
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Implementation of FPGA Based Smart Collision Avoidance Alert

System Algorithm

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Computer Engineering

Technology (Computer System) with Honours

By

LIM SIAU LI

B071310529

FACULTY OF ENGINEERING TECHNOLOGY

2016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: IMPLEMENTATION OF FPGA BASED SMART COLLISION AVOIDANCE
ALERT SYSTEM ALGORITHM

SESI PENGAJIAN: 2016/17 Semester 1

Saya LIM SIAU LI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti
Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan

untuk tujuan pengajian sahaja dengan izin penulis.
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan ()

SULIT

TERHAD

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan
atau kepentingan Malaysia sebagaimana yang termaktub
dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

A lamat Tetap:

Tarikh: ________________________

Disahkan oleh:

Cop Rasmi:

Tarikh: _______________________

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi

berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled “Implementation of FPGA Based Smart

Collision Avoidance Alert System Algorithm” is the results of my own research except

as cited in references.

Signature : ………………………………………….

Author’s Name : LIM SIAU LI

Date : 9 DECEMBER 2016

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a

partial fulfillment of the requirements for the degree of Bachelor Degree of

Engineering Technology (Computer Systems) (Hons.). The member of the

supervisory is as follow:

………………………………

EN. AIMAN ZAKWAN BIN JIDIN

i

ABSTRAK

Pada masa kini, kemalangan jalan raya menyumbang sejumlah besar kematian dan

kecederaan. brek secara tiba-tiba dan memandu terlalu rapat dengan kenderaan depan

adalah salah satu faktor yang menyebabkan kemalangan. kesilapan manusia adalah

faktor utama yang menyebabkan kemalangan jalan raya. Banyak kes kemalangan jalan

raya berlaku kerana ketaksedaran manusia. Oleh itu, kajian ini akan mencipta satu

algoritma yang mampu untuk memberi amaran kepada pemandu dengan meggunakan

sensor untuk mengesan jarak antara sensor tersebut dengan kenderaan atau objek depan

untuk mengurangkan kejadian kemalangan jalan raya. Algoritma ini mengandungi 2

mod. Dalam mod memandu, ia mengesan kadar perubahan jarak antara sensor dengan

kenderaan depan dan juga mengesan jarak selamat antara dua kenderaan. Dalam mod

letak kereta, sensor juga akan mengesan jarak selamat antara sensor dengan kenderaan

depan. Ini membantu untuk mencegah atau mengurangkan kerosakan yang disebabkan

oleh perlanggaran. Komponen yang telah digunakan dalam projek ini adalah FPGA,

buzzer dan led. Sensor ultrasonik telah digunakan untuk mengesan jarak. Bahasa

pengaturcaraanasa yang telah digunakan dalam projek ini adalah Verilog dan software

yang telah digunakan untuk projek ini adalah Altera Quartus II. Projek ini telah berjaya

dilaksanakan dan objektif projek ini telah dicapai. Perbandingan antara sistem pencegah

pelanggaran yang berdasarkan FPGA dan sistem pencegah pelanggaran yang

berdasarkan Arduino telah menunjukkan bahawa sistem pencegah pelanggaran yang

berdasarkan FPGA mempunyai prestasi yang lebih baik dan ia lebih dipercayai apabila

berbanding dengan sistem pencegah pelanggaran yang berdasarkan Arduino.

ii

ABSTRACT

Nowadays, road accidents accounts for a large number of deaths and injuries. Sudden

braking and driving too closely are one of the reasons causing accidents. Human error is

the main factor that causing road accident. Many cases of road accident occur because of

human’s unawareness. Therefore, this study was going to design an algorithm that able

to alert driver by detecting the range from the detector to the vehicle or object ahead to

reduce the occurrence of road accident. This project was focused only on the algorithm

implementation and tested by using ultrasonic sensor. This algorithm contained 2 modes.

In driving mode, it would detect the rate of change of range between the detector and the

vehicle ahead and also detect the safe distance between two vehicles. In parking mode,

the detector would detect the safe distance between the detector and the preceding

vehicle as well. This helped the vehicle to prevent or to take reduced damage from

collisions. The hardware components that have been used in this project were FPGA, a

buzzer and a led. An ultrasonic sensor was used for distance detection. The language that

has been used to configure FPGA was Verilog and the software that has been used for

the configuration of FPGA was Altera Quartus II. It has been proved that the project

could be successfully implemented and the objective of this project has been achieved.

The comparison between FPGA based collision avoidance alert system and Arduino

based collision avoidance alert system has shown that FPGA based collision avoidance

alert system has better performance and it was more reliable to be used compared to

Arduino based collision avoidance alert system.

iii

DEDICATION

Special dedicated to my beloved parent, siblings and friends who give me

encouragement and support to help me in completing my final year project successfully.

My supervisor, En Aiman Zakwan Bin Jidin also gave me a lot of guidance throughout

the project implementation. Thank you.

iv

 ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my project

supervisor, En. Aiman Zakwan bin Jidin for his continuous guidance throughout the

project and help me in completing my degree final year project. I would like to thank

him for his contribution to my project by sharing me with his experience on how to

handle the project and how to do research on topics that related to my project. He has

shared me with his knowledge and helped me throughout the process of developing the

project. He provided me an opportunity to explore to more technological knowledge by

using technology device in my project. He has also provided me suggestion when I faced

difficulties in doing the project. Besides that, he has helped me in dealing with critical

situation and problem solving. Without his guidance and encouragement, this project

might not be able to be completed on time. Thank you so much for his contribution.

I would also like to thanks to all my friends who has supported me throughout

the process of implementing my final year project. Thank you for their encouragement

and support through all the ups and downs during the process of completing this project.

Besides that, I would like to thanks to my family for supporting me all the way. Last but

not least, I appreciated all the help and thanked you so much.

v

TABLE OF CONTENTS

Abstrak .. i

Abstract .. ii

Dedication……………………………………………………………………………….iii

Acknowledgement………………………………………………………………………iv

Table of Content………………………………………………………………………….v

List of Tables…………………………………………………………………………viii

List of Figures…………………………………………………………………………..ix

List Abbreviations, Symbols, and Nomenclatures……………………………………..xi

 ... 1 CHAPTER 1: INTRODUCTION

1.0 Introduction…………………………………………………………………….. 1

1.1 Project Background……………………………………………………………..2

1.2 Problem Statement……………………………………………………………...4

1.3 Objectives………………………………………………………………………5

1.4 Work Scope……………………………………………………………………. 5

1.5 Conclusion……………………………………………………………………...6

 ... 7 CHAPTER 2: LITERATURE REVIEW

2.0 Introduction…………………………………………………………………….. 7

2.1 A brief history of detector……………………………………………………... 7

2.2 Sensor in a vehicle……………………………………………………………... 9

2.3 Development of anti-collision system for vehicles…………………………...11

2.4 Field Programmable Gate Arrays…………………………………………….. 16

 2.4.1 Overview of Field Programmable Gate Arrays…………...…..…...16

vi

 2.4.2 Application of FPGA………………………………………...……20

 2.4.3 Comparison between FPGA and microcontroller………………....22

 2.4.4 Comparison between Xilinx and Altera……………………..….…26

2.5 Hardware Description Language……………………………………………... 27

2.6 Ultrasonic sensor……………………………………………………………... 29

 2.6.1 Advantages of an ultrasonic sensor..32

 2.6.2 Disadvantages of an ultrasonic sensor…………………………......33

2.7 Conclusion……………………………………………………………………. 33

 .. 35 CHAPTER 3: RESEARCH METHODOLOGY

3.0 Introduction…………………………………………………………………...35

3.1 Flow Chart of Project Methodology…………………………………………..36

3.2 Project Methodology………………………………………………………….37

 3.2.1 Stage I: Preliminary Investigation…………………………........…39

 3.2.2 Stage II: Analysis and Identify Information………………….........40

 3.2.3 Stage III: Decision Making………………………………………..41

 3.2.4 Stage IV: Software and Hardware Development…………….....…44

 3.2.5 Stage V: Analysis……………………………………………….…44

3.3 Project Overview……………………………………………………………...45

 3.3.1 Formula for calculating range between sensor and vehicle ahead...47

3.4 System Operation Flow………………………………………………………. 48

3.5 List of components…………………………………………………………… 49

3.6 Project Planning……………………………………………………………….50

3.7 Conclusion……………………………………………………………………. 52

: RESULT AND DISCUSSION .. 53 CHAPTER 4

4.0 Introduction…………………………………………………………………...53

vii

4.1 Hardware Implementation…………………………………………………….53

4.2 Algorithm Implementation in FPGA…………………………………………. 56

 4.2.1 Sensor Controller Finite State Machine…………………………...57

 4.2.2 Comparator Finite State Machine………………………………....59

 4.2.3 Main Module of Collision Avoidance Alert System…………...…62

4.3 Interaction between Software and Hardware……………………………….…65

4.4 Simulation………………………………………………………………….….66

 4.4.1 Simulation Result…………………………………………………69

4.5 Hardware Validation………………………………….…………………...….73

 4.5.1 Analysis on Overall Performance…………………………………76

4.6 Limitation…………………………………………………………………….. 80

4.7 Conclusion……………………………………………………………………. 81

: CONCLUSION AND RECOMMENDATION 82 CHAPTER 5

5.1 Introduction…………………………………………………………………... 82

5.2 Conclusion……………………………………………………………………. 82

5.3 Future Improvement………………………………………………………….. 84

5.4 Commercial Potential…………………………………………………………85

REFERENCES…………..…………………………………………………………….86

APPENDICES

A Coding of sensor controller finite state machine

B Coding of comparator finite state machine

C Coding of main module

viii

LIST OF TABLES

Table 2.1: Comparison between PLD, FPGA and ASIC ... 17

Table 2.2: Major market segments for FPGA .. 21

Table 2.3: Comparison between FPGA and microcontroller applied in wireless system.

 .. 25

Table 3.1: List of components .. 49

Table 3.2: Gantt Chart of project planning .. 51

Table 4.1: Pin Assignment and Pin Usage ... 56

ix

LIST OF FIGURE

Figure 1.1 : Sudden braking causes 13 vehicles and 39 people involved in an accident ... 3

Figure 2.1 : The first manmade motion sensor ... 8

Figure 2.2 : Areas where sensors can be used in vehicle. ... 10

Figure 2.3 : BLINDER laser detector that used to detect the speed and distance of

vehicle. ... 12

Figure 2.4 : Block diagram of the vehicle anti-collision system..................................... 13

Figure 2.5 : Block diagram of Anti-collision system .. 15

Figure 2.6 : Global routing architecture .. 19

Figure 2.7 : Logic cluster that containing two LUTs .. 20

Figure 2.8 : Detailed routing architecture ... 20

Figure 2.9 : Safety concept with test pattern and comparator ... 25

Figure 2.10: Sound wave can reflect both solid and liquid target 29

Figure 2.11: Components of ultrasonic sensor ... 30

Figure 2.12: Distance of ultrasonic sensing ... 31

Figure 3.1 : Flow chart of project methodology ... 36

Figure 3.2 : Smart Collision Avoidance System Chart ... 37

Figure 3.3 : Summary Chart .. 38

Figure 3.4 : Stages of project methodology .. 39

Figure 3.5 : Block diagram of FPGA Based Smart Collision Avoidance Alert System . 46

Figure 3.6 : Flowchart of FPGA based smart collision avoidance alert system 48

Figure 4.1 : Connection of FPGA and the components on breadboard 54

Figure 4.2 : I/O distribution of the expansion headers of DE0 55

Figure 4.3 : Sensor controller finite state machine ... 58

Figure 4.4 : Comparator state machine ... 60

x

Figure 4.5 : Top plane of collision avoidance alert system .. 62

Figure 4.6 : RTL viewer of main module on Quartus II ... 62

Figure 4.7 : RTL viewer of sensor controller module on Quartus II 63

Figure 4.8 : RTL viewer of comparator module on Quartus II 64

Figure 4.9 : Assignment Editor ... 66

Figure 4.10: Instantiation of module in test bench ... 67

Figure 4.11: Script of test bench in Verilog language ... 68

Figure 4.12: Object window of module ... 69

Figure 4.13: Waveform of simulation result when current distance less than safe distance

