

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT A NEW GEAR OIL SENSOR USING FIBER OPTIC SENSOR FOR ENGINE FUNCTIONAL PURPOSE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

by

ANISYAHIDA BINTI ABDUL HALIM

B071310745

940929-14-6384

FACULTY OF ENGINEERING TECHNOLOGY

2016

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development A New Gear Oil Sensor Using Fiber Optic Sensor For Engine Functional Purpose

SESI PENGAJIAN: 2016/17 Semester 1

Saya ANISYAHIDA BINTI ABDUL HALIM

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Alamat Tetap:

Cop Rasmi:

297-1 Jalan Treh 8,

Taman Sri Treh, 84000 Muar,

Johor Darul Takzim.

Tarikh: _____

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI TEKNOLOGI KEJURUTERAAN

Tel: +606 234 6623 | Faks: +606 23406526

DECLARATION

I hereby, declared this report entitled "Development a New Gear Oil Sensor Detection using Fiber Optic Sensor for Engine Functional Purpose" is the results of my own research except as cited in references.

Signature	:
Author's Name	: ANISYAHIDA BINTI ABDUL HALIM
Date	:

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:

.....

Md Ashadi bin Md Johari

(Research Supervisor)

ABSTRAK

Selama 50 tahun yang lepas, penderia serat optik telah menjadi satu trend paling berjaya dan paling berkuasa untuk gentian optic dan juga teknologi untuk penderia. Sekarang ini, gentian optik membesar dengan cepat dan bertukar mikro atau teknologi nano untuk membuat sensor optik. Dengan prestasi lebih tinggi dan keserbabolehan, penggunaan ruang yang kecil juga ialah salah satu trend-trend semasa untuk penderia gentian optik. Projek ini untuk kepekaan penderia penganalisis gentian optik dalam prestasi minyak gear. Analisis ini mungkin berguna untuk kejuruteraan mekanikal untuk tujuan fungsi enjin.

ABSTRACT

In pass 50 years ago, fiber optic sensor had become one of the most successful and most powerful application for fiber optic and also technology for sensor. Nowadays, fiber optic was growing up rapidly and turns in micro or nano technology for making optic sensor. With higher performance and versatility, space utilization that is small also is one of the current trends for fiber optic sensor. This project is for analyser sensor sensitivity fiber optic in gear oil performance. This analysis may be useful for mechanical engineering for engine functional purpose.

DEDICATION

This humble effort specially dedicated to my beloved parents, family, lecturers and friends, whose love can never be forgotten for their support, guidance and encouragement upon completing this project and report.

Special dedicated to my family

ABDUL HALIM BIN JUMRI

ASLINAH BINTI AHMAD

ACKNOWLEDGEMENT

In the name of Allah S.W.T, The Most Merciful and The Most Passionate, I am thankful to Allah for gives strength to me to complete this project report.

First and foremost, I would like to thanks to Mr. Md Ashadi bin Md Johari as my supervisor, lecturer of Faculty Technology Engineering for giving me supervision and full commitment during the process of making this final year report. Not to be forgotten, I would like to thanks my family and friends for helping me by giving their ideas and also supporting me through ups and down in completing this report.

Lastly, I wish to say deepest thanksgiving to party directly involve and indirect to complete my project. All good offices you very I valued.

TABLES OF CONTENT

ABSTRAK	i
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
TABLES OF CONTENT	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE	xii

CHAPTER 1: INTRODUCTION11.0Project Background11.1Objectives21.2Problem Statement21.3Scope of Project3

CHAPTER 2: LITERATURE REVIEW 4 2.0 Introduction 4 Fiber Optics 2.1 4 2.1.1 Type of Fiber Optic 6 2.1.2 7 The Operation of Fiber Optic 9 2.1.4 Advantages of Fiber Optic 2.1.4 Disadvantages of Fiber Optic 10 2.1.5 10 Fiber Optic Link Component

