

ELECTROCHEMICAL PERFORMANCE OF GRAPHENE/MOLYBDENUM DISULFIDE ELECTRODES BASED SUPERCAPACITOR

This report submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials)(Hons.)

by

TUNKU AIDIL ILHAM BIN TUNKU ADAHAM

B051410024

930317-02-5793

FACULTY OF MANUFACTURING ENGINEERING

	UNIVERSITI TEKNIKAL	MALAYSIA	MELAKA
UNIVERSITI TEKNIKAL MALAYSIA MELAKA			

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: ELECTROCHEMICAL PERFORMANCE OF GRAPHENE/MOLYBDENUM DISULFIDE ELECTRODE BASED SUPERCAPACITOR

Sesi Pengajian: 2016/2017 Semester 2

Saya TUNKU AIDIL ILHAM BIN TUNKU ADAHAM (930317-02-5793)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Alamat Tetap: 23, Jalan RK 6/2, Rasab Kemayan 70300 Negari Sembilan Darul Ishusus

Tarikh: 22/6/2017

Disahkan oleh:

Cop Rasmin Dia DR MOND ANNU MAN MONCIO AD

Advanced MonuFlictuum, Centre (AMC) Game Par Stream and Incondor (Amagenein (2014) University Televikel watersta Ministra

12012 22 Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI KEJURUTERAAN PEMBUATAN

Tel: +606 - 331 6429 / Faks: +606 - 331 6431

Rujukan Kami (Our Ref) : UTeM. Rujukan Tuan (Your Ref) :

Ketua Pustakawan Perpustakaan UTeM Kampus Induk University Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal Melaka. 19 June 2017

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN (BAHAN KEJURUTERAAN): TUNKU AIDIL ILHAM BIN TUNKU ADAHAM

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "Electrochemical Performance of Graphene/Molybdenum Disulfide Electrodes Based Supercapacitor" mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA tahun dari tarikh surat ini.

2. Hal ini adalah kerana ianya merupakan projek yang ditaja sepenuhnya oleh syarikat luar (Nama Syarikat) dan hasil kajiannya adalah sulit.

Sekian dimaklumkan. Terima kasih.

Yang benar,

gan dan Cop Penyelia

Contrained to Contrain Annual Contrained Annual

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD, MAKA BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM.

DECLARATION

I hereby, declared this report entitled "Electrochemical Performance of Graphene/Molybdenum Disulfide Electrodes Based Supercapacitor" is the result of my own research except as cited in references.

Signature Author's Name Date

: TUNKU AIDIL ILHAM BIN TUNKU ADAHAM : 19 June 2017

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Engineering Materials) (Hons). The member of the supervisory committee are as follow:

......

(Assc. Prof. Dr. Mohd Asyadi 'Azam Bin Mohd Abid)

Hub, March 24 Moles London Mark Molec Asia Single Molec Advention Manufacturing Centre (AMC) Centre For Manufacturing Centre (AMC) Centre For Manufacturing Menagement (CRIM) Conferenced Trembol Menagement (CRIM)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Tujuan kajian bagi projek tahun akhir ini adalah untuk mengakses prestasi elektrokimia elektrod berdasarkan graphene/molibdenum disulfida komposit dalam supercapacitors. Penggunaan N-methylpyrrolidone sebagai pelarut semasa fasa pengelupasan cecair adalah sesuai untuk kedua-dua graphene dan MoS₂. Ini disokong dengan data yang diperoleh daripada Raman spektroskopi dan XRD menunjukkan bahawa serbuk pukal sedang terkelupas kepada beberapa lapisan serpih. Eksperimen ternyata bahawa komposit 75G-25 MoS₂ dipamerkan elektrod berprestasi saksama yang kemuatan tertentu adalah 24.71 F/g bawah 1 mA/mg ketumpatan semasa bagi 10,000 kitaran. Ia juga memberikan nilai saksama dalam kemuatan tertentu pada tahap paling rendah imbasan kadar pada 1 mVs⁻¹ iaitu 38.64 F/g dalam elektrolit pH neutral 0.5M natrium sulfat (Na₂SO₄). Pengekalan kapasitan elektrod komposit juga ternyata lebih baik daripada graphene tulen sebanyak 24% selepas dibekalkan mampatan arus pada 1 mA/mg sebanyak 10,000 kitaran.