 .. 70

Figure 4.14: Waveform of simulation result in when difference distance more than

maximum difference distance allowed... 71

Figure 4.15: Waveform of simulation result during switching of mode 72

Figure 4.16: Waveform of simulation result during parking mode 73

Figure 4.17: Object detected during driving mode .. 74

Figure 4.18: Object detected during parking mode .. 75

Figure 4.19: Logic Analyzer display when object detected less than safe distance in

driving mode .. 75

Figure 4.20: Logic Analyzer display when difference distance bigger than the maximum

difference allowed .. 76

Figure 4.21: Arduino based collision avoidance alert system.. 77

Figure 4.22: Execution time of Arduino based collision avoidance alert system when

object detected less than safe distance ... 78

Figure 4.23: Execution time of Arduino based collision avoidance alert system when

difference distance bigger than the maximum difference allowed 79

file:///C:/Users/User/Desktop/fyp2/FYP2report/full/PSM%20full%20report%20formatted.docx%23_Toc468982917
file:///C:/Users/User/Desktop/fyp2/FYP2report/full/PSM%20full%20report%20formatted.docx%23_Toc468982918

xi

LIST OF ABBREVIATIONS, SYMBOLS AND

NOMENCLATURE

ASIC - Application Specific Integrated Circuit

ASSP - Application-Specific Standard Parts

DC - Direct Current

DSP - Digital Signal Processing

ECM - Engine Control Module

FPGA - Field-Programmable Gate Array

GPS - Global Positioning System

GSM - Global System for Mobile Communication

HDL - Hardware Description Language

IF - Intermediate Frequency

LCD - Liquid Crystal Display

MPGA - Mask Programmed Gate Arrays

NRE - Non-Recurring Engineering

PLD - Programmable Logic Devices

UMC - United Microelectronics Corporation

VHDL - VHSIC Hardware Description Language

VLSI - Very large Scale Integration

V2V - Vehicle to Vehicle

1

 CHAPTER 1

INTRODUCTION

 1.0 Introduction

Transportation nowadays has become more and more convenient and safe;

however, there are still a lot of people dying because of road accident. One of the

factors that caused road accidents to occur are sudden braking and driving too closely

with vehicle ahead. Majority of road accidents are caused by carelessness of driver,

especially when they drive at midnight, the strong desire of reaching destination in a

short time always cause them leave unnoticed to the surrounding vehicle. Therefore, a

collision avoidance alert system is required to alert driver to avoid any crashes or

minimize the impact of collision. A range detector could be used for this. A range

detector is a detector that will detect the range between two vehicles on the road. It can

be used to detect the safe distance between two vehicles. Therefore, this study was

going to design an algorithm that was able to alert driver by detecting the range from

the detector to the vehicle ahead. This algorithm contained 2 modes. In driving mode,

it would detect the rate of change of range between the detector and the preceding

vehicle and also detect the safe distance between two vehicles. In parking mode, the

detector detects the safe distance between the detector and the preceding vehicle as

well. Once the vehicle was not in the safe condition, the system would activate a signal

to alert the driver to reduce the probability of collision.

2

1.1 Project Background

According to statistics produced by Bukit Aman Traffic Unit (2014), there were

about 65,883 accident cases on Malaysian roads involving car drivers and motorcyclists

which were at least 5.4 percent higher than the 62519 cases recorded in 2013. From this

phenomena, it can be seen that road accidents account a large number of deaths and

injuries, the number of road accident increasing year by year. According to Malaysia

Institute of Road Safety Research (Miros) director general Professor Dr Wong Shaw

Voon, there are several factors that cause road accidents increasing year by year which

includes transportation, road constraint, driver behavior, attitude and human error,

distracted driving and illegal racing. Among all of these factors, the most causative

factor is human factor. Any road accidents that occurred because of human’s behavior,

human’s unawareness of road condition, human’s reaction speed and how human make a

decision are included in human factor. After these years, it has been found that human

factor always the main causes of vehicle collision. Since 1985, it has been found that

there were 93% of vehicle collisions were caused by human factor based on British and

American crash data. From the article written by Olivia Olarte (2011), Bob Joop Goos,

chairman of the International Organization for Road Accident Prevention pointed that

road accident is mainly caused by human factor where there were 90% of road accidents

were caused by human factor. Jose Miguel, chairman of the Portuguese Society for

Road Accidents Prevention, claimed that the quality of road transport system or a break

system of a car and how the driver applies the car break system corresponding to the

environmental demand is the condition of occurring road accident. Therefore, it is very

important to make people to be conscious that the behavior of driver in driving is the

main factor that causing accidents. In order to reduce this problem, the traffic safety

program should be focusing on people by telling them the consequences of road

accidents and the way that all of us can do to prevent road accidents. Besides that, an

alert system can be used to alert driver when driver is in dangerous. Due to the behavior

of the driver, they rather choose to ignore any risk that may cause accident. With an alert

3

system installed in a car, it can be used to alert driver so that he or she notice that they

are not in the safe area.

It was reported (Free Malaysia Today, 2014) that in 3rd December 2014, a road

accident that involved 13 vehicles had occurred in Kuala Pilah. It was an accident

occurred because of driver unaware of road condition. Even though the driver had

applied on the brakes but it still caused the road accident to occur. The distance between

the vehicle and the object was too close to each other, therefore the driver unable to

brake in time. 13 vehicles and 39 people were involved in that accident. Since the

accident involved a tanker carrying palm oil, the leaking palm oil caused the road to

become slippery.

Figure 1.1: Sudden braking causes 13 vehicles and 39 people involved in an

accident

According to the statistic shown above, the main factor that causing road

accident since 1985 remain unchanged, the danger on the road always cannot be apart

from human’s behavior. Other than organizing safety programmed, there are still ways

of reducing probability of road accidents occur. One of the ways to attract driver’s

attention during driving is to build a smart collision avoidance alert system in the car to

4

alert driver. In this project, the implementation of FPGA based smart collision avoidance

alert system algorithm has been done to alert driver when they were not aware of road

condition while driving.

A field-programmable gate array (FPGA) is an integrated circuit. It was designed

to be configured by using hardware description language (HDL). FPGA contains an

array of programmable logic block which the logic blocks is used to be configured to

perform simple logic gates and combinational functions. There are differences between

FPGA and microcontroller. Microcontrollers are mini computers that built in an

integrated circuit and perform specific task while FPGAs built up from logic blocks and

can be reprogrammed and rewired electrically. FPGAs can run concurrently while

microcontroller is always sequential, thus FPGA is faster than microcontroller.

There are two hardware description languages that can be used to configure

FPGA which are Verilog and VHDL. Two of these hardware description languages are

difference in both their concept and syntax. VHDL is more on ADA programing

language while Verilog is more C programming language.

1.2 Problem Statement

Nowadays, car continues to become safer and more convenience, however, they

are still a lot of traffic accidents occur. Traffic accidents occur for several reasons. Most

of the traffic accidents are caused by driver’s careless, especially when vehicle ahead

brake suddenly and driver driving too close to the vehicle in front, this cause the driver

unable to brake in time and accident occurred. Many accidents occur due to the driver’s

failure to recognize danger. Many people unable to estimate the safe distance between

own vehicle and the vehicle ahead on the road so that when the vehicle in front make

sudden braking, the driver still hit the vehicle ahead although they had applied the

brakes. Drivers with stronger desire to arrive at their destination as soon as possible are

more likely to take risk. Sometimes, when driver driving too long for the journey will

5

cause them cannot pay well attention on driving and leave unnoticed when the vehicle

ahead change their speed. Therefore, an alert system is required to alert the driver with

warning when the system determines that there is possibility of collision and allow the

driver to keep a safe distance with the vehicle in front.

1.3 Objectives

1. To study on how to detect the rate of change of range between vehicles

2. To develop an algorithm to detect and alert occurrence of slowing or stalling vehicle

ahead on FPGA.

3. To analyze the functionality and reliability of the alert system in the aspect of

distance detection.

1.4 Work Scope

The aim of this project was to design an algorithm to detect the range between

the detector and the vehicle or object ahead on the road by using FPGA to prevent or

minimize the risk of road accidents. An ultrasonic sensor was used for testing the

functionality of the system. The ultrasonic sensor was connected with an FPGA which

was generally configured by using hardware description language. This project was

focusing only on the algorithm implementation and testing by using ultrasonic sensor.

The test was done in the following situation:

In driving mode:

 If vehicle ahead makes sudden braking, the system should alert the driver.

 If two vehicles are driving too close to each other and their gap is less than

the safe distance, the system should alert the driver.

In parking mode:

6

 If the vehicle is not in the safe distance with vehicle ahead during parking,

the system should alert the driver as well. Due to the speed of vehicle in

driving and in parking are different, the safe distance in driving mode and in

parking mode are also different.

To make an analysis on the overall performance of the alert system based on FPGA,

a comparison with the existing system based on Arduino would be done.

1.5 Conclusion

This chapter mainly brief about introduction of this project. Nowadays road

accidents account a large number of deaths and injuries. The main reason for a road

accident to occur is never been apart from human behavior. Therefore, a FPGA based

collision avoidance system is required to alert driver if there are possibilities of collision.

The component in building the system included FPGA and the language used to

configure FPGA could be either Verilog or VHDL. This chapter also discussed about the

objectives and work scope of this project where the main objective of building this

project was to detect and alert occurrence of slowing or stalling vehicle ahead on FPGA.

This project would focus only on the algorithm implementation and testing by using

ultrasonic sensor.

7

 CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

 This chapter will discuss the history of the detector and the application of field

programmable gate array (FPGA). The comparison between FPGA and other

microcontroller as well as the advantages and disadvantages of FPGA will also be

discussed in this chapter. Besides that, this chapter will also discuss about two hardware

description languages which are Verilog and VHDL, these two languages have their own

applications and advantages as well as disadvantages.

2.1 A brief history of detector

 Detectors or sensors have been around for a long time in different forms.

According to the article written by Ken Smyers (2013), the first electric thermostat came

to market in 1883. The inventor of this first thermostat was Warren S. Johnson, a

professor at State Normal College in Whitewater. This thermostat has been considered

as the first modern, manmade sensor. Based on a research conducted by A.Rogalski

(2012), infrared sensors have been discovered in 1940. This sensor has been extensively

developed since 1940’s.

Other than thermostat and infrared sensor, Tuteja et al. (2014) stated from their

article that the first motion sensor was invented by Samuel Bagno in the mid-1940.

According to the article, the motion sensor was known as ultrasonic alarm where it sent

ultrasonic waves throughout a room. From the ultrasonic wave that spread throughout

the room, when the wave was disrupted by something, a return echo triggered the alarm.

8

Throughout the inventions of these sensors, people start to realize the importance and

application of a sensor. The inventions of sensors and their applications had created a

commercial demand for people. In 1970s, the principle of Bagno’s ultrasonic technology

continued to be used, the motion sensor turned into alarm system by using the same

principle. The system transmitted an ultrasonic signal and detected changes in the

response. If there was a changed occurred in the response, the detector notified the alarm

system’s control panel. But in 1970s, technologies were not so advanced, false alarms

were common, a little sound like clock chiming could change the ultrasonic wave’s

echo.

Figure 2.1: The first manmade motion sensor

According to same article, in 1980s, infrared motion sensor began to replace

radar sensor. These sensors became more and more widely in used. Initially, the prices

of these devices were costly but with these devices became more and more widely in

used, the prices became lower and could be afforded by most people. Bagno’s device

made use of ultrasonic frequencies as well as Doppler Effect.

9

2.2 Sensor in a vehicle

 With sensor has been widely used in vehicle, vehicle continues to become safer

and convenient. There are several parts of vehicle that required sensor. In a real world

system, a vehicle needs to be well communicated with an outside world. Many

conditions have to be considered during driving and there may have some unexpected

situations to be occurred. A sensor can help to improve the performance of a vehicle and

communicate accurately between vehicle operator and outside world. It also helps to

guarantee the safety of drivers and passengers. Therefore, a vehicle needs a reliable,

accurate and effective sensor. According to John Vetelino and Aravind Reghu (2010),

sensor plays a very important role in a vehicle, the sensor functions may range from a

simple sensing of water temperature, oil pressure, and fuel level to the control of the

engine and transmission to optimize economy and performance while reducing the

potentially dangerous emission effluents. It can be concluded that a vehicle will be

unable to function without these sensor. Figure 2.2 shows the areas that sensors are in

used.

10

Figure 2.2: Areas where sensors can be used in vehicle. (John Vetelino and Aravind

Reghu, 2010)

According to the same book, there are some sensors correspond to the engine and

transmission, it can also be known as power train. These sensors are very important to

the vehicle performance and relate to engine timing, manifold vacuum pressure and

mass airflow, transmission control valve position, transmission input and output speed,

exhaust gas oxygen level, and throttle and accelerator position. These sensors must meet

the requirements such as accuracy and operating temperature range. In order to meet

technical specification, these sensors must also meet space and weight requirements.

Besides, these sensors also have to be of minimal cost, reliable, accurate and have high

performance. These sensors are very important to a vehicle in order to allow the vehicle

run smoothly so that they must be maintained in a good condition.

