

DESIGN ANALYSIS OF METAL FORMING PROCESS FOR THE CORRUGATED METAL GASKET

This report submitted in accordance with requirement of the University Teknikal

Malaysia Melaka (UteM) for the Bachelor Degree of Manufacturing Engineering

(Manufacturing Design)(Hons.)

By

MOHAMAD HADI BIN YUMASIR B051410063 930907-05-5677

FACULTY OF MANUFACTURING ENGINEERING 2017

DECLARATION

I hereby, declared this report entitled "Design Analysis of Metal Forming Process for The Corrugated Metal Gasket" is the results of my own research except as cited in reference.

Signature

: MOHAMAD HADI BIN YUMASIR Author's Name

21/6/2017 Date

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN ANALYSIS OF METAL FORMING PROCESS FOR CORRUGATED METAL GASKET

Sesi Pengajian: 2016/2017 Semester 2

Saya MOHAMAD HADI BIN YUMASIR (B051410063)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- *Sila tandakan (V)

4. Sila tanuakan (1)		
	mat yang berdarjah keselamatan atau kepentingan a yang termaktub dalam AKTA RAHSIA RASMI 1972	
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh badan di mana penyelidikan dijalankan)		
TIDAK TERHAD	Disahkan oleh:	
Alamat Tetap:	Cop Rasmi SAPTO WIDOGO	
BLOK A, NO 4, TAMAN DATO	Pensyarah Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka Karung Berkunci 1200, Ayor Karoh 75450 Melaka Tarikh: 21/6/20[7	
SHAHARDIN 71900, LABU		
NEGERI SEMBILAN		
Tarikh: 21/6/2017		

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The members of the supervisory committee are as follow:

Wahyono Sapto Widodo

(Project Supervisor)

ABSTRACT

The report presents the work done on the Design Analysis of Metal Forming for the Corrugated Metal Gasket. The objectives of this project are to design corrugated metal gasket and die forming, to study relationship between the appropriate clearance and friction coefficient; and to simulate and analyze corrugated metal gasket and die forming. CAD software that is used in this project is CATIA V5 while Finite Element Analysis software that used is ANSYS Workbench. Nowadays, creating a die is worth, hence, to ensure a complete die is created without mistaken, simulation that is one of the methods used to help a designer to analysis parameter or factor that will influence the shape or quality of product especially for corrugated metal gasket, is done. This project has two parameters that are important. The first parameter is friction coefficient that is quite complex and cannot be readily solved. For example, the absence of friction may result in parts that are perhaps impossible to form at all. It will depend on a certain amount of friction that may be beneficial to the forming process or not. The second parameter is the amount of die clearance or forming clearance that will result in intolerable product characteristics, while if lowest die clearance that can cause the tool in stress because it exerts greater punching force. At the end of this project, the suitable value of die clearance and friction coefficient are selected and the designs for die forming are completely done by using CAD software.

ABSTRAK

Laporan ini membentangkan tentang kerja yang telah dilakukan dalam Analisis Reka Bentuk Pembentukan Besi untuk Gasket Besi Beralun. Objektif projek ini adalah untuk mereka bentuk gasket besi beralun dan pembentukan die, untuk mengetahui hubung kait antara pelepasan dan pekali geseran yang berpatutan, dan untuk mensimulasi dan menganalisa gasket besi beralun dan pembentukan die. Perisian yang digunakan dalam projek ini ialah CATIA V5 manakala perisian Finite Element Analysis yang digunakan adalah ANSYS Workbench. Pada masa kini, membuat die adalah memberi keuntungan, oleh itu, untuk memastikan sebuah die disiapkan tanpa ada kesilapan, simulasi yang digunakan untuk membantu pereka bentuk untuk menganalisa parameter ataupun faktor yang akan mempengaruhi bentuk dan kualiti produk terutama gasket besi beralun, telah disiapkan. Projek ini mempunyai dua parameter yang penting. Parameter pertama ialah pekali geseran yang merupakan agak rumit dan tidak mudah untuk diselesaikan. Sebagai contoh, ketidakhadiran geseran yang memungkinkan bahagian yang mungkin mustahil untuk dibentukkan. Ianya bergantung kepada jumlah geseran tertentu yang mungkin memberi faedah kepada proses pembentukan ataupun tidak. Parameter kedua ialah jumlah pelepasan die atau pelepasan pembentukan yang akan membawa kepada ciri-ciri produk yang tertahan manakala jika pelepasan die yang terbawah yang membuatkan mata alat tegang kerana ia mengenakan daya ketukan yang lebih kuat. Di akhir projek ini, nilai pelepasan die dan pekali geseran yang sesuai dipilih dan reka bentuk untuk pembentukan die telah disiapkan sepenuhnya dengan menggunakan perisian CAD.