ABSTRACT

The aim of the study for this final year project is to access the electrochemical performance of graphene/molybdenum disulfide composite based electrode in supercapacitors. The use of N-methylpyrrolidone as solvent during the liquid phase exfoliation is suitable for both graphene and MoS₂. This is supported with the data collected from Raman spectroscopy and XRD shows that the bulk powders are exfoliated to few layers of flakes. The experiment turned out to be that the composite of 75G-25MoS₂ exhibited a fair performing electrode which the specific capacitance is 24.71 F/g under 1 mA/mg of current density for 10,000 cycles. It also gives a fair value in specific capacitance at lowest scan rate at 1 mVs⁻¹ which is 38.64 F/g in a neutral pH electrolyte of 0.5M of sodium sulfate (Na₂SO₄). The capacitance retention of the composite electrode also turned out to be better than pure graphene by 24% after 10,000 cycles.

DEDICATION

To my beloved parents, Tunku Adaham and Nor Hayati

To my supporting brother and sister, Tunku Amrul Ilham and Tunku Nur Aina Athira

for all the moral supports, the financial, and the cooperation given.

Thank you very much and lots of love.

iii

ACKNOWLEDGEMENT

I would like to take a chance to give a highly appreciation to my supervisor, Asccociate Professor Mohd Asyadi Azam bin Mohd Abid who had guided me to get a better understanding in my Final Year Project. A lot of knowledge that I was able to gained from his teachings and guidance.

Apart from that, I also want to express my appreciation to all my family members who were motivating and supporting me during my final year project. They had never stop giving the good vibe since the first day I stepped foot in the university.

On the other hand, a lot of appreciations directed to all other staff/technician from other department that also gave me a lot of knowledge in term of communication and technical skills. Not to forget, appreciation to other students from within the university who always give full commitment and cooperation during lab utilizations.

TABLE OF CONTENTS

Abstrak	Ι
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	viii
List of Figures	ix
List of Abbreviations	X
List of Symbols	xii

CHAPTER 1: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objective of the Research	3
1.4	Scope of Study	4

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	uction to supercapacitor	5
	2.1.1	Working principles of supercapacitors	6
	2.1.2	Performance of supercapacitor	8
	2.1.3	Development of supercapacitor	8
2.2	Graph	ene	10
2.3	Transi	tion metal dichalcogenides	12
	2.3.1	Molybdenum disulfide	14
2.4	Graph	ene/TMD based supercapacitor	15
	2.4.1	Graphene/molybdenum disulfide electrode	15
	2.4.2	Characterization examples of the electrode	16
		2.4.2.1 SEM	16

		2.4.2.2 Raman spectroscopy	18
		2.4.2.2 X-Ray Diffractometer	
2.5	Super	rcapacitor cell construction	18
	2.5.1	Electrolytes	19
		2.5.1.1 Aqueous electrolyte	19
		2.5.1.2 Organic electrolyte	20
2.6	Electi	rochemical performance	20
		2.6.1 Cyclic voltammetry	21
		2.6.1 Galvanostatic charge/discharge	22
CHA	PTER	3: METHODOLOGY	
3.1	Introc	duction	25
3.2	Flow	chart of methodology	26
3.3	Synth	nesis and Preparation of G/MoS ₂ Electrode	27
	3.3.1	Liquid phase exfoliation	27
	3.3.2	Slurry preparation	27
	3.3.3	Electrode membrane fabrication	28
3.4	Chara	acterization of As-prepared G/MoS ₂ Electrode	28
	3.4.1	Raman spectroscopy	28
	3.4.2	Scanning electron microscopy	28
	3.4.3	X-Ray Diffractometer	28
3.5	Electi	rochemical Performance of G/MoS ₂	29
	3.5.1	Cyclic voltammetry	30
	3.5.2	Galvanostatic charge/discharge	30
CHA	PTER	4: RESULTS AND DISCUSSIONS	
4.1	Introc	duction	31
4.2	Rama	an spectroscopy of fabricated electrodes	31
4.3	Cryst	al structure and morphology of the electrode membranes	35
4.4	Electi	rochemistry of prepared electrode membranes	38
	4.4.1.	. Cyclic Voltammetry in 1M H ₂ SO ₄ electrolyte	38
		4.4.1.1 Cyclic Voltammetry of pure Graphene	39
		4.4.1.2 Cyclic Voltammetry pure MoS ₂	40