Gas sensor also used in a vehicle to control the combustion mixtures in car

engines. The function of the sensor in a vehicle is to reduce the atmospheric pollution

while increasing fuel economy. The combustion control gas sensor was introduced in the

11

early of 1970s when the Environment Protection Agency (EPA) of the United States

legislated Clean Air Act. This Act required automobile manufacturers to minimize

exhaust gases by about 90%. Before introducing the combustion control gas sensor, a

few method have been tried to reduce exhaust gases including optimizing the fuel supply

and the ignition system, this method was failed. After that, they tried to convert the

polluting gases into inert species, but this method increased automobile production cost

and the fuel economy decreased. Therefore, this method also cannot be used. Failure of

previous method and high cost of automobile production caused the industry to look

towards catalytic converters. This converter solves the oxidation of CO and CHx and

reduces NOx to convert all polluting material into harmless byproducts. However, this

there-way catalytic converter is effective only if the engine is fed with near-

stoichiometric air/fuel (A/F) mixtures. Due to the effectiveness of this method, this A/F

mixture requirement created a market for an A/F sensor.

Sensor technology has become more and more advance, there have also been

advances in speed detection technology. Kumar et al. (2014) stated that speed detection

of a vehicle can be done by using laser guns. Recently, laser gun has been used by police

to enforce speed limits. Speed of light from a laser gun is much faster compared to

sound sensor.

2.3 Development of anti-collision system for vehicles

 In recent years, the number of road accidents keep increasing resulted in many

people died. Some of them were because of environment error but most of them caused

by human error. Therefore, many ideas and research have been proposed to reduce the

occurrence of road accidents especially accidents caused by human error. Shival Dubey

and Abdul Wahid Ansari (2013) stated that many researches have been conducted on the

anti-collision system device based on different components and provide different ways

to avoid collision including used wireless network, vehicle to vehicle (V2V)

communication, global positioning system (GPS) and radar implementation. Based on

12

the paper conducted by Ajit Kumar et al. (2014), occurrence of a road accident can be

reduced by building an anti-collision system in a vehicle. According to the paper, the

system detects the speed and distance of vehicle by using BLINDER laser detector. The

information of vehicles can be shared by using laser beam detection. This vehicle

detection system is used to provide alert message and to decrease the speed of vehicles.

When two vehicles are on the road, the system detects the distance between the vehicle

and vehicle ahead. If distance of the two vehicle too close to each other and crosses the

safe distance, the system will decelerate the speed automatically or apply emergency

brake.

 As stated in the same paper, this system can be divided into three parts. First part

is source of laser light beam to produce laser beam. Second part is BLINDER laser

detector which will detect the speed and distance of vehicle according to the reflection

beam of laser light. Third part is alert and control system based on the detection of the

speed and distance that obtained by using BLINDER laser detector. The output of the

system is produced based on the comparison between the input and stored value.

Figure 2.3: BLINDER laser detector that used to detect the speed and distance of

vehicle.

13

 The BLINDER laser detector works better under full daylight or at night. This is

because the BLINDER laser detector detects the infrared light of laser beam. The

infrared light is also a part of sunlight. At daytime, the brighter the day, the more

infrared light is scattered. At night, there is only infrared light is presence, makes the

BLINDER laser detector detects easier. The effectiveness of the laser detector is

depends on the color of the object, the brighter the object, the easier the detection.

According to the paper, there are also disadvantages of using this BLINDER laser

detector. It will only detect object with color. For object that are transparent such as

glass, the BLINDER laser detector will not be able to detect because this transparent

object do not have reflection.

 When the distance between two vehicles crosses the safe distance, the system

will decrease the speed of current vehicle automatically. The speed control of this

system is done by a DC motor where the DC driver called L293D is used. This DC

motor can control two DC in the same time. The deceleration of speed can be done by

generate a back EMF to change the direction of rotation. Power supply of DC motors is

depends on distance between two vehicles.

Figure 2.4: Block diagram of the vehicle anti-collision system

 Triveni Shinde and Prof.B.V. Pawar (2013) had proposed a car Anti-Collision

and Intercommunication System using Communication Protocol to help reducing the

occurrence of road accident. This system is run by using a microcontroller to control the

brake system. The system detects the object or vehicle in front by using ultrasonic

14

sensor. If there is object or vehicle detected, the ultrasonic sensor continues to detect the

distance between current vehicle and vehicle ahead. If two of these vehicle are in the

safe distance, the vehicle continue to run with constant speed but when the system

detected that two of these vehicles are not in the safe distance, the system will trigger the

microcontroller to start applying brake until the distance is within the safe range. As

long as two of these vehicles not in the safe range, the process will be continuous until

the vehicle comes to a stop. The microcontroller used in this system is ARM7 which is

used to control the whole system includes the DC motor. ARM7 will give instruction or

in other words to increase or decrease the speed of DC motor via Pulse width

modulation based on the detection result obtained by ultrasonic sensor.

 As stated in the same paper, this system not only able to know the distance

between two vehicle, this system also able to communicate with the vehicles that are

close by. The communications between two vehicles are enabled by using zigbee. If the

vehicle ahead brake drastically or decrease their speed suddenly, the vehicle at the back

can be noticed so that the driver can apply on his or her brake to avoid any collision.

Besides that, this system also contains GPS/GSM to allow driver to communicate about

the road condition, traffic condition as well as weather condition.

 The components that used in this anti-collision and intercommunication system

includes buzzer, DC motor, Liquid Crystal Display, ARM7 Microcontroller, Ultrasonic

sensor, ZigBee, Global system for mobile communication (GSM) and Global

Positioning System (GPS). The buzzer is used to alert the driver when any emergency

occurred while the Liquid Crystal Display (LCD) is used to display the output of the

application. It can also be used to check the speed of car, location of car as well as the

question asked by other car. ZigBee that used to enable the communications of two

vehicles is a specification of suit of high level communication protocol that based on

IEEE802 standard. The main usage of ZigBee is to transmit data over a longer distance.

 Besides that, there is also vehicle anti-collision system using electromagnet and

ultrasonic sensor. According to the paper proposed by Shival Dubey and Abdul Wahid

Ansari (2013), vehicle anti-collision system using electromagnet and ultrasonic sensor

works in two stages. First, the range detector which is ultrasonic sensor will

continuously detects the distance between two vehicles moving and sends it to the

15

Engine Control Module (ECM). Second, ECM received the input and use these input to

decide whether to activate the sensor strip for Electromagnetic induction. Shival Dubey

and Abdul Wahid Ansari declared that their system is an automatic vehicle anti-collision

device that can be used to reduce the possibility of vehicular head to head or head to

back collision. It used ultrasonic sensor to detect the range between vehicles and

generate an electromagnetic field to repel vehicles. This device not only provides alert

system to driver but also automatically activate the safety switches before emergency

situation occurred.

 As stated in the paper, the microcontroller that used in this system is ATMEGA

16 that will receives response signals from ultrasonic sensor. This signal will be sent to

ECM and used it to trigger solenoids to create electromagnetic field. The distance

between two vehicles is continuously read by the ultrasonic sensor and the dashboard of

the vehicle will show the output. If the distance goes on reducing until crosses the safe

distance, circuits starts working to create electromagnetic field. Figure 2.5 shows the

block diagram of this anti-collision system.

Figure 2.5: Block diagram of Anti-collision system

16

 The microcontroller which is ATmega 16 is configured by using C programming

language. It has been programmed to test the hardware. WinAVR[2] is used to program

the microcontrollers C language. It is a compiler for a high level language that helps to

minimize the production time. After compilation, C program was converted into

machine language which can only be understood by a microcontroller. Machine

language (hex) file of the compiled program was burned into the program memory

which attached to a PC’s peripheral.

2.4 Field Programmable Gate Arrays

2.4.1 Overview of Field Programmable Gate Arrays

 Clive Maxfield (2011) stated that Field programmable gate arrays

(FPGAs) are digital integrated circuit that are designed to perform variety of

tasks such as combinational functions, or simply logic gates like OR, AND, NOR

and XOR gates. It can be configured or reprogrammed by customers or designer

engineers after manufacturing. FPGAs contain an array of programmable logic

blocks along with configurable interconnects between these blocks. Not every

FPGA can be programmed for unlimited times. It depends on how these FPGA

are implemented. Some FPGAs may be able to be programed for many times but

some FPGAs may only able to be programmed for a single time only. One-time

programmable refer to the device that can be programmed for only one time.

 There are various type of digital integrated circuit on the market such as

Programmable Logic Devices (PLD), Application Specific Integrated Circuit

(ASIC), and FPGAs. Similar to FPGAs, PLDs also consider devices that can be

configured by engineers in the field to perform different tasks. The internal

architecture of PLDs are predetermined by the manufacturer. However, these

devices contain only limited number of logic gate, and the functionality of these

17

devices are limited and simpler. Compared to FPGAs that contain large number

of logic gates, PLDs may not be able to perform complex task like FPGA.

 On the other hand, ASIC and Application-Specific Standard Parts (ASSP)

contains a large number of logic gate, it can contain hundreds of millions of logic

gates and can be used to create tremendous and complex functions. Similar to

other digital integrated circuit, ASIC and ASSP also built to implement specific

task by user. However, ASIC is only built and designed to order for use by a

specific company. An ASSP is designed and built to multiple customers. There is

a disadvantage of using ASIC. The devices that is designed and built based on

ASIC cannot be modified without creating a new version of the device. This is

because the final design of the device is “frozen in silicon”.

 Although ASIC contain a large number of logic gate, complexity and

provide very good performance, the process of designing and building one is

very time-consuming and costly. In comparison with FPGA, the cost of an FPGA

design is much reasonable than that of an ASIC. Therefore, FPGA stands in the

middle between PLDs and ASICs due to the functionality of FPGA is better to be

used than PLDs and cost of designing and building is much lower than ASIC.

Table 2.1: Comparison between PLD, FPGA and ASIC

Criterion PLD FPGA ASIC

Performance Medium High Very high

Development Cost Low Medium Very high

Design change Cost Medium High Very high

Time to market Short Medium Long

 Vaughn Betz, Jonathan Rose, and Alexander Marquardt (2012) declared

that FPGA has two key advantages: First, lower non-recurring engineering

(NRE) cost, Second, faster time-to-market. In order to implement a circuit with

other circuit implementation such as Standard Cells, one is required to send the

completed design to a silicon foundry to manufacture a chip according to the

18

design. The NRE fees to manufacture the first chip normally is around $100 000

and $250 000 where this fee includes the cost of making lithography masks and

of running a new design through the fabrication plant. The non-recurring

engineering (NRE) of FPGA is lower because the design that is implemented in a

FPGA can be easily by programming the FPGA based on the desired

functionality, there are no NRE cost need to be charged. Time-to-market is

another benefit of FPGAs. The process of completed a chip usually takes 6-8

weeks. If there are problems found in the completed chip, the chip has to be

thrown away and another 6-8 weeks is needed to fabricate another new chip. On

the other hand, the process of program a FPGA takes only a few second. If there

are bugs found in the chip, it can be corrected by reprogramming the FPGA. This

takes only a few minutes. Fabrication of FPGA in a chip is a fast process, thus, it

is faster time-to-market.

 Compared to other circuit implementation such as Mask Programmed

Gate Arrays (MPGA), a circuit that implemented in an FPGA is ten times larger

and three times slower than the same circuit implemented in MPGA in a same

process. Due to the large size of FPGA circuitry, the FPGA implementation is

expensive than MPGA and the limited speed of FPGA cause FPGA unable to

make of their use in very high-speed designs.

 Same to what has been stated by Clive Maxfield, Vaughn Betz, Jonathan

Rose, and Alexander Marquardt also stated that FPGA is built up with a large

amount of programmable logic blocks. Each logic block carry out a small

amount of digital logic and programmable routing which connects the logic

block inputs and outputs to form larger circuits. The global routing architecture

of a FPGA specifies the width of several types of wiring channels within the

chip.

19

Figure 2.6: Global routing architecture

 From Figure 2.6, it can be noticed that the channels near the center of

FPGA is wider than other channel. All routing resources in FPGA are

prefabricated, thus, manufacturer is the one set the width of all the routing

channels. Therefore, it is required to find the distribution of routing resources, or

known as tracks, to the different types of channels that permits their efficient

utilization by the largest class of circuits. In case there are too few tracks in

certain area of the chip, many circuit will be not able to route, but if there are too

many tracks, it could be wasted.

 With FPGA using cluster-based logic blocks, interconnections in FPGA

can be made faster. The use cluster-based logic blocks in a FPGA allow many

connections can be made using the local interconnect within a cluster. Cluster is

refers to grouping of logic blocks. Figure 2.7 shows the cluster of look-up tables

(LUTs) and flip flop along with local routing to interconnect the LUTs within a

cluster.

20

Figure 2.7: Logic cluster that containing two LUTs

These cluster-based logic blocks can increase the speed of FPGA due to the

interconnections in FPGA.

Figure 2.8: Detailed routing architecture

Figure 2.8 shows the example of detailed routing architecture which describes

how logic block inputs and outputs can be connected.

2.4.2 Application of FPGA

 According to Clive Maxfield (2011), FPGA was first introduced in 1980.

