RESEARCH STUDY OF DESIGN OF SELF-CLEANING FILTERING MACHINE FOR WASTE WATER TREATMENT

KHAIRUL FAIZ BIN ISHAK

This report is being proposed as a

partial fulfillment in the requirement for bestowal of

Degree in Bachelor of Mechanical Engineering (Thermal-Fluids)

Faculty of Mechanical Engineering

Universiti Teknikal Malaysia Melaka

MEI 2009

'I/We* admit that I/We* have read

This report and my/our* opinion this report Is fulfilled the scope and quality for award condition of Bachelor of Mechanical Engineering (Thermal-Fluids)'

Signature	:	••	•	•	•	•	•	•	•	•	• •	•••	•	•	•	•	•	•	•	• •	••	
Supervisors 1's Name	:	••	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	• •	••	
Date	:	••	•	•	•	•	•	•	•	•				•	•	•	•	•	•	• •	•••	

Signature	:	•••	•	•	•	•	•	•	•	••	•	•	•	•••	•	•	•	•	•••	•
Supervisors 1's Name	:		•	•	•	•	•	•	•		•	•	•	• •	•	•	•	•	••	•
Date	:	•••	•	•	•	•	•	•	•		•	•	•	•••	•	•		•	•••	•

*Cut which irrelevant

"I hereby, declare this report is the result of my own research except as cited in the references "

Signature	:
Author's Name	:
Date	:

DEDICATION

For my beloved father and mother,

thank you for giving full commitment

for your elder son.

ACKNOWLEDGEMENT

Firstly, I would like to convey my gratitude towards the Al-Mighty for giving me the strength and willingness to complete Engineering Internship Training. A special thanks to IR Abd Talib Bin Din, Supervisor for Projek Sarjana Muda 1 for giving me a chance to be a part of the student in the project for the 14 weeks period. To my beloved executive and technician including En. Saifulizam, En. Mokhtar, En, Nasir, En. Mahazan and En. Mahadzir at Hicom-Honda Manufacturing (M), I would like to thank them for their guidance and encouragement throughout the process of completing this project. This project program is part of degree requirements for subject of Engineering in order for students to successfully complete the Bachelor of Engineering course. This program exposes the students to real problem and actual working for an engineer in industries. I deeply appreciate the understanding, encouragement and help of friends. Also lastly I want to thank to my family which fully support me from behind eventhough a lot problem occurred.

ABSTRAK

Penapis terdiri daripada penggunaan secara automatik dan secara manual. Kebanyakkan daripada produk penapis yang di jual pada hari ini, adalah jenis automatik iaitu dengan sendirinya akan membersihkan penapis. Produk ini menjadi pilihan kepada jurutera, syarikat yang menjalankan perniagaan dan perumahan kerana terdapat banyak kelebihan daripada penapis jenis ini.

Antara kelebihan yang terdapat pada penapis jenis ini adalah, ia tidak memerlukan penjagaan yang rapi, jaminan kualiti yang sama setiap masa, menjimatkan kuasa kerana penggunaan tekanan yang tinggi pada penapis dan menyebabkan kadar alir menjadi perlahan. Penapis akan bertindak dengan kadar yang sama tetapi melakukan kurang kerja. Penapis jenis ini juga melambatkan usia atau jangka hayat mesin tersebut dan perkara ini menunjukkan mesin ini memang menjimatkan wang.

vi

ABSTRACT

Filters offers a broad range of automatic (self-cleaning) and manual (non selfcleaning) filtration systems. Over 99% of all filtration systems sold are of the selfcleaning variety. The self-cleaning filters are the overwhelming choice of consulting engineers, property management companies and building owners because there are a lot of benefits using these self-cleaning filters.

