

DETERMINATION OF CLEARANCE FOR THE DESIGN OF BENDING DIE FOR LOOPING A CABLE STAYED SUPPORT PLATE

This report submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Design)(Hons.)

by

SITI NUR AILISA BINTI IBRAHIM B051310151 940102-01-5052

FACULTY OF MANUFACTURING ENGINEERING

2017

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Determination of Clearance for The Design of Bending Die for Looping a Cable Stayed Support Plate" is the results of my own research except as cited in reference.

Signature:Author's Name:SITI NUR AILISA BINTI IBRAHIMDate:21 JUN 2017

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineereing of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The members of the supervisory committee are as follow:

.....

(WAHYONO SAPTO WIDODO)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Projek tahun akhir bertajuk "Penentuan Pelepasan untuk Reka Bentuk Lenturan Die Untuk Membentuk Gelungan Pada Plat Sokongan Kabel Kekal". Projek ini memberi tumpuan kepada reka bentuk lenturan die untuk menentukan jarak optimum antara 'punch' dan 'die' untuk lenturan plat sokongan kabel kekal. Selain itu, ia juga memberi tumpuan untuk menentukan daya yang sesuai untuk reka bentuk optimum lentur pelepasan 'die' semasa lenturan. Keduadua parameter antara 'punch' dan 'die'; dan daya semasa lenturan digunakan untuk menentukan sama ada ia akan dapat menghasilkan bentuk akhir yang baik pada plat dengan sedikit atau tiada kecacatan seperti retak atau patah. Reka bentuk pemodelan 3D lenturan die direka menggunakan perisian CATIA. Bahan yang digunakan untuk plat sokongan kabel kekal adalah keluli tahan karat dengan ketebalan 2 mm dan 140 mm panjang. Dengan menggunakan Analisis Dinamik Eksplisit dari perisian ANSYS, hasil daripada Finite Element Analysis bagi setiap reka bentuk lenturan die dengan jarak yang berbeza dan daya diperolehi. Kelegaan yang berbeza antara 'punch' dan 'die' digunakan untuk analisis adalah 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm dan 0.5 mm; manakala daya yang berbeza digunakan untuk analisis ialah 427 N, 214 N, dan 107 N. Keputusan analisis yang telah diperolehi adalah daripada jumlah keseluruhan perubahan bentuk dan bersamaan (von-Mises) tekanan pada plat. Dari keputusan akhir analisis, ia diperolehi bahawa jarak optimum antara 'punch' dan 'die' adalah reka bentuk lenturan die dengan jarak 0.2 mm. Daya paling sesuai untuk jarak optimum die yang diperolehi adalah 214 N. Reka bentuk dengan jarak 0.2 mm mempunyai keputusan jumlah keseluruhan perubahan bentuk 89.195 mm dan tekanan bersamaan 28121 MPa. Tidak ada kecacatan seperti retak atau patah berlaku berdasarkan keputusan analisis.

ABSTRACT

This final year project entitled "Determination of Clearance for The Design of Bending Die for Looping a Cable Stayed Support Plate". This project focused on the design of bending die to determine the optimum clearance between the punch and die for bending of cable stayed support plate. Besides, it also focused to determine the suitable force for the design of optimum bending die clearance during bending. These two parameters which were the clearance between punch and die; and the force during bending were used for determining whether it will be able to produce a good final shape of the plate with small or no defect. The 3D modelling designs of bending die are designed using the CATIA software. The material used for the cable stayed support plate was stainless steel with thickness of 2 mm and 140 mm long. By using the Explicit Dynamic Analysis from ANSYS software, the result of Finite Element Analysis for each design of bending die with different clearance and the force are obtained. The different clearance between punch and die used for the analysis were 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm; whereas the different forces used for the analysis were 427 N, 214 N, and 107 N. The results of the analysis were focused for the total deformation and the equivalent (von-Mises) stress of the plate. From the final results of the analysis, it is obtained that the optimum clearance between punch and die are the design of bending die with 0.2 mm clearance. The most suitable force for the optimum clearance of the die obtained was 214 N. The 0.2 mm clearance design had results of total deformation of 89.195 mm and the equivalent stress of 28121 MPa. There is no tear defect occur based on the analysis results.

DEDICATION

During the hard time preparing this report, I want to give my thanks to those who fully support and understanding me; My beloved mother, Supiah binti Othman, The one who gives guides me throughout this whole project with kindness; My supervisor for PSM I, En. Baharudin bin Abu Bakar, and

My supervisor for PSM II, Pak Wahyono Sapto Widodo.