Initially, FPGA was used for glue logic, medium-complexity state machines, and

21

data processing task. At the early 1990s, due to the increasing of size and

complexity of FPGA, it start to be used for processing large blocks of data and

pushing that data around, their market at that time was mostly on

telecommunications and networking arenas. As the functionality and

performance of FPGA continue to increase, the market of FPGA continues to

expand. At the end of 1990s, the market of FPGA includes automotive and

industrial applications.

 Normally FPGA is used to build ASIC designs and to provide a hardware

platform to verify the physical implementation of new algorithms. Since the cost

of development a FPGA is cheaper and it is faster time-to-market, many vendors

are finding their ways to make it as final product and so that it can compete

directly with ASIC. High performance of FPGA that contains a large number up

to millions of gates are currently available. It is used for embedded

microprocessor cores, high speed input or output devices and etc. Nowadays,

FPGA can be used to implement a lot of devices, including software-defined

radio, communications devices such as mobile phone; radar, image, and other

digital signal processing applications; and system on chip (SoC) components that

contain both hardware and software elements.

Major market segments for FPGA

Table 2.2: Major market segments for FPGA

22

2.4.3 Comparison between FPGA and microcontroller

 Similar to most microcontrollers, FPGA do contains memory. In most

FPGA, the logic blocks of FPGA contain memory element such as flip-flops or

more complete blocks of memory, but FPGA is different with microcontroller, it

is not a family of microcontroller. With the development of FPGA, a

microcontroller can be replaced by a FPGA, therefore, there has always been hot

discussion between differences of FPGA and microcontroller. The performance

of FPGA has been increased in these years.

23

Based on what has been stated by Aflab Sarwar (2012), differences of

FPGA and microcontroller can be discussed in several criteria. In terms of

structure, microcontrollers are mini computers that built in an integrated circuit

and perform specific task while FPGAs built up from logic blocks and can be

reprogrammed and rewired electrically. This makes FPGA more flexible to be

used. In terms of power, FPGAs consume more power than microcontroller, thus,

microcontroller is more power efficient than FPGAs. In terms of speed, FPGAs

can run concurrently while microcontroller is always sequential. In this case, the

concurrently processing made the system better and more suitable to be used

which it can transmit and receive signal and process the signal at the same time.

Therefore, FPGAs are more suitable for real-time applications such as executing

digital signal processing (DSP) algorithms.

In terms of flexibility, FPGAs are more flexible since it allow user to add

or subtract the functionality as required. The functionality of microcontrollers is

fixed during manufacture, thus the functionality of a microcontroller cannot be

changed as required. In terms of development time, FPGAs take longer time than

microcontroller. The peripherals of microcontrollers are readily available and

have been pre-tested by vendor. User does not have to worry about their

functionality. In terms military application, FPGAs are more likely to be used in

military application because FPGA is hard-wired, the memory areas of FPGA not

easy be attacked or destroyed by alpha rays, the functionality of FPGAs are not

easy be corrupted. Besides that, life time of FPGA based development is longer.

This makes it can be adopted for advanced chip. In comparison to

microcontroller, the life times of microcontrollers are shorter, it change too

frequent and a lots of re-work required need to do to keep pace with changing

technology. In terms of costs, the costs of microcontrollers are much lower than

FPGA.

According to the same article, there are also some vendors such as Altera,

Xilinx, and Atmel that used microcontroller and FPGAs simultaneously. They

provide configurable logic along-with processor core as well. But it is very

difficult to work on both together due to microcontroller are very different with

24

FPGA. Although FPGA use Hardware Description Language such as Verilog

that may look similar to C in syntax, but it is very different and confuse in use.

There are many pros and cons of microcontroller and FPGA. For the field that

demands a lot of DSP work and heavy DLD works are involved, FPGA is more

suggested, otherwise, microcontroller can be used.

In terms of transient failure, Samarjit Chakraborty and Jorg Eberspacher

(2012) said that FPGAs are sensitive in transient failures. As stated above, FPGA

can run concurrently, due to no temporal logic correlation between two

processing cycles, the transient failure of FPGA is negligible. Once FPGA

detected that program code is affected, the failure will be remain there until the

next system reboot which also means that the configuration of FPGA must be

tested against systematic failures and transient-permanent.

The FPGA processing result can be tested by integrate the test pattern of

beginning and ending of every image. This pattern is processed with the same

algorithm like the current image. The correct result of the test pattern will be

store in the microcontroller memory and it is used to compare with the current

result.

In microcontroller, the transient failure of microcontroller is not

negligible. In comparison with FPGA, what makes microcontroller different in

term of transient failure is that the post processing task of microcontroller

contains tasks with temporal correlation since microcontroller is different with

FPGA, it cannot run concurrently. Permanent failures in microcontroller are also

fatal. Both must be detected solidly. A concept with comparator and two

different algorithm chains prevents false action. There are two assumptions

required for this comparator concept: First, based on the same FPGA

preprocessing it is possible to develop two sufficient diverse algorithms for the

complete post processing. Second, two diverse algorithms deliver not the same

result on defective hardware.

25

Figure 2.9: Safety concept with test pattern and comparator

 According to Subhas C. Mukhopadhyay and Joe-Air Jiang (2013), FPGA

has been widely used in wireless system. The main benefit of FPGA which are

“reprogrammability” and faster time-to-market make it able to compete with

other components or devices. FPGA have become a dominant technology in the

first-stage intermediate frequency (IF). It has been applied to variety of wideband

wireless application. However, there are still discussions on the differences of

using FPGA and microcontroller in wireless system. Table below shows the

comparison between FPGA and microcontroller applied in wireless system.

Table 2.3: Comparison between FPGA and microcontroller applied in wireless

system.

26

2.4.4 Comparison between Xilinx and Altera

 There are many vendors of FPGA, among all of these vendors, the most

two famous vendors are Altera and Xilinx. Jeff Johnson (2011) stated that Xilinx

has been the leader of FPGA in the market for many years. Xilinx was the

inventor of FPGA. It was founded in 1984 and introduced its first product in

1985. Xilinx cooperates with leading semiconductor manufacturers, for example:

IBM Microelectronics, United Microelectronics Corporation (UMC) and Seiko.

On the other hand, Altera was founded in 1983. The first commercial product

introduced by Altera was reprogrammable logic device (PLD) in 1984.

 In recent years, Xilinx has covered the high-end FPGA family with

Virtex series and covered the low-end FPGA family with Spartan series while

Altera offers Stratix series at the high-end FPGA family and Cyclone series at

the low-end FPGA family. All of these series in Xilinx as well as in Altera are

direct components.

There are several key factors that can be used to distinguish FPGA from Xilinx

and Altera:

 Processor system

Both of Xilinx and Altera are using an embedded processor, a dual-core

Cortex-A9 with NEON extensions. It is five to ten times faster than a

soft-core.

 Memory

Altera has L1 2x32K per core, L2 512K shared, 64K RAM while

Xilinx has L1 2x32K per core, L2 512K shared, 256K RAM.

 Hardware Peripherals

The hardware peripherals of both FPGAs are quite similar. The main

difference is that Xilinx have ADC on chip (XADC) on their high end

families for system management but Altera does not have. This makes

Xilinx more useful than Altera. In order to transfer all the data in and out

of these peripherals, both of Xilinx and Altera FPGA contain 8 channel

27

DMA engines. The peripherals on both of it are wired to pin through a

big multiplexer.

 FPGA fabric

Altera have two ports (one fast, one slow) to transfer data to FPGA and

one port to transfer data from FPGA. There are also memory ports in

Altera FPGA. In larger device, there are 1 to 3 more hard memory

controllers connected directly to the FPGA fabric. In Xilinx, there are

only two ports to transfer data in and out from FPGA and 4x64 bits ports

from FPGA to memory.

2.5 Hardware Description Language

There are two hardware description languages that can be used to configure

FPGA. These two languages include Verilog and VHDL. Based on James E. Stine

(2015), Verilog was introduced by Phil Moorby in 1984 at the Gateway Design

Automation conference. It has become an IEEE standard in 1995 as IEEE standard

1364-1995[IEEE95]. The overall goal of the Verilog language is the framework and

methodology for modeling and stimulation. There are two important aspects of Verilog:

First, levels of system specification which will describe the behavior of digital system

and how it provides the mechanism that makes it work. Second the system specification

formalism which allows designers to utilize abstractions to represent their Very large

Scale Integration (VLSI) or digital system.

Digital system such as VLSI are highly complex, it may contain millions of

elements. By configuring these highly complex digital systems, Verilog language

provides a wide range of levels of abstraction. At the most detailed level, Verilog

provide access to computer aided design tools to contribute in the design process. With

VLSI implementation that using place and route programs, Verilog provides better ways

for modeling these circuits. It also allows engineers to increase the speed and decrease

the area of the VLSI chip by optimizing the logical circuits and VLSI layouts. Thus,

28

Verilog can be known as the more efficient and useful tool for making design of VLSI

and digital systems to an engineer.

For a VLSI designer, Verilog language is easier to use and there are many

Verilog compilers publicly as well as commercially available.

VHDL is another HDL language that used to describe digital and mixed signal

systems. The application of VHDL includes field-programmable gate arrays and

integrated circuits as well as parallel programming language. VHDL was introduced at

the behest of the U.S Department of Defense. VHDL borrows both concepts and syntax

from the Ada programming language. This is because the Department of Defense

requiring as much of the syntax as possible to be based on Ada. In order to avoid re-

inventing concepts that had already been thoroughly tested in the development of Ada,

VHDL borrows both concepts and syntax from the Ada programming language.

Normally VHDL is used to write text models that describe a logic circuit. The

logic designed model is commonly processed by a synthesis program. VHDL is more on

Ada, it is strongly and not case sensitive, but there are also features in VHDL that are

not found in Ada such as an extended set of Boolean operators including NAND and

NOR. In Ada, most programming language only ascending indexing is available, but in

VHDL, its programming language include ascending or descending direction where

these both conventions are used in hardware. VHDL can be used as general-purpose

language for text processing due to VHDL has file input and output capabilities. These

files are usually used by a simulation test bench for stimulus or verification data.

VHDL is a dataflow language, it allows the description of a concurrent system.

Another benefit of VHDL is that once the VHDL project is created, it can be used in

many other projects. Besides that, a VHDL project is portable. Being created for one

element base, a computing device project can be ported on another element base, for

example VLSI with various technologies.

Both Verilog and VHDL have their own advantages and disadvantages. VHDL is

more on ADA programing language in both concept and syntax while Verilog is more C

programming language. VHDL uses strong typing which does not allow the intermixing

of variables with different classes. Verilog is a weakly typed language which opposite

with VHDL. In terms of case sensitivity, Verilog is case sensitive and not easy to

https://en.wikipedia.org/wiki/United_States_Department_of_Defense
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Syntax
https://en.wikipedia.org/wiki/Ada_(programming_language)

29

recognize a variable if the case used is not consistent while VHDL is not case sensitive.

VHDL allow user to change the case as long as the character in the name, and the order,

stay the same. Verilog is simple than VHDL, therefore, it is easier to learn Verilog

compared to VHDL because the way to write in Verilog is more like C programming

which are more common to most programmer. VDHL is a little bit more difficult to

learn and program.

2.6 Ultrasonic sensor

 Based on Rockwell Automation (2016), ultrasonic sensor is used to detect the

distance of object ahead. The concept same with bats use echolocation to identify objects

in their surroundings. With the echolocation, bats can estimate the distance of object

around and it helps bats to hunt their food. Same with dolphins, they also use

echolocation to estimate distance. Ultrasonic sensors emit a sound wave that reflects off

of objects entering the wave field. The sound wave is then reflected and received by

ultrasonic sensor. By emitting and receiving the sound wave, the distance between

current object and object ahead can be determined. Detection of the sound wave will

produce an output signal for use by an actuator, controller, or computer. The output

signal can be analog or digital.

Figure 2.10: Sound wave can reflect both solid and liquid target

30

 Ultrasonic sensing technology is according to the principle of velocity. Sound

has a constant velocity which is 343.2m/s. The time for emitting and receiving sound

wave is directly proportional to the distance to the object. Therefore, ultrasonic sensor is

usually used for distance measurement applications such as distance control or liquid

level control.

Ultrasonic sensor can detect most of the objects have sufficient reflectivity

includes metal or nonmetal, clear or opaque, liquid, solid, or granular. There are also

materials like sound absorbing materials that do not have ideal reflectivity such as foam,

soft rubber, cloth, and flour. These lower the performance of ultrasonic sensor, because

the poor reflectivity of these objects makes the ultrasonic sensor unable to estimate the

actual distance to these objects.

The four basic components of an ultrasonic sensor :

 Transducer/receiver

 Comparator

 Detector circuit

 Solid-state output

Figure 2.11: Components of ultrasonic sensor

Transducer can be also known as receiver which it emits sound wave from the

ultrasonic sensor to the object and receives the reflection of the sound wave from the

object. The comparator and detector circuit calculates the distance to the object based on

the reflected echo. The calculation of distance can be done by comparing the time

31

frames between the emitting and receiving sound waves to the speed of sound. After the

calculation of distance by comparator and detector circuit, the solid-state output

produces an electrical signal to be interpreted by an interface device. There are two

electrical signals that will be produced which are signal from digital sensor and signal

from analog sensor. Signal from digital sensors shows the presence or absence of an

object in the sensing field while signal from analog sensors shows the distance to an

object in the sensing field.

