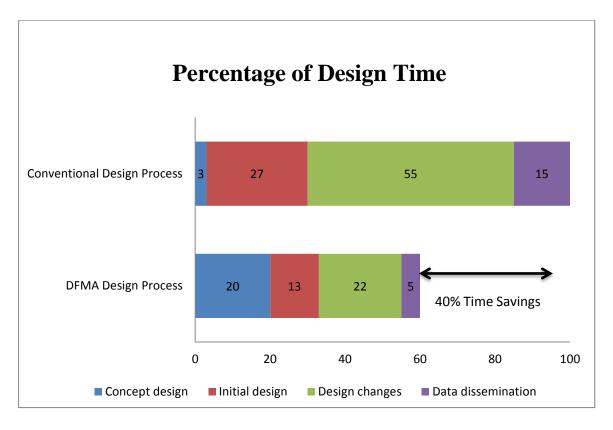


Figure 2.2: Time delivery comparison between DFMA and traditional design process (Boothroyd, 2002)

2.3 Design for Manufacture (DFM)

The term "design for manufacture" (DFM) means the product is designed for easy to manufacture of the group of parts after assembly (Boothroyd, 2002). Beside that, DFM also refers to design activity based on minimizing the production cost and time of the product to market at the same time maintaining the product quality (Mellvyne, 2007). There are five principles that designer need to consider:

- i. Minimizing the part count
- ii. Minimizing fastener
- iii. Standardizing the manufacturing part
- iv. Using unidirectional assembly
- v. Correct assembly tolerances