	4.4.1.3 Cyclic Voltammetry of 50:50% Graphene/ MoS ₂	41
	4.4.1.4 Cyclic Voltammetry of 75:25% of Graphene/ MoS_2	42
	4.4.1.5 Cyclic Voltammetry of 25:75% of Graphene/ MoS_2	43
	4.4.2. Cyclic Voltammetry in 0.5M Na_2SO_4 electrolyte	44
	4.4.2.1 Cyclic Voltammetry of pure MoS ₂	44
	4.4.2.2 Cyclic Voltammetry of 75:25 Graphene/ MoS ₂	45
	4.4.2.3 Cyclic Voltammetry of 25:75% c Graphene/ MoS_2	46
	4.4.2.4 Cyclic Voltammetry of 50:50 Graphene/ MoS ₂	47
4.5	Galvanostatic Charge Discharge of prepared composition in 0.5M Na ₂ S	0 ₄ 48
	4.5.1 Capacity retention of prepared samples in $0.5M \text{ Na}_2\text{SO}_4$	50
CHAPTER 5: CONCLUSION AND RECOMMENDATION		

REFERENCES

APPENDICES	5
------------	---

A	Gantt Chart for FYP 1	56
B	Gantt Chart for FYP 2	57

52

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

2.2	Summary of performance of supercapacitor	8
2.3	Overview of development of supercapacitor	9
2.4	Properties of graphene reported from respected references	11
4.1	Specific Capacitance, C _{Sp} of pure in Graphene	40
4.2	Specific Capacitance, C _{Sp} of pure Molybdenum Disulfide	40
4.3	Specific Capacitance, CSp of 50:50% Graphene/Molybdenum Disulfide	41
4.4	Specific Capacitance, CSp of 75:25 Graphene/Molybdenum Disulfide	42
4.5	Specific Capacitance, C _{Sp} of 25:75% Graphene/Molybdenum Disulfide	43
4.6	Specific Capacitance, CSp of pure Molybdenum Disulfide	45
4.7	Specific Capacitance, C _{Sp} of 75:25 Graphene/Molybdenum Disulfide	46
4.8	Specific Capacitance, C _{Sp} of 25:75 Graphene/Molybdenum Disulfide	47
4.9	Specific Capacitance, C _{Sp} of 50:50 Graphene/Molybdenum Disulfide	48
4.10	Specific capacitance of discharge at 1 mA/mg for 10,000 cycles	50

LIST OF FIGURES

2.1	Image of a supercapacitor. Photo copyright of Maxwell Technologies	6
2.2	Schematic diagram of EDLC (Ike and Sunny,2015)	6
2.3	Schematic diagram of pseudocapacitance (Ike and Sunny, 2015)	7
2.4	Illustration a) ACs, b) SWCNTs, c) graphene and d) graphene/SWCNT	10
2.5	Illustration of graphene structure forming fullerene materials	11
2.6	Schematics of hexagonal and orthorhombic crystal structure of TMD	13
2.7	Schematic representation of MoS ₂	14
2.8	Diagrams of the 3D porous composite	16
2.9	Scanning electron microscope image of graphene	17
2.10	Scanning electron microscope image of MoS ₂	17
2.11	Scanning electron microscope image of composite	17
2.12	Raman spectrum of MoS_2 peaks (inset) and graphene peaks	18
2.11	Symmetrical coin cell architecture of CR2032	19
2.12	CV Plots of the materials	21
3.1	Flowchart of the project	24
3.2	A mix of MoS ₂ and Graphene	25

3.3	Slurry of the mix powder in NMP with 10 w% of SuperP and 5 w% of PTFE	26
3.4	Scanning Electron Microscope	28
3.5	X-Ray Diffractometer	28
3.6	Illustration of symmetrical CR2032 used for electrochemical performance	29
3.7	Battery jig assembly of electrochemical testing	30
4.1	Exfoliated Pure Graphene in NMP	32
4.2	Exfoliated Pure Molybdenum Disulfide in NMP	33
4.3	Composite of 50:50% of (graphene/MoS ₂) in Ni foam current collector	34
4.4	Composite of 75/25% (graphene/MoS ₂) in Ni foam current collector	34
4.5	Composite of 25/75% (graphene/MoS ₂) in Ni foam current collector	35
4.7	XRD analysis of all compositions	36
4.8	Stick pattern (left) and SEM of Graphene (right) on Ni foam	36
4.9	Stick pattern (left) and SEM of MoS ₂ (right) in Ni foam	37
4.10	Stick patterns (left) and SEM images (right) of graphene/MoS ₂ in $75/25\%$ composite on Ni foam	38
4.11	Cyclic Voltammetry of pure Graphene in 1M H ₂ SO ₄	39
4.12	Cyclic Voltammetry for pure Molybdenum Disulfide	40
4.13	Cyclic Voltammetry of 50:50% Graphene/Molybdenum Disulfide	41
4.14	Cyclic Voltammetry of 75:25 of Graphene/Molybdenum Disulfide	42
4.15	Cyclic Voltammetry of 25:75% of Graphene/Molybdenum Disulfide	43
4.16	Cyclic Voltammetry of pure Molybdenum Disulfide0.5M Na ₂ SO ₄	44

