

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF DRONE CONTROL COMMUNICATION SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

by

NURUL ASHIKIN BINTI YUSOFF B071310208 910407115022

FACULTY OF ENGINEERING TECHNOLOGY

2016

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and Analysis of Drone Control Communication System					
SESI PENGAJIAN: 2016/1	SESI PENGAJIAN: 2016/17 Semester 1				
Saya NURUL ASHIKIN	BINTI YUSOFF				
 mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut: 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. 4. **Sila tandakan (
SULIT TERHAD TIDAK TERHA					
	Disahkan oleh:				
Alamat Tetap: 840-A JALAN TERATAI 23000 DUNGUN TERENG	Cop Rasmi:				
Tarikh:	Tarikh:				
berkenaan dengan menyatakan SULIT atau TERHAD.	au TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai versiti Teknikal Malaysia Melaka				

DECLARATION

I hereby, declared this report entitled "PSM Title" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

.....

(Project Supervisor)

ABSTRAK

Projek ini adalah berkenaan dengan analisis kawalan komunikasi dron. Dron juga dikenali sebagai quadcopter atau UAV. Ia adalah sebualah kenderaan beroda kerana ia terbang dengan kipas/bilah pada setiap sisi. Struktur dan reka bentuk tidak terhad kepada satu reka bentuk sahaja tetapi terdapat dalam pelbagai jenis reka bentuk yang boleh di dapati. Rekaan dron berdasarkan penggunaan dron yang meluas bergantung kepada jenis penggunaannya. Setiap komponen yang digunakan untuk menbina dron juga bergantung kepada penggunaannya. Dron boleh dikawal secara manual dengan menggunakan remote control atau secara automatik dengan menggunakan perisian yang ditetapkan pada dron. Projek ini akan menganalisa sistem kawalan berdasarkan beberapa parameter. Dengan menganalisis parameter yang terlibat, sistem kawalan akan lebih mudah difahami.

ABSTRACT

This project is about drone control communication system analysis. Drone also known as quadcopter or UAV. It is a rotorcraft because it fly based from the propeller from each side. The structures and design not fix for one design but there were so many types of design can be found. The widespread use of drone make the design is refer to the work need to be done by the drone. Each components also depends to the application of the drone. Drone can be controlled manually by remote control or automatically by software install to the drone. This project will analyse the control system based on some parameters. By analysing all the parameters, the control system can be understand clearly

DEDICATION

My dearest parents, Yusoff bin Yaacob and Rokiah binti Abdullah, My siblings and friends, who always pray for my success. To my supervisor, Mr. Chairulsyah bin Abdul Wasli, Thank you for your kindness and always guiding me.

ACKNOWLEDGEMENT

In the name of Allah S.W.T The Most Merciful, with deepest gratitude of the Al-Mighty that give me ability to complete this final year project report. I would like to express my special thanks to my supervisor, Mr. Chairulsyah bin Abdul Wasli for all the guidance and assistance throughout my final year project. My appreciation also goes to my family and friends for always been there for me. Thank you for all my beloved person for always pray for me and for all the advice.

TABLE OF CONTENT

Declaration	iii
Approval	iv
Abstrak	V
Abstract	iv
Dedications	vii
Acknowledgments	viii
Table of contents	ix
List of table	xii
List of figures	xiii
List Abbreviations, Symbols and Nomenclatures	XV

CHAPTER 1: INRODUCTION

1.0	Project Background	1
1.1	Problem Statement	1
1.2	Objective	2
1.3	Scope	2
1.4	Expected Result	2

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	3
2.1	History of Drone	3
2.2	Type of Drone	4

2.3	Main part used in Drone		7
	2.3.1	Transmitter	7
	2.3.2	Receiver	8
	2.3.3	BLDC Motor	9
	2.3.4	Antenna	10
	2.3.5	Flight Controller	11
2.4	Techno	ology Used in Drone	11
	2.4.1	IMU	12
	2.4.2	Accelerometers	12
	2.4.3	Gyroscopes	13
	2.4.4	Magnetometers	14
	2.4.5	GPS	14
2.5	Drone	Control	15
2.6	Applie	cations	15