The benefits are requires no regular maintenance, assures optimal filtration efficiency, reduces energy cost because as filter media accumulates suspended contaminants, the pressure drop across the filter increases and flow rate decreases. The filter consumes the same power, but does less work. Another benefit is extends media life, (five to ten years typical) and is cost effective.

vii

LIST OF TABLES

NO	TITLE	PAGE
2.0	Contractor's Perspective – Site Accessibility	14
	(Size/Weight)	
2.1	Owner's Perspective – Water Consumption during	16
	Backwash	
2.2	Engineer's Perspective – Design Flexibility	18
	(Size/Weight)	
2.3	Engineer's Perspective – Design Flexibility	19
	(Drain Requirements)	
2.4	Technical Specifications	31
2.5	Flushing Data	31
2.6	Control & electricity	32
2.7	Filter area	32
2.8	Weave wire screen area	32
3.1	General characteristics of EBS-10,000, EBS-15,000,	40
	MegaEBS	
3.2	Flushing data characteristics of EBS-10,000, EBS-15,000,	41

MegaEBS

3.3	Control and electricity characteristics of EBS-10,000,	41
	EBS-15,000, MegaEBS	
4.1	Overview of BMP085 modes	51
4.2	Overview of BMP085 Electrical Characteristics	51
4.3	Example table for Collecting Data	65

LIST OF FIGURES

NO	TITLE	PAGE
2.0	Example of the difficulties on maintenance	8
	(Source: ARKAL FILTRATION SYSTEM, (2002))	
2.1	Layers of filtration	8
	(Source: ARKAL FILTRATION SYSTEM, (2002))	
2.2	Centrifugal separator solids removal efficiency	9
	(Source: ARKAL FILTRATION SYSTEM, (2002))	
2.3	Example of backwash mode	12
	(Source: <u>www.pepfilters.com</u> , (2002))	
2.4	Crystal 3 mode modular	15
	(Source: <u>www.pepfilters.com</u> , (2002))	
2.5	Crystal 2 mode modular	15
	(Source: <u>www.pepfilters.com</u> , (2002))	
2.6	Owner's Perspective – Maintenance (Disk Changeout)	17
	(Source: <u>www.pepfilters.com</u> , (2002))	
2.7	Engineer's Perspective – Vertical or Horizontal Orientation	19
	(Source: <u>www.pepfilters.com</u> , (2002))	

2.8	Looking down a Toronto city water main,	20
	removed in July, (2007)	
2.9	Pipe corrosion, (2007)	21
2.10	Overall view of M400 bypass feature	24
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.11	Side view of M400 bypass feature	24
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.12	The M400 bypass feature On-Line	25
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.13	Pressure losses for various flow capacities	26
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.14	Example of use in industry	27
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.15	Drawing of the machine	28
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.16	Filter set-up	29
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.17	Example of placed to use	29
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.18	Wiring diagram	30
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.19	CAD diagram	30

xii

2.20	Watsonville, Calif. Wastewater Treatment	33
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
2.21	Build in water flow used backwash system	34
	(Source: AMIAD FILTRATION SYSTEM, (2002))	
3.0	Methodology chart	35
3.1	Example of automatic self cleaning filter	36
3.2	Build in part in the automatic self cleaning filter	37
3.3	New Design Products	42
3.4	Limit valve which control pressure	43
3.5	Sensor diagram to detect pressure	44
3.6	Flow when pump is on	45
4.1	Diagram of Pump Made By Solidworks Software	49
4.2	Dimension of the Pump	49
4.3	BMP085 Pressure Sensor	50
4.4	Measurement of Pressure Flow Chart	50
4.5	Sensor typical application circuit	52
4.6	Sensor Outline Dimensions	52
4.7	Inlet Piping System	53
4.8	Diagram of filter media	54
4.9	Diagram Of Filter Media Made By Solidworks Software	54
4.10	Dimensions Of Filter Media	55
4.11	Diagram Of All Diagram Assembly By Solidworks Software	56

(Source: AMIAD FILTRATION SYSTEM, (2002))

4.12	Picture of Aquarium Pump	60
4.13	Picture of Manometer Tube	61
4.14	Picture of Polystyrene Box	61
4.15	Picture of Green Bean	61
4.16	Picture of Rubber Pipe	62
4.17	Picture of Filter Media	62
4.18	Picture of Silicon Gum	62
4.19	Picture of Adjustable Knife	63
4.20	Picture of below pieces of the filter frame	63
4.21	Picture of Filter Frame	64