Figure 2.12: Distance of ultrasonic sensing

 Figure 2.12 shows the distance of ultrasonic sensing. The sensing area of an

ultrasonic sensor is the area between the minimum and maximum sensing limits. From

the figure, it can be seen that there is a blind zone. This blind zone indicates the unusable

area. The sensor is unable to receive the reflection accurately if the ultrasonic beam

leaves the sensor, reach the target object and reflects before the sensor has completed its

transmission. The minimum sensing distance is the minimum distance an object can be

from the sensor. In this area, it will not have reflecting echoes that will be ignored by the

sensor. Maximum sensing distance indicates the maximum distance that the sensor is

capable to see the target object and material. The easier an object is to detect, the longer

the maximum sensing distance can be.

32

There are several environmental situations that need to be considered:

 Ambient noise

The noise suppression circuitry in ultrasonic sensor allows them to function

reliably in noisy environments.

 Air pressure

Measurement accuracy of the ultrasonic sensor may be affected under normal

atmospheric pressure. It is not encouraged to use ultrasonic sensor in high or low

air pressure environment because the transducer or sensor face may be damaged

under extreme pressure.

 Air temperature

Increasing in temperature will slowing down the speed of sound, thus, the

sensing distance will be increased.

 Air turbulence

Air turbulence affects the reflection of sound wave, it may cause refraction of

sound wave and weaken or divert the sound wave to the extent that it is not

receive at all.

2.6.1 Advantages of an ultrasonic sensor (Rockwell Automation, 2016)

There are several advantages of ultrasonic sensor:

 The detection of an ultrasonic sensor does not depend on surface color or

optical reflectivity of the object.

 Ultrasonic sensors with digital outputs have high sensing accuracy. It can

detect an object ahead directly by ignoring the background of the object.

 The reflection of analog ultrasonic sensors is linear with distance. The visual

indication of target distance can be obtained by interfacing the sensor to an

LED display. Thus, ultrasonic sensor is usually used for level controlling and

linear motion controlling application.

33

2.6.2 Disadvantages of an ultrasonic sensor

There are also several disadvantages of using ultrasonic sensor:

 The surface of the target object to be detected must be squarely or

perpendicularly to receive sufficient sound echo. Also, different sensor type

requires different minimum target area.

 The ultrasonic sensors are still likely response to false noise such as “hissing”

sound produced by air hoses and relief valves.

 There is minimum sensing distance in ultrasonic sensor.

 Ultrasonic response will be affected by environment changes.

 It is not easy to detect sound absorbing materials such as clothes, foam and

etc.

2.7 Conclusion

This chapter mainly discuss about literature review on history of detector,

existing project of anti-collision system of a vehicle and component used in this project.

A detector has been widely used for a very long time, the first detector was invented in

1883. It has been used in most of the technology device including range detection in

anti-collision application. Many anti-collision system based on different component have

been introduced to avoid car accidents. These components include radar, infrared

sensor, ultrasonic sensor and etc. This chapter also discuss about the components that are

going to be implemented in this project such as FPGA and ultrasonic sensor. FPGAs are

digital integrated circuits that are designed to perform variety of tasks. Compared to

ASIC, cost of FPGA is much lower than ASIC. Changing of design in FPGA is much

easier and time-to-market of FPGA is faster. In comparison with microcontroller, the

main benefit of FPGA is that it can run concurrently while microcontroller is always run

in sequential. Ultrasonic sensor is another component that will be used in this project, it

is used to detect distance between current object and object ahead by calculate the time

34

of emitting and receiving sound wave correspond to the speed of sound. Verilog and

VHDL are the languages that can be used to configure FPGA. The main difference of

Verilog and VHDL is that the concept and syntax of Verilog is more on C programming

while the VHDL is more on Ada programming.

35

 CHAPTER 3

RESEARCH METHODOLOGY

3.0 Introduction

 This chapter will mainly discuss about the research methodology of this project.

It covers all the detail explanations of methodology that being used in this project. A

project methodology is very important to ensure a project can be completed smoothly by

follow the correct sequences. The project methodology normally consists of a few stages

or phases to ensure the project objective can be achieved. Besides that, this chapter also

discuss about the project overview by including the block diagram and related

calculation of this project. Implementation flowchart and project flowchart will also be

included in this chapter so that there is a clear picture on how did the project be

implemented and how did the project run. Furthermore, this chapter will also cover the

project schedule. The project schedule would list out the activities that would be done,

together with the duration for each of the activity. This was necessary to ensure the

project could be done in time.

36

3.1 Flow Chart of Project Methodology

Figure 3.1: Flow chart of project methodology

Figure 3.1 shows the flow chart of implementing this project. The details of the project

methodology would be discussed in the following session.

Analyzing on how the FPGA and

ultrasonic sensor work

Study algorithm of existed range sensor

Calculate the safe distance between

vehicles in both driving and parking mode

Do research and collect data and information

Planning and designing the algorithm

No

Start

Writing report

Test and Analysis

Selection of software and hardware

components

Software and hardware development

Submission of report and presentation

End

Successful?

Yes

37

3.2 Project Methodology

 This session will discuss about project methodology. The project methodology

was developed so that a project could be completed in a good manner. A project

methodology is to provide an efficient method and sequences of processes for developer

to ensure the project can be conducted in a smooth way. It is a process that describes

work scopes and details of each stage from the beginning of the project until the project

submitted. There were several stages included in project methodology. The process of

development of smart collision avoidance alert system is depicted in the Figure 3.2.

Figure 3.2: Smart Collision Avoidance System Chart

Preliminary Investigation

Analysis and Identify

Information

Decision Making

Hardware Software

(Languages)

Distance

sensor

Infrared

sensor

Ultrasonic

sensor

Controller Verilog VHDL

Software and hardware development

Microcontroller FPGA

38

Figure 3.3: Summary Chart

Figure 3.3 shows the summary chart of the development of smart collision avoidance

alert system. From Figure 3.3, it can be seen that there were several stages involved in

the development of the project included preliminary investigation, analysis and identify

information, decision making and last but not least, software and hardware development.

In the stage of decision making, several components have been considered based on their

functions and specifications. Hardware components that have been chosen for this

project were ultrasonic sensor and FPGA. For software, there were two programming

languages could be used for the configuration of FPGA, the language that has been

Preliminary Investigation

Analysis and Identify

Information

Decision Making

Hardware

Distance

sensor

Controller

Ultrasonic

sensor

Software

(Languages)

Verilog

FPGA

Software and hardware development

39

chosen for FPGA configuration was Verilog. The details and explanations of each stage

including the selection of components and languages will be discussed in the following

session.

Figure 3.4: Stages of project methodology

3.2.1 Stage I: Preliminary Investigation

Preliminary investigation was the first step of developing the project.

Before starting any project, it is very important to list out the objective of the

project. The objective of the project must be related to the problem that stated in

problem statement. At the beginning of this project, the objectives of this project

have been listed out which the main objective of this project was to develop an

algorithm to detect and alert occurrence of slowing or stalling vehicle ahead on

FPGA to reduce the probability of occurrence of road accident. Researches

regarding the specifications of FPGA and other components that were going to

Preliminary Investigation

Analysis and Identify

Information

Decision Making

Software and hardware

development

Analysis

40

be used in this project have been done. This was important to ensure the direction

of developing this project was correct and reduced the mistake that might occur

along the developing process. A preliminary proposal has been prepared in order

to allow the developing process could be run smoothly.

There were a few aspects included in the proposal:

 Project briefing

 Problem statement

 Objective of the project

 Work scope

 Project methodology

 Expected result

 Project planning

3.2.2 Stage II: Analysis and Identify Information

 After defining the objective of the project and have a clear concept and

direction of doing the project, the second step was collecting information and

data that might be helpful in developing the project. These information and data

could be collected from journal, reference book, newspaper, article or any

reliable website. The collected information and data were analyzed and identified.

The information and data that have been gathered for this project including

history of detector, sensors that have been used in vehicle, previous study on the

development of anti-collision systems for vehicle and components and languages

that were available for this project. Comparison between available components

and languages were also included in this stage. From these information and data

collected, the functions and specifications of each component could be seen

clearly and it gave a clearer concept on the developing of the project.

41

3.2.3 Stage III: Decision Making

 Decision making is an essential step to decide which components to be

used in developing a project. This project contained two parts: Hardware and

software. There were two components that have to be chosen in the hardware

part which were Controller and Distance Sensor.

Hardware: Controller

The main component of this project was the controller. The controller

played an important role in this project, it controlled all activities of the system

and decided how the system run. In order to choose the correct controller to

allow this system to work in the best way, all the specifications have to be

considered. The ideal controller to be used in this project needed to be fast,

flexible and has good performance. Controllers that could be used in this project

were FPGA, Arduino and microcontroller such as ARM7. Field programmable

gate arrays (FPGAs) are digital integrated circuit that are designed to perform

variety of tasks such as combinational functions, or simply logic gates like OR,

AND, NOR and XOR gates. It can be configured or reprogrammed by customers

or designer engineers after manufacturing. FPGAs contain an array of

programmable logic blocks along with configurable interconnects between these

blocks, it can do several process at the same time.

Arduino is an open source physical computing platform based on a

simple input board and development. It is cheaper compared to FPGA and other

programs language. An arduino usually use in sensors and actuators. The

disadvantages of Arduino are: it does not have security; it cannot do several

processes at the same time.

For microcontroller, unlike FPGA, the functionality of microcontrollers is

fixed during manufacture, thus the functionality of a microcontroller cannot be

changed as required. By comparing microcontroller to FPGA, FPGAs were more

42

likely to be used in military application because FPGA is hard-wired, the

memory areas of FPGA not easy be attacked or destroyed by alpha rays, the

functionality of FPGAs are not easy be corrupted. Besides that, life time of

FPGA based development is longer.

After comparing three of the controllers, FPGA was more preferable in

this project because its ability to do several processes at the same time makes it

has fast response compared to Arduino and microcontroller. It can be

reprogrammed by designer or developer, this makes it more flexible to be used

by user. Besides that, life time of FPGA based development is longer compared

to microcontroller based development.

Hardware: Range Sensor

 Range sensor was required in this project to detect the range between

current vehicle and vehicle or object ahead. The data or output produced by the

range sensor would be used for analyzing and interpreting by controller. There

are many types of sensor in the market such as infrared sensor, ultrasonic sensor

and etc.

 Ultrasonic sensor is a type of sensor that is designed to measure the

distance between current object and non-contact distance object. Ultrasonic

sensors emit a sound wave that reflects off of objects entering the wave field.

The sound wave is then reflected and received by ultrasonic sensor. By emitting

and receiving the sound wave, the distance between current object and object

ahead can be determined. The advantage of ultrasonic sensor is that it does not

depend on surface color or optical reflectivity of object. Ultrasonic sensors with

digital outputs have high sensing accuracy. It can detect an object ahead directly

by ignoring the background of the object. Furthermore, ultrasonic sensor is

relatively inexpensive to be used.

 Infrared sensor is different with ultrasonic sensor, the reflection of

infrared sensor depend on the surface of the object, different surface, different

43

colors and different shades provide different reading to the sensor even if the

range is the same. Ultrasonic sensor emits sound waves to detect range but

infrared sensor emits infrared light and therefore infrared sensor is not the best

out there, it cannot work accurately if there is direct or indirect sunlight.

 After went through the advantages and disadvantages of both ultrasonic

sensor and infrared sensor, ultrasonic sensor was selected for this project due to

its accuracy compared to infrared sensor. Infrared sensor is cheaper than

ultrasonic sensor, but the accuracy of infrared sensor is lower than ultrasonic

sensor, it required a narrow beam width for the reflection and cannot function

well under sunlight. Ultrasonic sensor can provide more accurate reading than

infrared sensor because its reflection does not depends on the surface of the

object and it can operates in both dark and bright environment.

Software: Programming languages

Since the controller that to be used in this project was FPGA, there were

two programming languages could be used to configure it. These two languages

were Verilog and VHDL. Both of these languages are considered as digital

design languages. There are differences between two of these language. In the

terms of concept and syntax, VHDL is more like ADA, it is strongly typed and is

not case sensitive. Verilog is more on C programming language which is more

familiar and easy to understand. Compared to VHDL that is more on ADA,

Verilog is easier to be learned and to be used. The structure of VHDL is more

complex, it does not allow user to intermix variables with different classes, thus

it a strongly typed language. Verilog is opposite with VHDL, it is weakly typed

and it does not contain as much rules as VHDL. It is more concise with efficient

notation. VHDL is deterministic and more verbose than Verilog.