ACKNOWLEDGEMENT

In the name of Allah S.W.T., the most gracious and the most merciful, thank you for giving me the strength and opportunity to complete this report. In completing this project, I would like to gives my thanks to several people who made me able to successfully complete this project. Firstly, a big appreciation to my supervisor in PSM I, En Baharudin bin Abu Bakar, and my supervisor for PSM II, Pak Wahyono Sapto Widodo for guiding me through this whole project and report making. Next, I would like to thanks to all my panels, Dr. Suriati, Dr. Radin and Dr. Zulkeflee for the encouraging comment during the PSM presentation and draft report evaluation. I would also like to extend my thanks to all my fellow friends who go through the same difficulties as I am during completing the project.

TABLE OF CONTENT

Absti	rak		i
Absti	ract		ii
Dedi	cation		iii
Ackn	owledge	ement	iv
Table	e of Con	tent	v - viii
List o	of Tables	S	ix
List o	of Figure	es	x - xiii
List o	of Abbre	eviations	xiv
List o	of Symbo	ols	XV
List o	of Equation	ions	xvi
СНА	PTER 1	1: INTRODUCTION	
1.1	Backg	ground	1
1.2	Proble	em Statement	2
1.3	Objec	tives	2
1.4	Scope	es	3
1.5	Limit	ations	3
СНА	PTER 2	2: LITERATURE REVIEW	
2.1	Metal	Forming	4
	2.1.1	Classification of metal forming process	5
2.2	Histor	rv of Sheet Metal Forming	5 – 7
	2.2.1	Sheet metal definition	7
	2.2.2	Sheet metal working definition	7
2.3	Sheet	Metal Process	8
	2.3.1	Cutting (shearing) operations	8
		2.3.1.1 Operation for producing blanks	9 - 11
		1 1 U	

v C Universiti Teknikal Malaysia Melaka

		2.3.1.2 Operation for cutting holes	11 - 12
		2.3.1.3 Operation for progressive working	13
	2.3.2	Forming operation	14-16
2.4	Defec	ts in Sheet Metal Working	16
2.5	Bendi	ng Operation	17
	2.5.1	Type of bending	18-19
	2.5.2	Spring back in bending	20-21
2.6	Die M	laking	21
	2.6.1	Description of die	22
	2.6.2	Type of dies	22
		2.6.2.1 Compound dies	22-25
		2.6.2.2 Progressive dies	25-26
	2.6.3	Die components	26-30
2.7	Param	neter of bending Die	31
	2.7.1	Clearance between punch and dies	31-32
	2.7.2	Bending punch force	33-35
2.8	Part D	Description: Cable Stayed Support Plate	35-36
2.9	Introd	uction of Finite Element Analysis (FEA) using ANSYS software	37
	2.9.2	Finite Element Analysis (FEA) process	37-38
	2.9.3	Type of Finite Element Analysis (FEA)	38

CHAPTER 3: METHODOLOGY

3.1	Methodology	
3.2	Methodology flow of PSM I and PSM II	40
	3.2.1 Flow of PSM I	41-42
	3.2.2 Flow of PSM II	42-43
3.3	3D Modeling	
	3.3.1 3D Modeling of Full Bending Die	43 - 44
	3.3.2 3D Modeling of Punch, Die and Plate	45
3.4	Procedure of Explicit Dynamic	
3.5	Summary of Explicit Dynamic Analysis	

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1	Punch and Die Clearance		50 - 51	
4.2	Maximum Bending Force Calculation			
	4.2.1	Bending Force for Explicit Dynamic Analysis in ANSYS	53	
4.3	Explie	Explicit Dynamic Analysis		
	4.3.1	Total Deformation Results		
		4.3.1.1 Total Deformation of Plate With Maximum	54 - 59	
		Bending Force, F=427N		
		4.3.1.2 Total Deformation of Plate With 50% of Maximum	59 - 64	
		Bending Force, F=214N		
		4.3.1.3 Total Deformation of Plate With 25% of Maximum	65 - 70	
		Bending Force, F=107N		
	4.3.2	Equivalent (von-Mises) Results	70	
		4.3.2.1 Equivalent (von-Mises) stress of Plate With	71 - 76	
		Maximum Bending Force, F=427N		
		4.3.2.2 Equivalent (von-Mises) stress of Plate With 50% of	76 - 82	
		Maximum Bending Force, F=214N		
		4.3.2.3 Equivalent (von-Mises) stress of Plate With 25% of	82 - 87	
		Maximum Bending Force, F=107N		
	4.3.3	Summary Result	88	
		4.3.3.1 Summary Result of Total Deformation	88 - 89	
		4.3.3.2 Summary Result of Equivalent (von-Mises) stress	90	
4.4	Selection of the Best Design Clearance			
	4.4.1	Summary of Selection Best Design Clearance	91	
4.5	Select	tion of the Best Force for the Best Design Clearance	92	
	4.5.1	Summary of the best force for the best design clearance	92	