DEDICATION

Special dedication to my beloved family especially my father (Yumasir Bin Achmad), my mother (Halila Binti Daud) and my lovely wife (Siti Noor Hedayun Binti Fauzy) for every supports, concern, understanding and patient. Thanks for everything. To all my fellow friends and lectures, I would like to say thanks too. Without all of tour supports, the work and success will never be achieved.

ACKNOWLEDGEMENT

Assalamualaikum warahmatullahi wabarakatuh.

First and foremost, I am glad to thanks to Allah The Almighty, with His bless and mercy, Alhamdulillah I was successfully completed the PSM report as well. I would like to express my appreciation to everyone who involved directly or indirectly during the preparation of the report. Millions of thanks to my supervisor (Mr Wahyono Sapto Widodo) for giving me supports and guidance throughout this project. They had helped me with their brilliants ideas and consecutive comments to complete this project.

On the other hand, I would like to express deep appreciation to my parents, my lovely wife, my siblings and my friends for giving me their support and motivation during my good and hard time. Not forgetting all lecturers and technicians that had helped me in providing information needed to make this project success. I promise to improve myself to be a better person in a future. Thank You.

TABLE OF CONTENT

Abstract	Î
Abstrak	ij
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	xi
List of Figures	vii
List of Abbreviations	viii
List of Symbols	xvii
CHAPTER 1: INTRODUCTION	
1.1 Background of Study	ĭ
1.2 Problem Statement	2
1.3 Objectives	.3
1.4 Scope of Project	3

CHAPTER 2: LITERATURE REVIEW

2.1	Gasket		4
	2.1.1	Definition of Gasket	4
	2.1.2	Application of Gasket	5
2.2	Corruga	ited Metal Gasket	5
	2.2.1	Definition of Corrugated Metal Gasket	5
	2.2.2	Advantages of Corrugated Metal Gasket	6
2.3	Type of	Die Design	7
	2.3.1	Compound Die	7
	2.3.2	Progressive Die	7
2.4	Fundame	ntal of Forming Operation	8
	2.4.1	Type of Forming Process	8
		2.4.1.1 Forming of Singular Recesses	8
		2.4.1.2 Stretch Flange Forming	9
		2.4.1.3 Shrink Flange Forming	10
	2.4.2	Forming Criterion of Die	10
		2.4.2.1 Stress, Strain, Elongation Compression	10
		2.4.2.2 Radius of Forming Tool.	11
		2.4.2.3 Radius of the Forming Die	12
		2.4.2.4 Radius of the Forming Punch	12
		2.4.2.5 Gap between the Forming Punch and Die	13
		2.4.2.6 The speed of Forming Operation	13

2.5 Factors that need consider during forming operation	13
2.5.1 Stress/Strain Curve	13
2.5.2 Module of Elasticity	14
2.5.3 Friction	15
2.5.4 Simulation of Die Design	16
2.5,4.1 Die face design concepts	16
2.5.4.2 Die face shape control	16
2.6 3D Modelling Software	17
2.6.1 CATIA V5	17
2.7 Analysis Software	17
2.7.1 Workbench ANSYS	17
CHAPTER 3: METHODOLOGY	
3.1 Flow Chart PSM 1	19
3.2 Flow Chart PSM 2	20
3.3 Identifying a Corrugated Metal Gasket	21
3.4 Design a Die Forming operation	21
3.5 Parameter for Die Forming	22
3.6 Design a Finite Element Analysis Model	23
2.7 Convert CAT Part to IGES Extension	24