CHAPTER 3: METHODOLOGY

3.0	Introduction		17
3.1	.1 Project Implementation		17
	3.1.1	PSM 1 Flowchart	18
	3.1.2	Drone Communication Flowchart	19
3.2	Action	Plan	20
3.3	Animat	ion	21
	3.3.1	Procedure	21
3.4	Design		27
	3.4.1	Calculation	27

	3.4.2	Simulation	28
		3.4.2.1 Procedure	28
СНА	PTER 4	: RESULT AND DISCUSSION	
4.0	Introdu	ction	34
4.1	Calculation Result and Analysis 34		34
	4.1.1	Flight time	34
	4.1.2	Distance	36
	4.1.3	Speed controls	37
4.2	Simula	tion Result and Analysis	38
4.5	Result	Analysis and Discussion	39

CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1	Introduction	40
5.2	Conclusion	40
5.3	Recommendation	41

REFERENCES

APPENDICES

APPENDIX A : SYMA X8HW Specifications	43
APPENDIX B : BOJIANG S1 Hover Drone	44
Specifications	
APPENDIX C : GUI (Matlab) Coding	45
APPENDIX D : Gantt Chart	54

42

LIST OF TABLES

2.1	Drone comparisons	6
3.1	PSM1 Action Plan	18
3.2	PSM2 Action Plan	18
4.1	Speed control	37
4.2	Comparison for different values	39

LIST OF FIGURES

2.1	Tricopter and Bicopter	4
2.2	Hexacopter and Octocopter	5
2.3	Quadcopter	5
2.4	Quadcopter Transmitter Circuit	8
2.5	PWM Generator Circuit	8
2.6	Quadcopter Receiver Circuit	9
2.7	BLDC	9
2.8	Omni directional antenna (duck/dipole)	10
2.9	Directional antenna for receiver	10
2.10	Flight controllers	11
2.11	Nine DOF IMU	12
2.12	Accelerometers Axis	13
2.13	Gyroscope Axis	13
2.14	Magnetometer	14
2.15	GPS module	15
3.1	Project Methodology Flowchart	18
3.2	Drone Communication Flowchart	19
3.3	Adobe Flash Professional CS5.5 software	21
3.4	Choose flash file	21
3.5	Importing image	22
3.6	Insert the image to workspace	22
3.7	Select the duration	23
3.8	Create classic tween	23
3.9	The movement of the drone	24
3.10	Test the animation	24
3.11	Drawing a circle	25
3.12	Drawing a wheel	25

3.13	Rotate the circle	26
3.14	Direction of the rotation	26
3.15	Animation	27
3.16	MATLAB windows	29
3.17	Command window	29
3.18	Create new GUI	30
3.19	New GUI workspace	30
3.20	Selecting the box needed	31
3.21	Rename each boxes	31
3.22	Coding for the push button	32
3.23	GUI display	32
3.24	Final GUI display	33
4.1	Propeller rotation	37

\bigcirc	Universiti	Teknikal	Malavsia	Melaka
S	Universiti	leknikai	walaysia	weiaka

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

BLDC	-	Brushless Direct Current
DOF	-	Degree Of Freedom
DRONE	-	Dynamic Remotely Operated Navigation Equipment
GPS	-	Global Positioning System
IMU	-	Inertia Measurement Unit
IC	-	Integrated Circuit
PWM	-	Pulse Width Modulation
R	-	Radio Control
Rx	-	Receiver
RPM	-	Rotation Per Minute
Tx	-	Transmitter

CHAPTER 1 INTRODUCTION

1.0 Background

Over the last few years, there were growth for the remote control airborne vehicles manufacturing and sales. These unmanned aerial vehicles also known as many names such as drone, quad copter and others. Drone is an abbreviation from dynamic remotely operated equipment. This device is the mixture of electronics, mechanicals and the main part is the aviation principle. The most basic way on how it works is two propellers will spin in a clockwise direction and other two is rotating in an anti-clockwise which allows the drone fly in designated direction.