CHAPTER 5: CONCLUSION

5.1	Conclusion	93 - 94
5.2	Recommendation	94

REFERENCES

APPENDICES

APPENDIX I APPENDIX II

APPENDIX III

APPENDIX A-1 to APPENDIX A-5 APPENDIX B-1 to APPENDIX B-5

APPENDIX C-1 to APPENDIX C-5

APPENDIX D-1 to APPENDIX D-5

APPENDIX E-1 to APPENDIX E-5

APPENDIX F-1 to APPENDIX F-5

96 - 99

LIST OF TABLES

2.1	Processes defect	16
2.2	Blanking clearance according to thickness for different type of materials	32
2.3	Characteristic of cable stayed support plate	35
4.1	Total clearance for each bending die design with different clearance	51
4.2	Force for bending analysis	53
4.3	Total deformation of plate with F=427N during bending	54
4.4	Total deformation of plate with F=214N during bending	60
4.5	Total deformation of plate with F=107N during bending	65
4.6	Equivalent (von-Mises) stress of plate with $F = 427N$ during bending	71
4.7	Equivalent (von-Mises) stress of plate with $F = 214N$ during bending	77
4.8	Equivalent (von-Mises) stress of plate with $F = 107N$ during bending	83
4.9	Comparison of actual bending height with analysis bending height	89
4.10	Total number of acceptable bending height	89
4.11	Analysis of crack occurs in the design of bending die	90
4.12	Selection of best design clearance	91
4.13	Comparison selection of best force	92

LIST OF FIGURES

2.1	Shearing process	9
2.2	Cutoff for different shapes	10
2.3	Different type of parting	10
2.4	(a)Blanking part, (b)Punching part	11
2.5	Slotting part	12
2.6	Perforating part	12
2.7	(a)Notching, (b)Semi notching	13
2.8	Lancing part	13
2.9	Bending process	14
2.10	Different type of flanging	14
2.11	Deep drawing process	15
2.12	Curling part	15
2.13	Seaming two part together	16
2.14	Bending part at neutral axis	17
2.15	V-bending process	18
2.16	Edge bending process	19
2.17	Roll forming process	19
2.18	Spring back in bending	20
2.19	(a)Forging dies, (b)Extrusion dies, (c)Sheet metal dies	21
2.20	Compound dies	23
2.21	Conventional dies	24
2.22	Inverted dies	25
2.23	Progressive dies with four stations	26
2.24	General die structure	27

2.25	Shank	27
2.26	Punch holder	28
2.27	Punch plate	28
2.28	Guide post/ pillar and Guide bushing	28
2.29	Different type of punch	29
2.30	Stripper plate	29
2.31	Die plate and Die holder	29
2.32	Dowel pin/ Knock pin	30
2.33	Stripper bolt	30
2.34	Clearance between punch and dies	31
2.35	Cross section of the cut part	32
2.36	V-Bending	33
2.37	L-Bending	34
2.38	U-Bending	35
2.39	(a) Cable stayed support plate used at lamp post	36
2.39	(b) Part used for cable stayed support plate	36
2.39	(c) Cable stayed support plate location	36
3.1	Methodology Flow of PSM I and PSM II	40
3.2	Full Design of Bending Die	44
3.3	Side view and Front View of Punch, Die and Plate	45
3.4	Isometric View of Punch, Die and Plate	45
3.5	Explicit Dynamic Project Schematic	46
3.6	Engineering Data Window	46
3.7	Project window of Explicit Dynamic	47
3.8	Meshing of Punch, De and Plate	48
4.1	Clearance for punch and die	51
4.2	Structure analysis of total deformation of plate for bending die with 0.1mm clearance	55
4.3	Structure analysis of total deformation of plate for bending die with	56