3.8 Simulation of Forming Operation	24
3.8.1 Procedure to setup Workbench ANSYS	25
3.8.2 Flowchart for setup Workbench ANSYS	26
CHAPTER 4: RESULT AND DISCUSSION	
4.1 Detail Forming Die Design	28
4.1.1 Forming Piece Specification	28
4.1.2 Die Plate	29
4.1.3 Lower Die Shoe	30
4.1.4 Lower Die	31
4.1.5 Stripper Plate	32
4.1.6 Stripper Backup Plate	33
4.1.7 Punch Holder Plate	34
4.1.8 Punch Holder Backup Plate	35
4.1.9 Pressure Pad	36
4.1.10 Upper Die Shoe	37
4.1.11 Upper Die	38
4.1.12 Die Assembly	39

4.2 Die Accessories	40
4.2.1 Stripper Bolts	41
4.2.2 Dowel Pins	42
4.2.3 Die Springs	43
4.2.4 Socket Head Screws	44
4.2.5 Stripper Guide Pins	45
4.2.6 Holder Guide Post	46
4.3 Simulation Forming Die Design	47
4.3.1 Upper Die Design	47
4.3.2 Lower Die Design	48
4.3.3 Gasket	48
4.3.4 Assembly Design	49
4.4 ANSYS Workbench	50
4.4.1Input Types of Material	50
4.4.2 Import Geometry	50
4.4.3 Model Setup	50
4.4.3.1 Part Material Properties	51
4.4.3.2 Contact Region	51
4.4.3.3 Mesh	51

4.4.4 Analysis of Parameter	52
4.4.4.1 Fixed Support	52
4.4.4.2 Displacement	52
4.4.5 Solution Information	53
4.8 Results	53
4.9 Maximum Shear Stress	63
CHAPTER 5: CONCLUSION AND RECOMMEN	DATION
5.1 Conclusion	69
5.2 Recommendation	70
REFERENCES	71
APPENDICES	73

LIST OF TABLES

3.1	FEA Model	23
41	Maximum Shear Stress for each part	67

LIST OF FIGURES

2.1	Gasket	5
2.2	Corrugated Metal Gasket	6
2.3	Compound Die	7
2.4	Progressive Die	7
2.5	Shape of Stretched parts	8
2.6	Stretch Flange Forming	9
2.7	Shrink flange and geometry	10
2.8	R/t ratio guidelines	12
2.9	Tensile Stress / Strain Diagram	13
3.1	The flow chart for PSM 1	19
3.2	The flow chart for PSM 2	20
3.3	Design Corrugated Metal Gasket using CATIA V5	21
3.4	Compound Die	22
3.5	Simulation using Workbench ANSYS	25
3.6	Flow chart for setup Workbench ANSYS	26
4.1	Forming Piece Design	28

4.2	Die Plate Design	29
4.3	Lower Die Shoe Design	30
4.4	Lower Die Design	31
4.5	Stripper Plate Design	32
4.6	Stripper Backup Plate Design	33
4.7	Punch Holder Plate Design	34
4.8	Punch Holder Backup Plate Design	35
4.9	Pressure Pad Design	36
4.10	Upper Die Shoe Design	37
4.11	Upper Die Design	38
4.12	Orthographic View	39
4.13	Isometric View	40
4.14	Stripper Bolts	41
4.15	Dowel Pins	42
4.16	Die Springs	43
4.17	Socket Head Screws	44
4.18	Stripper Guide Pins	45
4.19	Holder Guide Post	46
4.20	Upper Die Design	47
4.21	Lower Die Design	48
4.22	Gasket	48

4.23	Assembly Design	49
4.24	Result 1	.54
4.25	Result 2	55
4.26	Result 3	.56
4.27	Result 4	57
4.28	Result 5	58
4.29	Result 6	59
4.30	Result 7	60
4.31	Result 8	61
4.32	Result 9	62
4.33	0.14μ - 0.10 mm	63
4.34	0.14μ - 0.20 mm	64
4.35	0.14μ - 0.30 mm	64
4.36	0.16μ - 0.10 mm	65
4.37	0.16μ - 0.20 mm	65
4.38	0.16μ - 0.30 mm	66
4.39	0.18μ - 0.10 mm	66
4.40	0.18μ - 0.20 mm	67
4.41	0.18μ - 0.30 mm	67