2.1.5	5.1 Optical Transmitter	10
2.1.5	5.2 Optical Fiber / Cable	11
2.1.5	5.3 Connectors	12
2.1.5	5.4 Optical Receiver	13
2.2 Fi	ber Optic Sensor	13
2.2.1	Advantages of Fiber Optic Sensor	14
2.3 Ge	ear Oil	15
2.4 No	ew Technology of Fiber Optic	15
2.4.1	Future Trends in Fiber Optic Communication	15
2.4.2	Fiber Optic Radial Displacement Sensor-Based a Bear	m-Through
Techni	que	17

CHAPTER 3: METHODOLOGY		23
3.0 In	ntroduction	23
3.1	Overview of Proposal	23
3.2	Research of Title	24
3.3	Literature Review	25
3.4	Research the Hardware and Equipment Needed	25
3.4.	1 OSA (Optical Spectrum Analyzer)	26
3.4.	2 ASE (Amplitude Spontaneous Emission)	26
3.4.	3 Pigtail Optical Fiber and Fiber Optic Cable	27
3.4.	4 Gear Oil	28
3.4.	5 Splicer	29
3.5	Overview of Fiber Optic Sensor	30
3.6	Testing and Experiment in Laboratory	31

CHAPTER 4: RESULT & DISCUSSION	
4.0 Introduction	36
4.1 Block Diagram of Project	36
4.2 Experiment Result	37
4.2.1 The Fiber Optics Sensor for New Gear Oil Detection	38
4.2.1 The Fiber Optics Sensor for Exerted Gear Oil Detection	44
CHAPTER 5: CONCLUSION & FUTURE WORK	51

5.0	Introduction	51
5.1	Conclusion for Chapter 1	51
5.2	Conclusion for Chapter 2	52
5.3	Conclusion for Chapter 3	52
5.4	Conclusion for Chapter 4	53
5.5	Future Work	53

APPENDIX

REFERENCES

57

54

51

LIST OF TABLES

CHAPTER 2

Table 2.1: Performance Fiber Optic Radial Displacement Sensor	21
Table 2.2: Comparison Performance Fiber Optic Displacement Sensor	22

CHAPTER 4

Table 4.1: Analysis for 850nm New Gear Oil	38
Table 4.2: Analysis for 1300nm New Gear Oil	40
Table 4.3: Analysis for 1310nm New Gear Oil	41
Table 4.4: Analysis for 1550nm New Gear Oil	42
Table 4.5: The Sensitivity of Fiber Optics Sensor for New Gear Oil Detection	43
Table 4.6: Analysis for 850nm Exerted Gear Oil	44
Table 4.7: Analysis for 1300nm Exerted Gear Oil	45
Table 4.8: Analysis for 1310nm Exerted Gear Oil	47
Table 4.9: Analysis for 1550nm Exerted Gear Oil	48
Table 4.10: The Sensitivity of Fiber Optics Sensor for Exerted Gear Oil Detection	49

LIST OF FIGURES

CHAPTER 2

Figure 2.1: Fiber Optic Structure	5
Figure 2.2: Total Internal Reflection	5
Figure 2.3: Multimode Fiber	6
Figure 2.4: Graded Index in Multimode Fiber	7
Figure 2.5: Single Mode Fiber	7
Figure 2.6: Basic Fiber Optic System	8
Figure 2.7: Optical Fibers Mode	9
Figure 2.8: Fiber Optic Link	10
Figure 2.9: Graph of Attenuation vs. Wavelength of Optical Fiber	11
Figure 2.10: Modal Dispersion in Multimode Fibers	12
Figure 2.11: Beam profile transmitted fiber TF: (a) near and (b) far field	18
Figure 2.12: Stability measurement of the sensor output for every 5 seconds	19
Figure 2.13: Longitudinal displacement sensor output for receiving fiber	19
Figure 2.14: Longitudinal displacement calibration for near and Far slope for (a	a) and
(b) RF1, (c) and (d) RF2, and (e) and (f) RF3	20