C Universiti Teknikal Malaysia Melaka

LIST OF TERMS

TERMS	MEANING
μ	Micron
MTBB	Mean time between backwashes
DPG	Drain per gallon
Settleable Solids	Applied to solids in suspension that will settle, under quiescent conditions
BOD	Biochemical oxygen demand
COD	Chemical oxygen demand
TOC	Total Organic Carbon
lbs	Unit of weight
in	Unit of length
mg/L	Unit of weight per length
gal	Unit of volume
gpm	Unit of mass flow rate
sec	Unit of time
m³/h, USgpm	Unit of volume flow rate
bar, psi	Unit of pressure

CONTENT

CHAPTER	TITLE	PAGE
	DEDICATION	iv
	ABSTRACT	vi
	LIST OF TABLE	vii
	LIST OF FIGURES	Х
	LIST OF TERMS	xiv

CHAPTER 1	INTRODUCTION	
	1.0 INTRODUCTION	1
	1.1 PROBLEM STATEMENT	2
	1.2 SCOPE AND OBJECTIVE	3
	1.3 PSM FLOW CHART	4

CHAPTER 2 LITERATURE REVIEW

2.0 AUTOMATIC SELF-CLEANING FILTER

2.0.1 Definitions

5

5

2.0.2 Benefits	
----------------	--

2.1 BACKWASH

2.1.1 How important is the back wash?	6
2.1.2 Why?	6
2.1.3 As a result	7

2.2 SOLIDS

2.2.1 General Considerations		
2.2.1.1 Dissolved and Suspended Solids	9	
2.2.1.2 Settleable Solids	10	
2.2.2 Environmental Significance of Solids	10	
Determination		
2.2.3 Determination of Solids in Water Supplies	10	
2.2.3.1 Total solids	10	
2.3 THE IMPORTANCE OF FLUIDIZATION		
2.4 COMMON FILTRATION TERMS		
2.5 CONTRACTOR'S PERSPECTIVE		
2.5.1 Contractor's Perspective – Site Accessibility	14	

(Size/Weight)

2.5.2 Contractor's Perspective – Site Accessibility	15	
(Modularity)		
2.5.3 Contractor's Perspective – Installation	16	
2.6 OWNER'S PERSPECTIVE		
2.6.1 Owner's Perspective – Water Consumption	16	
During Backwash		
2.6.2 Owner's Perspective – Maintenance	17	
(Disk Changeout)		
2.6.3 Owner's Perspective – Maintenance	17	
(Sand Changeout)		
2.6.4 Owner's Perspective – Freight	17	
2.7 FROM THE ENGINEER'S PERSPECTIVE		
2.7.1 Engineer's Perspective – Design Flexibility (Size/Weight)	18	
2.7.2 Engineer's Perspective – Vertical or	19	
Horizontal Orientation (up to 400 GPM)		
2.7.3 Engineer's Perspective – Design Flexibility	19	
(Drain Requirements)		
2.8 EXAMPLE		
2.8.1 In Toronto for example	20	
2.8.2 The effect	21	

2.8.3 The solution	22
--------------------	----

2.9 COMPONENTS

2.9.1 Problem Formulation	23
2.9.2 How do the M300 filters work?	23
2.9.3 How the M400 bypass feature works	24
2.9.4 Specifications for all models:	25
2.9.5 Pressure losses for various flow capacities	26
2.9.6 Typical Application	27
2.9.7 Product Schematic Diagram	28
2.9.8 Comparison between standard system	
(EBS) and mega system (MegaEBS).	
2.9.8.1 Technical Specifications	31
2.9.8.2 Flushing Data	31
2.9.8.3 Control & electricity	32
2.9.8.4 Filter area	32
2.9.8.5 Weave wire screen area	32
2.9.9 Principle of conservation	33

CHAPTER 3	METHODOLOGY	35
	3.0 FIND AND COLLECTING INFORMATION	36
	3.1 DESIGN PROCESS	36

3.1.1 Design Concept

	3.1.1.1 Current Method	36
	3.1.1.1 Filtering process	38
	3.2.1.1.2 Control system	39
	3.2.1.1.3 The MegaEBS	39
	3.2.1.1.4 Characteristics of	40
	EBS-10,000,	
	EBS-15,000,	
	MegaEBS	
	3.2.1.2 New Method	42
	3.2.1.2.1 Experimental	43
	Procedures	
	3.2 SELECTING MATERIAL	46
	3.3 EXPERIMENTAL RIG	46
	3.4 DESIGN, FABRICATION AND TESTING	47
	3.5 PROBLEM ANALYSIS AND SOLUTION	47
CHAPTER 4	ANALYSIS DESIGN AND DISCUSSION	
	4.1 PUMP	
	4.1.1 Quiet and reliable magnet	48
	drive external pump	
	4.1.2 Coralife Turbo-Sea External	48
	Pumps Features	
	4.1.3 Turbo-Sea 790	48
	4.1.4 Pump diagram and dimension	49