LIST OF ABBREVIATIONS

3D - 3 Dimension

CATIA - Computer Aided Three Dimensional Interactive Application

V5 - Version 5

PTFE - Polytetrafluoroethylene

UTS - Ultimate Tensile Strength

CAD - Computer Aided Design

CAM - Computer Aided Manufacturing

CAE - Computer Aided Engineering

PLM - Product Lifecycle Management

ENOVIA - Enterprise Innovation Interactive Application

ANSYS - Analysis of System

PSM - Projek Sarjana Muda / Bachelor Degree Project

FEA - Finite Element Analysis

LIST OF SYMBOLS

R_B - Radius Bend

R_C - Radius Cut

α - Alpha

R - Ratio

t - Thickness

mm - millimeter

σ - Stress

e - Strain

E – Modulus of Elasticity or Young Modulus

μ - Coefficient of Friction

CHAPTER 1

INTRODUCTION

This chapter has a few sub-topics for introduction that need to discuss. Includes background of the study and objectives that need to achieve in this project. The scope of the study is clearly informed the limitation of the research and method that are used. Also problem that face or it will influence for our project. In a nutshell, it is the summary of this project and how project it will do.

1.1 Background of Study

Metal stamping or sheet metal forming probably the most versatile products of modern technology, that are used to replace parts previously welded together from several components. An advantage of sheet-metal parts is the uniform thickness of the material which can be controlled up to a close range with tolerances. Generally, sheet metal forming processes have a many type of process but in this project only involved forming process.

Forming process is a process which makes use of force to cause plastic deformation of the material to produce required shape. In forming, the bend line may be curved, circular or otherwise shaped. The variability of the bend line causes the material to expand on one's side and be compressed on the opposite site. Forming operations basically divided by two types (Ivany Suchy, 2006): 1. Shrink Flanges, 2. Stretch Flanges. Shrink Flanges, the material of a flange is squeezed or compressed during forming, while stretch flanges are stretched and subsequently thinned.

1.2 Problem Statement

Frictions in metal stamping have many beneficial as well as detrimental effects on the tooling and quality of produced parts. If increases the pressure between the tool and sheet-metal, which is result in a both deformation with subsequent degradation of surface quality and wear of tooling.

The problem of friction is quite complex and cannot be readily solved. On the other hand, some processes, such as forming process depend on a certain amount of friction, the removal of which may not be beneficial to the forming process at all. In the absence of friction, this may result in parts that are perhaps impossible to form at all.

The amount of cutting clearance between the punch and die is great importance in sheetmetal work. This because it will affect to the life of the die and the quality of the product. Higher cutting clearance that will results in intolerable product characteristics, while if lowest cutting clearance that can cause the tool in stress because it exact the greater punching force. A new die of forming die need to design using 3D design software example: CATIA V5 and SolidWorks then forming die will be testing using Finite Element Analysis software example; ANSYS Workbench. Using this software, the model will be simulated by changing its die clearance and friction coefficient. Results from this simulation also to check whether model produce a good quality of part without any defects also to improve a new design to get a better product.

1.3 Objectives

The objectives for this project are:

- To design corrugated metal gasket and die forming using CATIA V5.
- To study relationship between the appropriate clearance and friction coefficient during forming process.
- To simulate and analyze corrugated metal gasket and die forming using Finite Element Software.

1.4 Scope of project

In this project, the important aspect that should consider is a dimension for the corrugated shape (wave) that has at a surface metal gasket. It will focusing for a three wave only for a corrugated metal gasket and size that selected is 300-A. So, a new die need to design to ensure it form a corrugated metal gasket from metal gasket. The important aspect need to know or identify is tools geometrical quantities, the elasticity of the tools, the shape of workpiece, type of workpiece material, condition of the contact between tool and workpiece and process condition during forming process.

CHAPTER 2

LITERATURE REVIEW

In this chapter, contain of information about a corrugated metal gasket, forming operations, basic die forming, design principles during forming operations, and simulation software. This information is based on the document examples: journals, thesis, project papers, and book. Also, this chapter includes summarizing of this project.

2.1 Gasket

2.1.1 Definition of Gasket

Gasket is a piece of part that's usually fills the space between two surfaces. Generally, gasket is used to prevent leakage happen at the joined part and to maintain that seal under operating conditions. Gasket are made of elastomers (rubber, polyurethane, silicone), fibrous material (carbon fiber, cellulose, glass), metals (stainless steel, aluminum, copper), and "soft" materials (cork,PTFE, flexible graphite (Admin, 2016). Materials that used for gasket depends on the condition or function that one applies e.g. Copper gasket is used for ultrahigh vacuum systems (John Bickford, 2016)