 From the comparison between VHDL and Verilog, Verilog has been

chosen for configuration of FPGA because Verilog is easier to be used and it

does not as complex as VHDL. This is more convenient and easy to developer to

44

allow the developer to complete the project in time and to reduce the mistake that

may occur along the implementation of project.

3.2.4 Stage IV: Software and Hardware Development

 After the selection of hardware components and programming language

to be used, development of the project could be started. Altera Quartus II was the

software that has been used for the configuration of FPGA by using Verilog.

After the program has been written, it was compiled and stimulated in the

software Altera Quartus II. The program was executed in the Altera Quartus II.

After made sure that there was no error detected in the program, the hardware

part has been developed and the program has been embedded into the FPGA. The

system was tested and modified repeatedly until it achieved the objectives of this

project.

3.2.5 Stage V: Analysis

 In order to make an analysis on the overall performance of the alert

system based on FPGA, a comparison with the existing system based on Arduino

has been done. The comparison was done by comparing the speed of the system

to respond to the detected distance between FPGA based system and Arduino

based system. The execution time of Arduino based system has been obtained

from existing data while the speed of FPGA based system has been determined

by calculating the number of clock cycle required for the system to process the

detection.

45

3.3 Project Overview

 The main objective of implementing this project was to design an algorithm to

detect the range between the detector and the vehicle or object ahead on the road by

using FPGA to prevent or minimize the risk of road accidents. As mentioned earlier, this

algorithm contained two modes.

In driving mode:

 This algorithm allowed the detector to detect the rate of change of range

between current vehicle and vehicle or object ahead. If the range between

current vehicle and vehicle or object ahead reduced drastically, it was

possible that the vehicle ahead brake suddenly, the algorithm would activate

the buzzer and LED to alert the driver.

 This algorithm would calculate the safe distance between two vehicles and

alert the driver through buzzer and LED if two of the vehicles crossed the

safe distance.

In parking mode:

 The algorithm also allowed the detector to detect the distance between the

detector and the vehicle or object ahead during parking. Buzzer and LED

would be activated to alert driver if the vehicle was about to crash with the

vehicle or object ahead.

46

Figure 3.5: Block diagram of FPGA Based Smart Collision Avoidance Alert

System

 From Figure 3.5, it can be seen that the Ultrasonic Sensor was connected with

FGPA, LED and a buzzer. An ultrasonic sensor was used in this project only for testing

the functionality of this system. It was used to detect the range of current vehicle and

vehicle or object ahead by calculating the elapsed time of emitting and receiving sound

waves. The elapsed time that obtained by ultrasonic sensor would be transmitted to

FPGA for processing. The FPGA acted as a controller in this project. It controlled the

activities of this system and sent out signals to activate buzzer and LED. There were two

HDL languages that could be used to configure FPGA which were Verilog and VHDL.

The HDL language that has been used in configuring FPGA was Verilog because it was

easier to be used compared to VHDL. FPGA controlled the activities of the system

based on the elapsed time obtained and safe distance between vehicles.

In FPGA, if the driver turned on driving mode and if elapsed time of emitting

and receiving sound waves reduced drastically, FPGA would send out a signal to

activate buzzer and LED to alert driver. If FPGA detected that the distance between two

vehicles crossed the safe distance that has been calculated, FPGA sent signals to activate

the buzzer and LED as well. If there was no vehicle or object found in front of the

vehicle on the road, ultrasonic sensor continued to send out the sound wave and no alert

47

signal would be activated. When driver was going to park a car, he or she could turned

on parking mode. The safe distance between vehicles for parking mode and driving

mode were different. When a car is running, it is necessary to estimate the time and

distance for a car to decelerate its speed until the car is stop, but when a car is about to

parking, its speed is slow, no time is required for the car to slow down, therefore, the

safe distance between vehicles for parking mode was shorter compared to driving mode.

3.3.1 Formula for calculating range between sensor and vehicle ahead

Ultrasonic sensor was used to emit and receive sound waves. The elapsed

time obtained from the emitting and receiving sound waves could be used to

calculate the range between current vehicle and vehicle or object ahead. Since

the ultrasonic technology is based on the principle of velocity, the velocity of

sound is required in calculating the range between vehicles. Sound has a constant

velocity of 343.2m/s. The time for emitting and receiving sound wave is directly

proportional to the distance to the object.

The formula for calculating the range between the sensor and the vehicle ahead

using ultrasonic sensor are:

Distance that sound travels = Speed of sound in air * Time that sound

travels

Distance to the vehicle = 0.5 * Distance that sound travels

Speed of sound in air = constant = 343.2m/s

Since the time acquired from ultrasonic sensor is the total time of emitting and

receiving sound waves, which indicates that the time is twice of the distance,

therefore, when calculate distance, the value that obtained from multiplication of

speed of sound in air and time that sound travels has to be multiply with 0.5.

48

3.4 System Operation Flow

Figure 3.6: Flowchart of FPGA based smart collision avoidance alert system

Ultrasonic sensor emits a sound wave

Start

Sound wave reflects off the vehicle or object

FPGA processes the information and checks the total time

taken of emitting and receiving sound wave. The elapsed

time is proportional to the distance.

Vehicle or object ahead?

Ultrasonic sensor receive the sound wave

Ultrasonic sensor sends information to FPGA

 Elapsed time drastically reduced

 or

 Vehicle cross safe distance of either

parking mode or driving mode

FPGA activates the buzzer and LED

End

Turn off the system

Yes

No

No

No

Yes

Yes

49

3.5 List of components

Table 3.1: List of components

No Name of

components

Units Function Specifications

1 FPGA 1 Analyze output of

ultrasonic sensor,

control activities of

the system and send

signals to activate

buzzer and LED.

 Faster response

 Can be

reprogrammed

 Flexible

 Longer life time

2 Ultrasonic

sensor

1 Detect range between

current vehicles and

vehicle or object

ahead.

 Accurate

 Does not depend on

surface of object

3 Buzzer 1 Alert driver  Produce sound

4 LED 1 Alert driver  Emit light

Table 3.1 shows the components that have been used in this project.

50

3.6 Project Planning

 Project planning is also known as project management that states how to

complete a project within a certain timeframe. It was very important to ensure a project

could be completed in time and allow the developing process to be systematic and

smooth. The project planning provided a step by step approach to complete the project.

It related to the use of schedules such as Gantt charts. In project planning, every task that

has to be done have been listed out. If there were resources for each task, the resources

were identified. One of the most important parts in project planning was the estimation

of time. The time to complete every task has to be estimate so that the duration for the

whole project to be completed could be known. Estimation of time also could help

developer to manage their time in a well manner. After deciding the components to be

used in the project, developer has to estimate the cost that would be used for purchasing

components to avoid over budget. Besides that, the tasks that were dependent on other

task have to be determined so that the developer could determine which task has to be

done first. Gantt chart was useful in a project planning. It listed out all the tasks that

needed to be done in a well arrangement together with the duration for each task.

51

T
ab

le
 3

.2
:

G
an

tt
 C

h
ar

t
o
f

p
ro

je
ct

 p
la

n
n
in

g

52

3.7 Conclusion

 This chapter mainly discuss about the methodology of this project. A project

methodology is an efficient method and sequences of processes for developer to ensure

the project can be conducted in a smooth way. Project methodology is required to ensure

the project can be completed in the estimated time. There were four stages included in

the project methodology. These four stages were preliminary investigation, analysis and

identify information, decision making and hardware and software development. In

preliminary investigation, a proposal which contained the preliminary concept and idea

for the project has been prepared. The main part of analysis and identify information was

do research on all components and elements that was related to this project. Decision

making was the stage where the desired components were chosen based on their

specifications. FPGA, ultrasonic sensor and the programming language Verilog were the

components and program language that have been chosen and have been used in this

project. After development of hardware and software, an analysis by comparing this

system with Arduino based collision avoidance system has been done. Flowchart was an

important element in project methodology. Flowchart gave a clear picture to people of

how did the project be implemented and how did the project run. In order to have a good

time management in developing a project, Gantt chart has been used for listed out all the

activities that would be done in developing this project. Besides that, the duration for

each task to be completed also stated in the Gantt chart.

53

 CHAPTER 4

RESULT AND DISCUSSION

4.0 Introduction

 This chapter will mainly discuss about the simulation result and hardware

implementation result of this project based on the methodology that has been stated in

chapter 3. Besides, this chapter will also discuss about the hardware and software

operation of this project. The comparison between performance of FPGA and Arduino in

the aspect of speed will also be discussed in this chapter.

4.1 Hardware Implementation

 As what have been stated in methodology, the main controller and components

used in this project were FPGA, ultrasonic sensor, a led and a buzzer. The ultrasonic

sensor was used to detect the range between current vehicle and vehicle or object ahead

in order to alert the driver when there is possibility of collision. FPGA acted as the

controller to process the signal received from ultrasonic sensor and responsible to make

decision on whether to activate the alert system. The led and buzzer were parts of the

alert system, they would be activated when high signal is received.

54

Figure 4.1: Connection of FPGA and the components on breadboard

 Figure 4.1 shows the connection between FPGA and the components on

breadboard. The Altera DE0 Board is equipped with Altera Cyclone III 3C16 FPGA

device; it consists of two 40-pin expansion header. According to Terasic Technologies

(2012), each header connects directly to 36 pins of the Cyclone III FPGA. Each header

also provide two VCC with +5V and +3.3V respectively and two GND pins. There are 4

pins among these 36 I/O pins connected to the PLL clock input and output pins of FPGA.

55

Figure 4.2: I/O distribution of the expansion headers of DE0

Figure 4.2 shows the I/O pins of DE0 board. Only a few pins of GPIO 1 were used in

order to build the connection between this board and the components on breadboard as

shown in Figure 4.1. Pins that involved for the connection were PIN_H2, PIN_AB20,

PIN_AA20, PIN_J6, PIN_V15 and PIN_AB9. DE0 board includes a built-in 50MHz

clock input where the pin assignment for the clock input was PIN_G21. Table 4.1 shows

the pin assignment for each input and output of this project.

56

Table 4.1: Pin Assignment and Pin Usage

DE0 board pin value Pin Usage

PIN_H2 This pin was connected to a push button for reset

purpose.

PIN_AB20 This pin was connected to trigger pin of ultrasonic

sensor.

PIN_AA20 This pin was connected to echo pin of ultrasonic

sensor to receive echo.

PIN_J6 This pin was connected to a switch to allow change of

speed mode.

PIN_V15 This pin was connected to a LED for alert purpose.

PIN_AB9 This pin was connected to a buzzer for alert purpose.

PIN_G21 This pin was connected to a 50MHz clock input.

4.2 Algorithm Implementation in FPGA

 This project was mainly focus on the algorithm implementation, thus, the

algorithm of this project played an important role in making this project successfully

worked. There were two finite state machines included in this project which were sensor

controller finite state machine and comparator finite state machine. Finite state machine

is used to design sequential logic circuit. In finite state machine, one state is available

only at a time and the state that available at the time is called current state. It can change

from one state to another only when some condition is true or is initiated by triggering

event. The changing of the state is called transition. Finite state machine was used in this

project because only one state of operation was required at a time. The processes of

sending and receiving the signal from ultrasonic sensor, interpreting and processing the

signal could be complex, but with implementing of state machine, the processes could be

simpler. It made the code more efficient.

57

 4.2.1 Sensor Controller Finite State Machine

Sensor controller finite state machine was used to control the operation of

the ultrasonic sensor. This state machine was designed based on the operation of

ultrasonic sensor. According to Cytron Technologies (2013), in order to allow an

ultrasonic sensor to start a measurement, trigger pin of ultrasonic sensor must

receive a high pulse for at least 10us to allow the transmission of eight cycle of

ultrasonic burst at 40kHz. When there was ultrasonic detection at the receiver,

echo pin was set to high and delay for a period which proportional to the distance.

Thus, the distance obtained can be measured by the width of the echo pin. 60ms

of measurement cycle is required for an ultrasonic sensor in order to avoid

trigger signal to the echo signal.

58

`

Figure 4.3: Sensor controller finite state machine

 According to Figure 4.3, there were five states in the sensor controller

state machine which were idle, start, waiting, receive and stop. There was no

operation in the idle state, when the comparator done the comparison, the state

machine moved to the next state which was start state. At start state, trigger

was set to 1 and the state machine started to count until 10us as the trigger pin of

IDLE

START

WAITING

STOP

trig = 10us

compare_done = 1

echo = 1

Reset

RECEIVE

echo = 0 or Time out

end_60us

59

ultrasonic sensor must receive a high pulse for at least 10us, and moved to

waiting state. At waiting state, trigger was set to 0. When high echo was

detected, the state machine moved to the receive state. receive state waited for

the low echo, when low echo was detected, the state machine moved to the stop

state and distance was obtained based on the delay of the high echo. When there

was no detection, the state machine also moved to the stop state and waiting for

60ms for next measurement cycle. After 60ms, the sensor controller state

machine sent a signal to comparator state machine to enable next comparison.