CHAPTER 3

Figure 3.1: Flowchart of Proposal	24
Figure 3.2: Block Diagram of Fiber Optic	25
Figure 3.3: Optical Spectrum Analyser (OSA)	26
Figure 3.4: Amplified Spontaneous Emission (ASE)	27
Figure 3.5: Single Mode Pigtail	28
Figure 3.6: Gear Oil	29
Figure 3.7: Fiber Optic Splicer	29
Figure 3.8: Flow Chart of Fiber Optic Sensor	30
Figure 3.9: New Gear Oil and Exerted Gear Oil	31
Figure 3.10: The single mode and pigtail fiber optic cable was cut by cutter	r to
remove the cladding of the core	31
Figure 3.11: The core for both fiber opticals cable was cut by fiber cleaver to av	/oid
the core of optical cables inverse when grafted OSE splicer	32
Figure 3.12: Both pigtail and fiber optic cables were clean up by using the alcoho	ol to
avoid the dust in the core	32
Figure 3.13: The two core alignment with Movable V-groove and Fusion Splice	33
Figure 3.14: Self-alignment the core effect by Surface Melting Tension	33
Figure 3.15: Heating Ribbon Fiber the two of core fiber cables with Elec	tric
Discharge	34
Figure 3.16: The two cores apply on the fusion splicer with the loss measurement	34
Figure 3.17: The core of single mode fiber optic cable combines with pigtails ca	able
after process fusion splicer	35

X C Universiti Teknikal Malaysia Melaka

CHAPTER 4

Figure 4.1: Block Diagram of the Fiber Optic Sensor for Gear Oil Detection	36
Figure 4.2: Fiber-Optic Sensor Responses to Different Time Interval Used 85	0nm as
Light Source for New Gear Oil	38
Figure 4.3: Fiber-Optic Sensor Responses to Different Time Interval Used 1	300nm
as Light Source for New Gear Oil	39
Figure 4.4: Fiber-Optic Sensor Responses to Different Time Interval Used 1	310nm
as Light Source for New Gear Oil	40
Figure 4.5: Fiber-Optic Sensor Responses to Different Time Interval Used 1	550nm
as Light Source for New Gear Oil	41
Figure 4.6: Fiber-Optic Sensor Responses to Different Time Interval Used 85	0nm as
Light Source for Exerted Gear Oil	44
Figure 4.7: Fiber-Optic Sensor Responses to Different Time Interval Used 1	300nm
as Light Source for Exerted Gear Oil	45
Figure 4.8: Fiber-Optic Sensor Responses to Different Time Interval Used 1	310nm
as Light Source for Exerted Gear Oil	46
Figure 4.9: Fiber-Optic Sensor Responses to Different Time Interval Used 1	550nm
as Light Source for Exerted Gear Oil	47

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

dB	-	decibel
FOS	-	fiber optic sensor
EMI	-	electromagnetic interference
RFI	-	radio frequency interference
LED	-	Light Emitting Diode
Laser	-	Light Amplification by Stimulated Emission of Radiation
VCSEL	-	Vertical Cavity Surface Emitting Laser
PIN	-	Positive Intrinsic Negative
APD	-	avalanche photo Diode
EP	-	extreme pressure
FODS	-	fiber optic displacement sensors
TF	-	transmitting fiber
RF	-	receiving fiber
OSA	-	Optical Spectrum Analyzer
ASE	-	Amplified Spontaneous Emission
ISS	-	Interpolation Source Subtractions
nm	-	nanometer

- km kilometre
- NA numerical aperture

CHAPTER 1 INTRODUCTION

1.0 Project Background

Nowadays, fiber optic technology is use light to transmit data from one place to another. Since 1970s, the use of fiber optics has increased suddenly [Transition network, The Conversion Technology Experts]. Fiber optic has diameter that thicker than human hair is made by silica glass or plastic. Usually, fiber optic are used as a medium to transmit light between the two places and get wide use in fiber-optic communication, that it permitted to transmit over the long distance. Fiber optic signal is lesser amounts of loss rather than metal wires. Furthermore, problem from metal wires suffer excessively which is electromagnetic interference will be immune to fiber optic [John, 2009].

In addition, fiber optic sensor technology provides many different type of sensing like strain, temperature, pressure in harsh environment and remote locations. These sorts of sensors modulates a few elements of the light wave in an optical fiber such a power and stage or use optical fiber as a medium for transmitting the data information [Gholamzadeh and Nabovati, 2016].