4.17	Cyclic Voltammetry of 75:25 Graphene/Molybdenum Disulfide	45	
4.18	Cyclic Voltammetry of 25:75 Graphene/Molybdenum Disulfide	46	
4.19	Cyclic Voltammetry of 50:50 Graphene/Molybdenum Disulfide	47	
4.20	Scanning stability of different scan rate in $1M H_2SO_4$ and $0.5M Na_2SO_4$	48	
4.21	Graph of charge discharge cycle at 10,000 th cycles of the tested samples	50	
4.22	Capacity retention of 75G - 25MoS ₂ composite after 10,000 th cycles	51	
4.23	Capacity retention of graphene, MoS ₂ and 75:25% composite	52	

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

G	4. J	Graphene
MoS_2	-	Molybdenum Disulfide
CV	-	Cyclic Voltammetry
GCD	G (Galvanostatic Charge Discharge
SEM	e – 1	Scanning Electron Microscopy
EDLC	e l	Electrical Double Layer Capacitance
PVDF	2	Polyvinylidine fluoride
PTFE	-	Polytetraflouroethylene
XRD	÷.	X-Ray Diffractometer
H_2SO_4	- I	Sulphuric Acid
Na ₂ SO ₄	- L	Sodium Sulphate
КОН	-	Potassium Hydroxide

LIST OF SYMBOLS

millivolt per second
Volt
milliAmpere
Farad per gram
milligram
Raman shift

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Take a moment and try to look at the surrounding people. Most of them use a device that requires an energy storage system. These energy storage systems are needed to be as efficient as possible in terms of electrically and environmentally. In ever growing electronic industry, the urge of finding a better energy storage system is in motion. This motion ripples to the search of electrochemical energy storage system to be embedded in hand-held electronic devices, transportation and storage of renewable energy for the power grid of which leads to the development of electrochemical capacitors known as supercapacitors.

Supercapacitor has attracted a lot of attention because of the charge-discharge rate, dynamic energy and power density, long cycle ability and simple working principle. They can be fabricated from films to coin cells to disks to a much bigger scales like modules of supercapacitors arrange in series or parallel to build a hybrid car battery or energy storage in the power grid. The electrochemical performance of the supercapacitor will affect the energy storage in a certain system. This can be further improved when the materials of the electrodes in the supercapacitor exhibits a good electronic conductivity and capacitance.

Synthesizing a good performing electrode in the supercapacitor had been a challenging route for the energy researchers. The use of high-capacitance materials such as high surface area or pseudo-active species is a main element to ensure high energy density. In contrast, a high electrical conductivity of the electrode materials as well as the electrolyte solution is necessary for a high rate capability.

A proper development of study had been done to find the best performing supercapacitor in market. The issues related to the electrochemical performace will be discussed in the next subtopics.

1.2 Problem Statement

Late years have yielded real advance in the hypothetical and commonsense innovative work of supercapacitor, as revealed by countless articles and specialized reports. A statement that can be directly quote into this section is the statement from Wang et. al (2014) stating, "The electrode, the heart of the cell, determines the supercapacitor performance in terms of self-discharge, life expectancy, capacity, resistance, and so on. Therefore, the electrode fabrication including an active material coating process is the most important step. As a result, strictly controlling the preparation process is necessary for achieving both high performance and durability". The drawbacks that would happen if the materials of the electrode are not controlled are the supercapacitor exhibits lower energy density and higher production cost.