4.2.2 Comparator Finite State Machine

 The sensor controller finite state machine sent the detected distance to

comparator finite state machine for comparison. The comparator finite state

machine responded to the distance that received from the sensor controller finite

state machine and checked whether the detected distance was less than the safe

distance. Safe distance means the safe following distance from current vehicle to

vehicle ahead. If the detected distance was less than the safe distance, indicating

that the current vehicle was following too close to the vehicle ahead and it might

cause collision to occur, the alert system would be activated. The comparator

also compared current following distance and previous following distance to

check the rate of change of distance between current following distance and

previous following distance. If the distance between current vehicle and vehicle

ahead reduce drastically, it was possible that the vehicle ahead had made a

sudden braking and the comparator finite state machine would activate the alert

system.

60

`

x = Safe distance

y = Difference between current following distance and previous following

distance of vehicle

Figure 4.4: Comparator state machine

IDLE

UPDATE

COMPARE_DI

STANCE

WAITING

enable_compare = 1

distance > x &

safe_distance_alert = 0

Reset

COMPARE_DIFF

ERENCE

different < y or

different > y &

collision _alert = 0 or

different > y &

collision _alert = 1

en_next_compare = 1

speed = 0 or

distance <x or

distance > x &

safe_distance_alert = 1

61

Figure 4.4 shows the states of comparator finite state machine, there were

also five states in the comparator finite state machine which were idle, update,

compare_distance, compare_different and waiting. At idle state, comparator

state machine enabled the sensor controller state machine to send out signal for

detection, it moved to update state when distance between current vehicle and

vehicle or object ahead was detected. At update state, previous distance and

current distance was updated before it moved to the compare_distance state.

Current distance was compared to the safe distance in this state. If current

distance less than safe distance, means that current vehicle was following too

close to the vehicle ahead, the LED would be activated. The state machine

moved to the waiting state. If current distance bigger than safe distance but the

LED was activated, the LED would be deactivated. In driving mode, if current

distance bigger than safe distance and the LED was deactivated, the state

machine moved to the compare_difference state to check if vehicle ahead made

sudden braking, if vehicle ahead break suddenly, collision_alert would be

activated. If vehicle ahead drove smoothly without sudden braking but the

collision_alert was activated, the collision_alert would be deactivated. If there

was no sudden braking and the collision_alert was deactivated, the state machine

would move to the waiting state. In parking mode, since the speed of the vehicle

was very slow, detection of sudden braking was not required, the comparator

state machine moved directly to the waiting state after compare_distance state.

The comparator state machine returned back to idle state when next comparison

was enabled.

62

4.2.3 Main Module of Collision Avoidance Alert System

Figure 4.5: Top plane of collision avoidance alert system

Figure 4.6: RTL viewer of main module on Quartus II

63

F
ig

u
re

 4
.7

:
R

T
L

 v
ie

w
er

 o
f

se
n
so

r
co

n
tr

o
ll

er
 m

o
d
u
le

 o
n
 Q

u
ar

tu
s

II

64

F
ig

u
re

 4
.8

:
R

T
L

 v
ie

w
er

 o
f

co
m

p
ar

at
o
r

m
o
d
u
le

 o
n

 Q
u
ar

tu
s

II

65

Both sensor controller finite state machine and comparator finite state

machine were developed in different module. In order to allow the

communication of these two modules, a main module was developed to combine

each of them. Figure 4.5 shows the combination of sensor controller finite state

machine and comparator finite state machine with ultrasonic sensor. The

modules were combined by using module instantiation where both of the finite

state machines were instantiated within the main module. Port connection for

each state machine were done by ordered connection, thus, the order of the ports

of each state machine must match with the order of the instantiated module.

Figure 4.6 shows RTL viewer of main module after the combination of

sensor controller finite state machine and comparator finite state machine. From

Figure 4.6, it can be seen that each of the finite state machines were interacting

with each other by exchanging signal simultaneously on multiple ports. The

ultrasonic sensor sent a signal to sensor controller finite state machine when echo

was received, the sensor controller finite state machine then sent a signal to

comparator finite state machine to allow the comparison. Figure 4.7 and Figure

4.8 show the RTL viewer of sensor controller module and comparator module

respectively. From the RTL viewers, it can be seen that both of the module was

made up of an integrated circuit that contained large amount of gates to allow

their operation.

4.3 Interaction between Software and Hardware

 In order to allow the interaction between Altera Quartus II and FPGA, ports of

main module needed to be configured and connected to the pins of FPGA. Pin

assignment was required to assign ports of main module in Altera Quartus II to pins on

DE0 board. The pin assignment was made in the Assignment Editor environment.

66

Figure 4.9: Assignment Editor

Figure 4.9 shows the Assignment Editor which located in the Altera Quartus II. There

were two ways of pin assignment. It can be either modify in the pin planer of Altera

Quartus II or insert name of each ports into the pin assignment editor as shown in Figure

4.9. Each port was assigned to their corresponding pin that connected to hardware by

adding the pin value to the value column based on the pin value given in the I/O

distribution table of DE0 board. A 50MHz of clock signals that included in the DE0

board was used and pin assignment for that clock input was PIN_G21.

4.4 Simulation

 After the development of state machines on Altera Quartus II, the design and

requirement was tested by using simulation before it was implementing on hardware. It

is better to test a design by using simulation first instead of implementing it directly on

hardware. Problem can be found easily on simulation because the interaction between

variables can be seen. Each data that stored in a variable can also be seen while the

design is running. Besides, the input could be generated from user to check if the output

results match with the input. This helps to check if the result is correct. When there was

error occurred, the causes could be figured out easier by using simulation because it

showed out every variable that could not be seen in hardware implementation. There

were two available simulation tools, which were university program VWF and

ModelSim. University program VWF was used at the beginning of simulation. By using

this tool, the input could be generated directly on the VWF program but the time allowed

67

for the simulation was limited, the total time that available for the simulation was only

100us which was not enough for testing the design, thus ModelSim was used instead in

testing the design.

 ModelSim is a HDL simulation environment that available for simulation,

verification, and debugging of hardware description languages such as Verilog and

VHDL. Unlike university program VWF, input of ModelSim could not be generated

inside the simulation window; a test bench module was required to generate inputs for

the simulation. Test bench was used to simulate the design without implementation of

the design on hardware. It was written in Verilog language as well. The module to be

simulated was instantiated in the test bench module as shown in Figure 4.10 and the

inputs was generated by using delay of unit.

Figure 4.10: Instantiation of module in test bench

68

Figure 4.11: Script of test bench in Verilog language

Figure 4.11 shows the script of test bench used in the simulation. Timescale was

required in every test bench because it was used to determine time for each unit. As

shown in the script, 10ns was used for one unit, which means that delay of 10 units was

equal to delay of 100ns. In test bench module, no input and output port was required, all

the inputs needed to be initialized before the simulation got started. Each of the input

was generated by using the symbol delay # followed by unit of time as shown in Figure

4.11. Since the period of one clock cycle was 20ns, thus, 1000 clock cycle was equal to

2000 unit. No limitation of time was required for running the simulation in ModelSim,

the end time could be adjusted based on the design. Changes of any variable in each of

the state machine could be viewed easily by right clicking the variable and add wave to

the simulation window as shown in Figure 4.12. Therefore, every signal that was in the

design could be inspected during running of the simulation on the simulation window.

69

Figure 4.12: Object window of module

4.4.1 Simulation Result

 The safe distance for simulation and real implementation was set to

different value respectively. This was because the value for real implementation

on hardware was very big and it would be very time consuming in order to run

the simulation whole. Furthermore, the objective of running the simulation was

to check the functionality and performance of the design. The value can be

changed during real implementation. In simulation, the safe distance was set to

300 clock cycle when it was in driving mode, which means that when the input

showed that the current distance was less than 300 clock cycle, implied that

current vehicle was following too near to the vehicle ahead and there might cause

a collision to occur, thus the safe_distance_alert should be activated. The

maximum difference value of previous following distance and current following

distance allowed was set to 100 clock cycle, implied that when the difference

between previous following distance and current following distance exceeded

100 clock cycles, the vehicle ahead has made a sudden braking and

collision_alert should be activated.

70

Figure 4.13: Waveform of simulation result when current distance less than safe

distance

Figure 4.13 shows waveform of the simulation result. From Figure 4.13, the

sensor controller state machine moved to the waiting (0100) state and enabled

the comparison in comparator state machine. The distance obtained from sensor

controller finite state machine was passed to the comparator state machine and

comparison was started. It can be seen that current distance was updated to 199

clock cycles after the update (0001) state of comparator state machine. After the

compare_distance (0010) state, the safe_distance_alert was activated because

current distance was 199 clock cycles which was less than the safe distance 300

clock cycles. The result was similar with the expected result. The

safe_distance_alert would continue to be activated as long as the vehicle was not

in the safe distance with vehicle ahead.

71

Figure 4.14: Waveform of simulation result in when difference distance more

than maximum difference distance allowed

Figure 4.14 shows the result when difference between previous following

distance and current following distance was bigger than 100 clock cycles, which

means that vehicle ahead had made a sudden braking. From Figure 4.14, it can be

seen that in compare_distance (0010) state of comp_state, current distance was

800 clock cycles which was bigger than the safe distance 300 clock cycles, the

safe_distance_alert remained in deactivated, thus the comparator moved to the

next state which was the compare_different (0011) state. The collision_alert

had been activated in this state because the difference distance was 201 clock

cycles which was bigger than 100 clock cycles, the maximum difference distance

allowed.

72

Figure 4.15: Waveform of simulation result during switching of mode

Figure 4.15 shows the waveform simulation result when user switched from

driving mode to parking mode. It can be seen that both finite state machine has

went back to idle (0000) state. Switching of the mode was indicated by the speed,

speed was high during driving mode and it turned to low when user switched

from driving mode to parking mode. When user switched from one mode to

another, the system would be reset to prevent occurrence of error.

73

Figure 4.16: Waveform of simulation result during parking mode

The safe distance for driving mode and parking mode was different since the

speed of vehicle in driving and in parking are different. In simulation, the safe

distance were set to 300 clock cycles and 100 clock cycles for driving mode and

parking mode respectively. According to Figure 4.16, the safe_distance_alert was

activated when current distance equaled to 100 clock cycles, which was similar

with the expected result.

4.5 Hardware Validation

After the simulation has been successful, the design was implemented on

hardware. A debugging tool called Signal Tap II included in the Quartus II software has

been used to display signals in real time in the FPGA design. The setting must be

changed according to the requirement of the project before the SignalTap analyzer can

work. Once the hardware has been setup and connected to the Quartus II, the project on

Quartus II with SignalTap II instantiated loaded onto the DE0 board and the analysis

74

was run. The hardware started to run and the changes of signal on each variable have

been displayed on the SignalTap II window.

In real time hardware implementation, the safe distance was set to 10cm and 5cm

for driving mode and parking mode respectively. The maximum difference between

previous following distance and current following distance allowed was set to 5cm.

Figure 4.17: Object detected during driving mode

The safe distance was set to 10 cm for driving mode in real time implementation on

hardware. According to Figure 4.17, it can be seen the LED has been lighted up as

expected when there was object detected less than the safe distance.

10 cm

75

Figure 4.18: Object detected during parking mode

The safe distance was set to 5 cm for parking mode in real time implementation on

hardware. According to Figure 4.18, it can be seen the LED has been lighted up as

expected when there was object detected less than the safe distance.

Figure 4.19: Logic Analyzer display when object detected less than safe distance

in driving mode

27099

(9.2cm)

5 clock

cycles

5 cm

76

From Figure 4.19, the safe_distance_alert has been activated as expected when the

object detected was less than the safe distance (10cm) as shown in Figure 4.15.

Figure 4.20: Logic Analyzer display when difference distance bigger than the

maximum difference allowed

Figure 4.20 shows the logic analyzer display when the difference between previous

distance of ultrasonic sensor and object and current distance of ultrasonic sensor and

object was bigger than the maximum difference allowed (5cm). Based on Figure 4.20,

the collision_alert has been activated as expected, proved that the buzzer has been

activated.

4.5.1 Analysis on Overall Performance

To make an analysis on the overall performance of the alert system based

on FPGA, a comparison with the existing system based on Arduino has been

done. Since both of the system were using ultrasonic sensor for detection of

distance, their comparison was done by only compared the time taken for each

system to respond to the echo received. From Figure 4.19 and Figure 4.20, it can

25414

(8.6cm)

6 clock

cycles

77

be seen that the time taken for the FPGA reacted to the echo received was only

approximately from five clock cycles to six clock cycles.

Time taken for one clock cycle = 20ns.

Five clock cycles = 5 * 20ns = 100ns

Six clock cycles = 6 * 20ns = 120ns

From the calculation shown, the maximum time taken for the FPGA responded

to the echo received and generated output for the system was only 120 ns.