1.1 Problem Statement

Currently, the knowledge about drone control still rare. The information about it is out there but it seems does not explain more about the communication control between the drone. In addition, technology of drone remote control seems difficult. This involve with the device that control the either altitude or the speed of the drone. Besides, the application of drone is limited and prohibited due to the security and safety issue that can involve a lot of laws that need to be concerned.

1.2 Objective

The main objective of this research are:

- 1. To study the concept of drone communication.
- 2. To design an effective and friendly user drone control system.
- 3. To build an animation and simulation of drone control system that can be used for public.

1.3 Scope of Works

The scope works of this project, it will focus on the study of literature about drone control system. This works can be done by referring to any books, article and journal related to the drone communication. In addition this project also involve in finding all parameter and also the related equation. Besides, the project also will focus on designing a suitable animation to make it easier to understand how the drone communication works. The software used for the animation is Adobe Flash Cs5.5. This project also study on how to build GUI, MATLAB and create the simulation part used to describe how the measurement or calculation for the drone communication system. Other than that, this project also involves with finding the experiment result from references and all the data will be analyse. Last part of this project is, writing the thesis report.

1.4 Expected Results

- 1. An attractive animation that show drone control system.
- 2. An interactive GUI of drone system.
- 3. Analysis of all data finding from this project

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction

This chapter provides and gathered the literature review and also summarized information of the related studies about drone. This also include the process, tools, application and also any relevant information about the drone. The main foundation for this project are from the information gathered from books, journals, and also internet.

2.1 History of Drone

Basically most people aware that before the commercialization of drone to public, a drone used in military. However, not many know that the founder of the main idea of this kind of remote controlled vehicles was created by the great inventor, Nicola Tesla and in fact, he was the one the first person patent for remote controlled vehicle. He describe his creation as the teleautomation and has become the roots of the aviation principle until this days [Nesta, 2008].

Drone might sounds new for this generation however the reality are, unmanned aerial vehicles have been used for a very long time ago. In 1860s a balloons loaded with explosives was launched by Union and Confederate during the Civil War and it was upgrade to Firebee drones in 1960s which was launched during Vietnam War. Since then, it was refer as the new paradigm of warfare because the increasing use of the drone in military. After that, there was more evolution towards the drones either for the application, size, speed and many more [New York Time, 1998]. As the technology become more progressive, new ideas comes and the uses of drone developing briskly. The rapidly popular unmanned aerial vehicles these days are quadcopters. The size of the quadcopter which is small have becomes one of the attraction to the public. It can be used in many ways which proven by the technology from used for the quadcopter.

2.2 Types of Drone

There are lots types of drone that have been introduced. Since the advance technology evolve rapidly, it is not surprisingly that there are always new models of drones produced. Drones have many types and each names refer to its configurations. The first type of drone is bicopter which have two rotors and tricopter have three rotors which controlled by servo. The shape of a bicopter and tricopter is shown in the Figure 2.1.

Figure 2.1 Tricopter and Bicopter

Another types of drones are hexacopters and octocopters. Since it have more rotors, both drones provide stability and yaw configuration. Usually the propeller set in 'X' or '+' configuration. Hexacoptres is a drone that have six rotors make it more stable when it lands. It still can fly even one of the rotors having failure. Octocopters have eight rotors which have more stability and faster than hexacopter. However, the size is bigger than others. Mostly the frame of hexacopter and octocopter is shown in the Figure 2.2.