0.2mm clearance

4.4	Structure analysis of total deformation of plate for bending die with	57
	0.3mm clearance	
4.5	Structure analysis of total deformation of plate for bending die with	58
	0.4mm clearance	
4.6	Structure analysis of total deformation of plate for bending die with	59
	0.5mm clearance	
4.7	Structure analysis of total deformation of plate for bending die with	60
	0.1mm clearance	
4.8	Structure analysis of total deformation of plate for bending die with	61
	0.2mm clearance	
4.9	Structure analysis of total deformation of plate for bending die with	62
	0.3mm clearance	
4.10	Structure analysis of total deformation of plate for bending die with	63
	0.4mm clearance	
4.11	Structure analysis of total deformation of plate for bending die with	64
	0.5mm clearance	
4.12	Structure analysis of total deformation of plate for bending die with	66
	0.1mm clearance	
4.13	Structure analysis of total deformation of plate for bending die with	67
	0.2mm clearance	
4.14	Structure analysis of total deformation of plate for bending die with	68
	0.3mm clearance	
4.15	Structure analysis of total deformation of plate for bending die with	69
	0.4mm clearance	
4.16	Structure analysis of total deformation of plate for bending die with	70
	0.5mm clearance	
4.17	Structure analysis of equivalent (von-Mises) stress of plate for bending	72
	die with 0.1mm clearance	
4.18	Structure analysis of equivalent (von-Mises) stress of plate for bending	73
	die with 0.2mm clearance	

4.19	Structure analysis of equivalent (von-Mises) stress of plate for bending	74
	die with 0.3mm clearance	
4.20	Structure analysis of equivalent (von-Mises) stress of plate for bending	75
	die with 0.4mm clearance	
4.21	Structure analysis of equivalent (von-Mises) stress of plate for bending	76
	die with 0.5mm clearance	
4.22	Structure analysis of equivalent (von-Mises) stress of plate for bending	78
	die with 0.1mm clearance	
4.23	Structure analysis of equivalent (von-Mises) stress of plate for bending	79
	die with 0.2mm clearance	
4.24	Structure analysis of equivalent (von-Mises) stress of plate for bending	80
	die with 0.3mm clearance	
4.25	Structure analysis of equivalent (von-Mises) stress of plate for bending	81
	die with 0.4mm clearance	
4.26	Structure analysis of equivalent (von-Mises) stress of plate for bending	82
	die with 0.5mm clearance	
4.27	Structure analysis of equivalent (von-Mises) stress of plate for bending	83
	die with 0.1mm clearance	
4.28	Structure analysis of equivalent (von-Mises) stress of plate for bending	84
	die with 0.2mm clearance	
4.29	Structure analysis of equivalent (von-Mises) stress of plate for bending	85
	die with 0.3mm clearance	
4.30	Structure analysis of equivalent (von-Mises) stress of plate for bending	86
	die with 0.4mm clearance	
4.31	Structure analysis of equivalent (von-Mises) stress of plate for bending	87
	die with 0.5mm clearance	

LIST OF ABBREVIATIONS

CATIA	-	Computer Aided Three Dimensional Interactive Application
FEA	-	Finite Element Analysis
SWG	-	Standard Wire Gauge
HSS	-	High Strength Steel

LIST OF SYMBOLS

mm	-	Millimeters
in	-	Inches
%	-	Percentage
α	-	Bend angle
Ri	-	Initial bend radius
Rf	-	Final bend radius
t	-	Thickness plate
Y	-	Yield strength
E	-	Young's modulus
F	-	Force
C1	-	Coefficient
Р	-	Bend force
В	-	Bending line length
Ts	-	Tensile strength

LIST OF EQUATIONS

4.1	Total clearance	51
4.2	Maximum Bending Force	52

CHAPTER 1

INTRODUCTION

This chapter describes the brief explanation of the background of sheet metal working for bending die for looping a cable stayed support plate. In this chapter, background of study, problem statement, objectives, scopes and limitation of this study are discussed.

1.1 Background

Historically, metal was shaped by hand using a hammer. Later, larger hammers were constructed to press more metal at once, or to press thicker materials. Along with the evolution of presses came the evolution of the dies used within them. A machine press, commonly shortened to press, is a machine tool that changes the shape of a work piece. Press tools are commonly used in hydraulic and mechanical presses to produce components at a high productivity rate. Generally press tools are categorized by the types of operation performed using the tool, such as blanking, piercing, bending, forming, forging, and trimming. The press tool will also be specified as blanking tool, piercing tool, and bending tool.