4.2 PRESSURE SENSOR

	4.2.1 Measurement of pressure	50
	4.2.2 Electrical characteristics	51
	4.2.3 Sensor typical application circuit	52
	4.2.4 Sensor Outline Dimensions	52
4.3 PIP	ING	53
4.4 FIL	TER	54
4.5 WA	TER	
	4.5.1 Characteristics of Water	55
	4.5.1.1 Turbidity	
	4.5.1.2 Taste	
	4.5.1.3 Color	
	4.5.1.4 Odor	
	4.5.2 Important Properties of Water	56
	4.5.2.1 Conductivity	
	4.5.2.2 Hardness	
	4.5.1.3 Alkalinity	
	4.5.1.4 Ph	
4.6 AL	L DIAGRAM ASSEMBLY, CALCULATION	
AN	D DISCUSSION	
	4.6.1 Calculation	57
	4.6.1.1 Pump	
	4.6.1.2 Cylinder	

4.6.2 Operating parameters	58
4.6.3 Results and Discussion	58
4.7 ANOTHER DESIGN	
4.7.1 Pump	60
4.7.2 Manometer Tube	60
4.7.3 Tank for Output Storage and Input Storage	61
4.7.4 Water Quality	61
4.7.5 Piping System	62
4.7.6 Filter Media	62
4.7.7 Additional Apparatus for Installation Part	62
4.7.8 Installation Part	63

CHAPTER 5	CONCLUSION AND RECOMMENDATION	66
REFERENCE		68
BIBLIOGRAPHY		69
APPENDICE		70

CHAPTER 1

INTRODUCTION

1.0 INTRODUCTION

Fully automatic self-cleaning screen filters provide an economical means of removing suspended solids down to 40 microns from liquid streams. Filters equipped with the efficient suction scanning principle allow the filter cake to be removed completely from the screen surface within seconds without physically touching the cake or screen.

The design of Automatic Self Cleaning Filters is mainly to remove grit, grime, algae, dirt, and rust particles from liquid stream. A range of applications can be handled in the Pharmaceutical, Biotech, Chemical, F&B, Wines and Breweries, Dyes and Dye Intermediates, etc.

Automatic Self Cleaning Filters find use in removing sand, silt and algae from raw water rivers and canals. These give effective pretreatment before membrane filtration systems for process water supply, Pretreatment for reverse osmosis and desalination systems, Industrial wastewater treatment plants use these filters to prepare secondary effluent for reuse in cooling, irrigation.

In steel mills filtering grimy, oily cooling and descaling water are common as are those in the automotive and plastics industries. Cement plants and mining operations use this type of filter for removing solids from tailings. They are found on deep-sea oil platforms for filtering flood water and on ships before portable desalination systems.

1.1 PROBLEM STATEMENT

At this moment, there is a lot of new technology in the market using filter membrane which requires high pressure back flow water to clean up the filter screen. For sure, it causes the operating cost very expensive.

Every product has advantage and disadvantage. The specifications to consider is price, benefits, quality of water produced, quantity of water produced, and size of the filter which consider between 3-10 micron for high quality water which automatically fine for human to drink that water after passed the filtering machine.

Another problem to analysis is how to maintenance because the standard screen filter at house must be changed about once in 6 month but when using this automatic self-cleaning filter, no maintenance required and the quality of water remain constant.

1.2 SCOPE AND OBJECTIVE

Objective:

• To design an automatic self-cleaning filter machine which can be used to filter water or clean up compounded river water or recreational lake.

Scope:

- Analysis the available which is latest product using method of self-cleaning filtering machine for waste water treatment.
- Then, show the product effectiveness and compare to make decision on upgrading for new product to design.
- Design a new product of self-cleaning filtering machine using best methods and materials.