Figure 2.2 Hexacopter and Octocopter

The most well-known drone these days are quadcopter. It is propelled by four rotors which two of them propelled in clockwise and another two is anti-clockwise. Since it is smaller and stable than other type of drone, it become one of the popular drone because it can easy to hover and can fly in any direction. This type of drone are symmetrical than other. It use the simplest operation principle for the control which are pitch, roll, motion and yaw. The most basic quadcopter shown in the Figure 2.3

Figure 2.3 Quadcopter

The differences of these types of drones is shown in the Table 2.1

Types	Descriptions
Bicopter	Has two motors
	Cheaper
	 Least stable
	 Less lifting power
• Tricopter	Has 3 motors
	Cheap
	 Less stable
	 Low lifting power
Quadcopter	Has 4 motors
	 Reasonable price
	Stable
	 More lifting power
Hexacopter	Has 6 motors
	 Expensive
	 Stable
	 More lifting power
Octocopter	 Has 8 motors
	 Expensive
	Stable
	 More lifting power

Table 2.1 Drone Comparisons

2.3 Main part used in Drone

The main part of a drone consist of the components which involve with how the drone communicate with the controller

2.3.1 Transmitter

The communication transmitter is responsible for generating a carrier and then for modulating, filtering and amplifying the modulated signal for delivery to an antenna [Jeffrey S.Beasly, 2014]. The modulating signal may be analog and or digital but regardless of the modulation type or form of intelligence used, the mixing that occurs in the transmitter modulator produces an output composed of frequencies in addition to those applied. The type of control communication used by a drone is radio control (RC). Usually it have four channels to control the movement of the drone which are pitch, elevation, and yaw and also roll. Usually, the low frequency used by the analog RC remote control is determined by a crystal but for digital, it often can be operated at the range of 2.4GHz. The transmitter has its own IC which control the signal that need to be sent and also known as Tx module. The Tx module will sent the desired signal to Rx module which wired inside the quadcopter. Each pins have its own functions and the data of PWM for the pins will be decoded parallel with the receiver module. The circuit for the transmitter is in the Figure 2.4 and the PWM Generator circuit is the Figure 2.5.

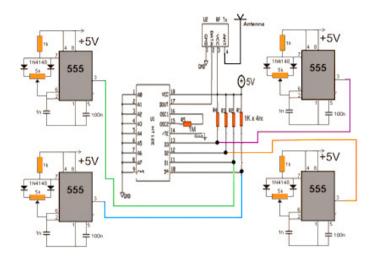


Figure 2.4 Quadcopter Transmitter Circuit

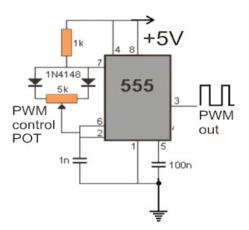


Figure 2.5 PWM Generator Circuit

2.3.2 Receiver

The communication receiver extracts intelligence from the radio frequency signal for continuous usage. The signal might be analog, voice, video and many more. The receiver must be able to select ad extract the preferred signal at the antenna [Jonathan D. Haymer, 2003]. The Rx module will receive the signal and it will control the rotor which are BLDC motor. The receiver circuit is shown in Figure 2.6

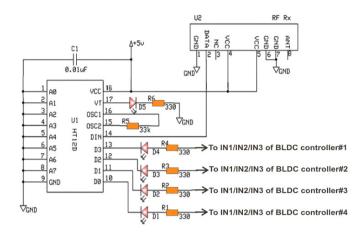


Figure 2.6 Quadcopter Receiver Circuit.

2.3.3 BLDC Motor

The BLDC motor controller configured and attached to the Rx circuit. Usually the circuit used is in the Figure 2.6. The rotating electric machine is some sort of induction motor that have permanent magnets mounted on the surface. If volt is applied, it will spin at 1000 RPM. So the drone will spin at 1200 RPM if 12 volts applied to the motor. Figure 2.7 shows the structure of a BLCD.

Figure 2.7 BLDC