Sheet metal bending is a process of straining sheet metal around a straight axis to take a permanent bend where the metal on the inside of neutral plane is compressed, while the metal on outside of neutral plane is stretched. This bending process sometimes caused defects to the part being bent due to the compression and tension during the bending process.

1.2 Problem Statement

In bending a U-shaped part into a loop-shaped, defect such as crack tend to occur. The crack may occur at the outer part of the U-shaped part due to the extension during bending process, or the crack may occur on the inside part of the U-shaped part due to the compression during the bending process. The factor of this defect may be due to the due to the clearance between the punch and die, and the force put into the bending die to perform the bending process. The cable stayed support plate is formed from U-shaped part to the loop-shaped part. Thus, the design of bending die for looping a cable stayed support plate is to be made. Furthermore, the analysis of its clearance and force of the bending die will be made, in order to reduce the defect.

1.3 **Objectives**

The objectives of this research are:

- 1. To design a bending die for looping a U-shaped cable stayed support.
- 2. To analyze the optimum clearance required for the design of the bending die.
- 3. To analyze the force used to bend the plate for the optimum clearance of the bending die.

1.4 Scopes

The scopes of the research are as follows:

- a) The project focus on the design of bending die for looping a cable stayed support plate using the Catia software.
- b) Literature study from different sources is carried out to investigate the design parameter of a bending die that is the clearance and force used in the bending process.
- c) The simulation will be made using Explicit Dynamic in Finite Element Analysis (FEA) using ANSYS software. The simulation focused on determining the clearance and force used during bending process. The results of the analysis are focused on the total deformation and equivalent stress.

1.5 Limitations

This research is limit by some of these factors as follows:

- 1. The shape and size of the U-bend and loop of cable stayed support plate is based on the standard size of cable stayed support plate.
- 2. The material for cable stayed support plate is the stainless steel.
- 3. Design of the bending die will be made using the CATIA software.
- 4. The parameter focused in this project are the clearance between punch and die and the force during bending.
- 5. The Finite Element Analysis (FEA) of the design of bending die will only be simulated by using explicit dynamic analysis in ANSYS software. The simulation only focused on the total deformation and equivalent stress only.

CHAPTER 2 LITERATURE REVIEW

This chapter describes the literature review which covers for the study of understanding the project. The chapter explains on the brief history of sheet metal working and also the study of the bending process. The understanding of designing bending die, bending parameter, bending defect and bending force are also obtained from the literature review. The study of this literature overview regarding bending process and designing of bending die are important in order to accomplish the objectives of this project.

2.1 Metal Forming

In fabricate metal products, metal forming is the most known process from three major technologies used; the other processes are casting and metallurgy process. Metal forming is a process where the metal billet or blank is shaped using tools or dies and this process depend on different factors such as the characteristic of work piece materials, the mechanics of plastic deformation and the finished product requirement. The selection of tool geometry and material are also influenced by these factors. Metal forming is normally performed after the primary processes of extraction, casting, and powder compaction and before the finishing processes of metal cutting, grinding, polishing, painting and assembly.

2.1.1 Classification of metal forming process

Initially, a simple work piece is made up of a billet or a sheet of metal, where it will then plastically deformed between tools and dies to obtain the final configuration. All metal forming processes can be classified into two broad categories;

- 1) Bulk or Massive Deformation Processes
 - In bulk or massive deformation process, the materials used are usually in a shape of billet, rod, or slab form. The surface-to-volume ratio in the formed part increases considerably under the action of largely compressive loading where the surface of the deforming metal and the tools are in contact and the friction between them may have a major influence in the material flow (Boljanovic Vukota, 2010).
- Sheet Metal Forming Processes
 Sheet Metal Forming Processes involves partial or complete plastic deformation of the material (Boljanovic Vukota, 2010).

2.2 History of Sheet Metal Forming

Sheet Metal Forming has been used since the last century. The history and development of the sheet metal industry are progressing throughout the years and the techniques used are getting more lenient by the involvement of machineries and technologies. This rapid growth of development promotes a more stable and faster development of the sheet metal.

The development and growth of sheet metal forming can be seen in the eighteenth century, where the practices of metal technologies are found as evidence of the product of the iron industry. According to (James M. A., 1981), before the output of the furnace and commercial forges could be turned to everyday use, however, additional processing often was necessary. He said that the conversion of primary metal forms such as castings, rough