The specific issue that is being exhibited by graphene is that it has high surface areas for charge storage. But in spite of these large specific surface areas, the charges physically stored on the carbon particles in porous electrode layers are unfortunately limited. This shows that graphene has a great conductivity but lacks in capacitive behaviour and the restacking of other carbon atom to form graphitic structures. As for the molybdenum disulfide, the problem that it faced is the resistivity of it in conducting electrons and the very low specific surface area that it exhibits but showing a good capacitive behaviour.

In accordance to the statement above it can be interpreted that in order to achieve a higher performing supercapacitor, a proper synthesizing of the material preparation used in the electrode is crucial to control the criteria of a working supercapacitor. Many developed researches had been done to improve the electrochemical performance of a supercapacitor. Given the situation, it is high time for the study of electrochemical performance of

supercapacitor to be done since that energy storage technology is ever increasing up until today.

The solution proposed in increasing the electrochemical performance is combining the benefits of these 2D materials to produce highly efficient composite electrochemical supercapacitor devices.

1.3 Objective of the Study

Given that the problem that would face in the study on the electrochemical performance of supercapacitor had been discussed previously, the emergence of the research objective is possible. These objectives are done in such a manner to tackle any research gap related to the electrochemical performance of graphene/molybdenum disulfide based electrode supercapacitor. The objectives are:

- 1. To synthesize graphene and molybdenum disulfide (G/MoS₂) as electrode material for supercapacitor.
- 2. To characterize the morphology and structural properties of graphene and molybdenum disulfide.
- 3. To evaluate the electrochemical performance of G/MoS₂ by using cyclic voltammetry and charge/discharge.

1.4 Scope of Study

The composition mixture was adapted from the study done by Bisset et. al (2015). In the study, there were no conductive agent and binders were used to fabricate the electrode materials. However, in this study the mixture will be introduced with conductive agent called SuperP and PTFE binder. Percent ratio of G: MoS_2 are adapted from the journal are (75:25%, 50:50%, 25:75%, 100%G and 100%MoS2). These composite mixes except the intrinsic ones are to be mixed with small number of conductive agent (10-15%) and binder (3-5%). As the fabricated electrode or the prepared samples are done, material characterization techniques is to be done in getting the morphological and analytical data through the use of Raman spectroscopes, Scanning Electron Microscope (SEM) and X-Ray Diffractometer. Finally, in obtaining the electrochemistry of the electrode fabricated a series of cyclic voltammetry of scan rates of 1, 10, 100 and 500 mVs⁻¹ is to be done. The galvanostatic charge/discharge of current density of 1 mA cm⁻² for 10,000 cycles to acquire the stability of the device fabricated. A proper calculation from the CV plot data and GCD data are able to obtain the electrochemical performance of the working electrode.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Supercapacitor

In the ever increasing advances in technology, the pursuit of finding a better performing energy storage system is needed. The emergence of a supercapacitor was caused by the founding of conventional capacitors and Lithium-based batteries. Supercapacitor is a very important categories in the electrochemical energy storage devices because the combination of the two different types of storage devices such as the high energy density of conventional batteries and the high power density of a conventional capacitor. As adapted from Dale (2014), the performance of a supercapacitor is mainly measured on the fundamentals of conformance in following these criteria. The criteria of the supercapacitor is the power density substantially more than batteries with acceptably high energy densities, tremendous amount of cycles, quick charge-discharge processes, low self charging, safe operations and low cost. Supercapacitor is known to be having two different types of energy storage mechanism in the system. The energy storage mechanisms that are related to this device are the electrical double layer capacitance (EDLC) and the pseudocapacitance. The details of the mechanism will be discussed in the next subtopic. Figure 2.1 shows the graphical image of a supercapacitor.

Figure 2.1: Image of a supercapacitor. Photo copyright of Maxwell Technologies

2.1.1 Working principles of supercapacitor

The working principles of the storage mechanism in a supercapacitor are electrochemical double layer capacitance (EDLC) and pseudocapacitance or the combination of both. Adapted from Bisset et. al. (2015), EDLC is the storage principle that is exhibited at the interface of electrode with electrolyte through the accumulated of ions at that interface, which makes it dependent to the surface area of the electrode, pore size, and electrical conductivity. Figure 2.2 the elliptical outline shows the accumulated on top of each other on the surface of the electrode. When the device is being charge the ions are accumulated on top of each other on the surface of the electrode. As soon at the device is being discharge the accumulated ions are freely move in the electrode-electrolyte solution to be transferred in Faradaic reaction.

Figure 2.2: Schematic diagram of EDLC (Ike and Sunny,2015)