Gear oil is grease made particularly for transmissions, exchange cases, and differentials in autos, trucks, and other hardware. It is of a higher consistency to better ensure the apparatuses and for the most part is connected with a solid sulphur smell. This project is about improvement another apparatus oil sensor by utilizing fiber optic sensor for engine useful reason. This new apparatus oil sensor is to decide an actuation level of different sort's motor oil. This project would help mechanical industry as extra data for motor framework

1.1 Objectives

The main objectives of this project:

- a) To understand fiber optic sensor (FOS) operation.
- b) To develop fiber optic sensor (FOS) for Gear Oil detection in different concentration.
- c) To analyse performance of fiber optic sensor (FOS) for concentration detection activity.

1.2 Problem Statement

In past few centuries, the mechanical industry was going up rapidly. There have much technology that has been produce to make human life better and easier. Gear oil is a lubricant made specifically for transmissions, transfer cases, and differentials in automobiles, trucks, and other machinery. Consumer does not know when the gear oil becomes concentrated and not able to function properly. At that time, the gear oil should be exchange due to the place of gear oil in the engine. Usually, they only depend on the expired dated that already fixed. Fiber optic sensor was developing to measure level of gear oil (condition of gear oil). The sensor will show result whether the gear oil still good to be applied. Analysis will be conduct to determine the performance of fiber optic sensor (suitable or not in gear oil application).

1.3 Scope of Project

The scope of this project is to study and develop fiber optic sensor for gear oil concentration detection from low concentration to high concentration. This project is to ensure that the project is in the right direction to achieve its objectives. The scopes of the project are to study and develop the fiber optic sensor for gear oil. This New Gear Sensor Oil Sensor would help mechanical industry as additional information for engine system.

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction

This chapter will give the review from previous research that have been done and related to this final year project. There are previous researches understanding on the fiber optic sensor, technique used in fiber optic sensor, role of gear oil and new technology that related to this project

2.1 Fiber Optics

Optical fiber is made out of a few components. The development of a fiber optic link comprises of a core, cladding, coating buffer, quality part and external coat. The optic centre is the light-conveying component at the inside. The centre is normally comprised of a mix of silica and germania. The cladding encompassing the centre is made of pure silica. The cladding has a marginally bring down record of refraction than the centre. The lower refractive list causes the light in the centre to reflect off the cladding and stay inside the centre [Transition network, The Conversion Technology Experts].

Figure 2.1: Fiber Optic Structure

The most important characteristic of a fiber is the attenuation degree that affected by purity and chemical composite of the glass core that use in fiber optic cable either single mode or multimode. For glass that high fluoride content, it important to improve fiber optic performance. That is because it transparent to almost the entire range of visible light frequency. This makes it valuable to multimode fiber that can transmit hundreds of discrete light wave signals [Richard, 1994].

Figure 2.2: Total Internal Reflection

2.1.1 Type of Fiber Optic

Single mode fiber has a little center, making light go in a straight line and ordinarily has a contoured size of 8 or 10 microns. It has a boundless data transmission that can go unreported for more than 80 km, depending on the kind of transmitting equipment. Single mode fiber has a huge data limit, more than Multimode fiber [Transition network, The Conversion Technology Experts].

Multimode fiber support numerous ways of light and has a much bigger centre and has a centre size of 50 or 62.5 microns. The light goes down a much bigger way in multimode fiber, permitting the light to go down a few ways or modes [Transition network, The Conversion Technology Experts].

Multimode fiber can be divided in two ways which are step-index and graded index. Step-index fiber has a sudden change or venture between the index of refraction of the centre and the record of refraction of the cladding. Multimode stepindex strands have lower data transmission than other fiber design [Transition network, The Conversion Technology Experts].

Graded index fiber was intended to cut down the modal dispersion occur in step index fiber. Modal dispersion inherent happens when light pass through the centre along high and low request modes. Graded index fiber is made up of numerous layers with the most elevated list of refraction at the centre [Transition network, The Conversion Technology Experts].

Figure 2.3: Multimode Fiber