Figure 4.21: Arduino based collision avoidance alert system

Figure 4.21 shows the Arduino based collision avoidance alert system which

had been setup for comparison purpose. From Figure 4.21, it can be seen that the

ultrasonic sensor also acted as the distance detector in Arduino based collision

avoidance alert system.

78

Figure 4.22: Execution time of Arduino based collision avoidance alert system

when object detected less than safe distance

79

Figure 4.23: Execution time of Arduino based collision avoidance alert system

when difference distance bigger than the maximum difference allowed

Figure 4.22 and 4.23 shows the detected distance and execution time of

Arduino based collision avoidance alert system. The safe distance of the system was

set to 5cm. According to the data shown in Figure 4.22, the maximum time taken for

the system to respond to the echo received was 12 us when the system did not need

to activate the alert. When there was detection, the time taken for the system to react

to the echo received was 152 us since the system needs to activate the alert.

From Figure 4.23, when the distance between the object and the ultrasonic

sensor decreased from 18cm to 9cm, the execution time was 148 us which was much

longer compared to FPGA based collision avoidance system. This was because

FPGA could run the detection and activate the alert simultaneously, while Arduino

need to wait for the alert triggering to finish first, then only can go back to the next

80

detection. Run simultaneously means that the FPGA could transmit and receive

signal and process the received signal at the same time. Thus in FPGA, it could

activate the alert and at the same time, the new detection would be continued. In

Arduino, the system needed to wait until the alert stopped, only it would continue

with the new detection. This made a collision avoidance alert system more effective

and provided a better performance in order to prevent a collision to occur.

Besides that, the maximum frequency of the design shown from timing

analysis was 72MHz, but the frequency used for the project was only 50MHz, which

indicates that when we maximize the clock frequency until 72MHz, the execution

time could be shorter and the system could be more effective.

4.6 Limitation

 There were some of limitations by using ultrasonic sensor for distance detection.

The ultrasonic sensor could only detect the object or vehicle ahead when the object or

vehicle ahead was as perpendicular as possible to the sensor. There was difficulty for the

sensor to identify vehicle that traveling side by side.

 Besides, one of the limitations of an ultrasonic sensor was its flexibility in

detection, the ultrasonic sensor only able to detect obstacle ahead without accurately

identify the size and the exact location of the obstacle. Other than that, result of the

detection might be not consistent because changes in environment such as temperature,

pressure and air turbulence might affect the ultrasonic response. But due to limited cost

provided for this project, an ultrasonic sensor was used in this project for distance

detection.

 This system did not have auto braking system. When the driver unable to

response to the alert that have been activated, there was high possibility for the vehicle

to crash with the vehicle ahead since the vehicle did not have auto braking system.

81

4.7 Conclusion

 This chapter mainly discussed about the result of both simulation and hardware

implementation. From the result shown in both simulation and hardware implementation,

it has been proved that the system could be successfully worked since the result shown

was similar with the expected result. This chapter also described about the operation of

this system. This system was developed from two state machines which were sensor

controller finite state machine that used to control the operation of the ultrasonic sensor

and comparator finite state machine that used to allow the comparison of the detected

distance and react to the detected distance. There were also some limitations found in

this system. Ultrasonic sensor might not be the most suitable sensor to be used in this

system but due to limited of budget, the ultrasonic sensor was used in this system.

82

 CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Introduction

 This chapter will discuss about the conclusion of this project according to the

scope and objective that had been stated in introduction. This chapter will compare the

achievement of the result with the objectives that have been introduced in the

introduction. Besides that, this chapter will also discuss about the improvement that can

be made in this project regarding to the limitations that have been pointed out in chapter

4. The commercial potential of this project will also be discussed in this chapter.

5.2 Conclusion

 In order to reduce the occurrence of accident on the road and the impact during a

collision, a collision avoidance alert system is required to help to alert the driver when

there is possibility of collision. This project was about the implementation of FPGA

based collision avoidance alert system algorithm that has two modes, which were

driving mode and parking mode. In driving mode, the system would detect the range

between current vehicle and vehicle ahead, when the range between them less than the

safe distance that has been set, the system would alert the driver. When the rate of

change of distance between two vehicles change drastically indicates that the driver

ahead had made a sudden braking, the system would alert the driver as well. In parking

mode, the system would also detects the distance between current vehicle and vehicle or

object ahead to check if current vehicle is too close with vehicle or object ahead but the

83

safe distance in parking mode was different with the safe distance in driving since the

speed of vehicle in different mode are different. User could switch the mode of the

system accordingly. Parking mode could also be activated when the vehicle is driving in

low speed such as in traffic jam to prevent the driver drive too close with vehicle ahead.

 The first objective of this project was to develop an algorithm to detect and alert

occurrence of slowing or stalling vehicle ahead on FPGA. This objective has been

successfully achieved as the result shown in Chapter 4 has proved that the designed

algorithm could be successfully implemented on the FPGA based collision avoid alert

system. An ultrasonic sensor was used to detect distance. As shown in the result in

chapter 4, the LED has been lighted up when there was object detected near to the

ultrasonic sensor and the distance between the object and ultrasonic sensor was less than

the safe distance. The buzzer has been activated when there was object moved in high

speed near to the ultrasonic sensor.

 The second objective was to study on how to detect the rate of change of distance

between vehicles. The distance between vehicles was detected by using ultrasonic sensor,

in order to obtain the rate of change of distance, previous distance that obtained from

ultrasonic sensor was saved in a variable in the algorithm, current distance that obtained

from ultrasonic sensor was used to compare with the previous distance, if current

distance detected less than the previous distance, which means that the vehicle ahead had

applied brake on his vehicle, the different between previous distance and current

distance has been calculated in the algorithm. If the difference between previous

distance and current distance was big, means that the rate of change of distance between

vehicles was high implied that the vehicle ahead made a sudden braking, the buzzer

would be activated to alert the driver.

 The third objective of this project was to analyze the functionality and reliability

of the alert system in the aspect of distance detection. In order to achieve this objective,

a comparison between FPGA based collision avoidance alert system and Arduino based

collision avoidance alert system has been done. From the result shown in Chapter 4, it

has been proved that FPGA based collision avoidance alert system has better

84

performance and it was much more reliable to be used than Arduino based collision

avoidance alert system since the FPGA could run concurrently during the execution and

the processing speed was much higher than Arduino, thus FPGA abled to provide

prompt response to the detected distance. If there was possibility of collision, the system

would activate the alert component in a shorter time compared to Arduino. This was

very important to a collision avoidance alert system since a collision on the road can be

happened in seconds, if the collision avoidance alerts system unable to response to the

dangerous situation in short period, a collision might be occurred.

5.3 Future Improvement

 It has been stated in Chapter 4 that there were some limitations discovered in this

project. Ultrasonic sensor that has been used as the distance detector in this project could

only be able to detect object or vehicle ahead when the object or vehicle ahead was

perpendicular to the sensor, thus, there might be some blind spot that were unable to be

detected. A 24GHz radar sensor could be used in order to improve or to overcome this

problem. Michael Klotz and Hermann Rohling (2010) stated that 24GHz radar sensor is

very good in distance detection especially at detecting objects that reflect

electromagnetic radiation such as metal object. It has longer range, higher update rates

and higher precision compared to ultrasonic sensor. It allows the blind spot detection of

object or vehicle. The speed of radar sensor in the aspect of detection is higher than

ultrasonic sensor since the radar sensor is works with electromagnetic waves. Same as

ultrasonic sensor, the electromagnetic wave hits the object and returns the wave at

known speed but the speed is much higher than the sound wave emitted by ultrasonic

sensor.

 The result of detection by ultrasonic sensor was not consistent; it might be

affected by the surrounding temperature and pressure. A radar sensor provides more

consistent and accurate reading because it is much less affected by temperature.

85

 Auto braking system could be installed on the collision avoidance system in

order to stop the vehicle automatically when the driver fails to response to the activated

alert component. It is better to alert the driver before a collision could happen but if the

driver unable to response to the alert that has been activated, an auto braking system is

required to avoid collision.

5.4 Commercialization Potential

 The unique of this project is the controller. FPGA was used in this project in

order to process and response to the detected distance in a high speed. It provided more

reliable and better performance than other controller used in collision avoidance alert

system. Nowadays, the number of road accidents increasing year by year and caused

many people died. Most of the road accident was caused by human’s unawareness.

Therefore, a collision avoidance alert system with high performance is very important in

order to reduce the occurrence of road accident. The collision avoidance alert system

could be implemented in real time on every vehicle so that the driver could be aware of

the road condition all the time.

86

REFERENCE

Deepak Tuteja1, Dhruv Jain2, Hemant Singla3 et al. (2014) Detailed Survey on

Motion Sensing. Journal of Basic and Applied Engineering Research 1(8):27-31.

Ajit Kumar, Ankit Jaiswal, Neha Jaiswal et al. (2014) Vehicles Anti-collision

System. International Journal of Computer Applications (0975 – 8887) 99(19): 7-9.

Triveni Shinde and Prof. B.V.Pawar (2013) Car Anti-Collision and Intercommunication

System using Communication Protocol (A Prototype Model). International Journal

of Engineering Sciences & Research Technology [2087-2093] 2(8): 25-32.

Michal Kelemen, Ivan Virgala, Tatiana Kelemenova et al. (2015) Distance

Measurement via Using of Ultrasonic Sensor. Journal of Automation and Control

3(3):71-74.

Nishad Vivek Kumbhojkar and Chaitanya Avadhutchintan Kuber (2014) Ultrasonic

Automatic Braking System For Forward Collision Avoidance With Accelerator

Pedal Disengagement Mechanism. International Journal and Magazine of

Engineering Technology, Managemnt and Research 4(3):12-18.

Hua Huo, Jun Qiang Liu, and Yong Jie Wang (2015) Flood Diversion Algorithm for

Anticollision in RFID System. International Journal of Distributed Sensor Networks

2015(2015).

Chetan Sharma (2011) Designing Of Four Port Controlled Switch Using Verilog.

Journal of Global Research in Computer Science. 1(3).

http://www.sciepub.com/journal/AUTOMATION
http://www.hindawi.com/31582349/
http://www.hindawi.com/21053831/
http://www.hindawi.com/73096056/

87

Michael Klotz and Hermann Rohling (2010) 24 GHz radar sensors for automotive

applications. Journal of Telecommunications and Information Technology (JTIT).

Shival Dubey and Abdul Wahid Ansari (2013) Design and Development of Vehicle

anti-collision System using Electromagnet and Ultrasonic Sensors. International

Journal on Theoretical and Applied Research in Mechanical Engineering

(IJTARME), Volume-2, Issue-1.

Vaughn Betz, Jonathan Rose and Alexander Marquardt (2012) Architecture and

CAD for Deep-Submicron FPGAS. Berlin: Springer Science & Business Media.

Clive Maxfield (2011) FPGAs: Instant Access. Newnes.

Samarjit Chakraborty and Jörg Eberspächer (2012) Advances in Real-Time Systems.

Berlin: Springer Science & Business Media.

Subhas C. Mukhopadhyay and Joe-Air Jiang (2013) Wireless Sensor Networks and

Ecological Monitoring. Berlin: Springer Science & Business Media.

John Vetelino, Aravind Reghu (2010) Introduction to Sensors. United States of

America : CRC Press.

Terasic Technologies (2012) DE0 User Manual. Available at:

file:///C:/Users/User/Downloads/DE0_User_manual_2012.pdf

Cytron Technologies (2013) Product User’s Manual – HC-SR04 Ultrasonic Sensor,

Available at: https://docs.google.com/document/d/1Y-

yZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit.

Aflab Sarwar (2012) FPGA vs Microcontrollers. Available at:

http://electrodesigns.net/fpgas-microcontrollers/

https://www.google.com.my/search?tbo=p&tbm=bks&q=inauthor:%22Vaughn+Betz%22
https://www.google.com.my/search?tbo=p&tbm=bks&q=inauthor:%22Jonathan+Rose%22
https://www.google.com.my/search?tbo=p&tbm=bks&q=inauthor:%22Alexander+Marquardt%22
https://www.google.com.my/search?tbo=p&tbm=bks&q=inauthor:%22Clive+Maxfield%22
https://www.google.com.my/search?tbo=p&tbm=bks&q=inauthor:%22John+Vetelino%22
https://www.google.com.my/search?tbo=p&tbm=bks&q=inauthor:%22Aravind+Reghu%22
https://www.google.com/search?q=United+States&stick=H4sIAAAAAAAAAOPgE-LUz9U3ME7LK09SAjMtk83LDbT0Msqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKr5PzSvJKiSoX8NIX8osz0zDwAcBjlWUgAAAA&sa=X&ved=0ahUKEwjanqSSpujMAhXK7SYKHSLEDywQmxMIiwEoATAU
https://www.google.com/search?q=United+States&stick=H4sIAAAAAAAAAOPgE-LUz9U3ME7LK09SAjMtk83LDbT0Msqt9JPzc3JSk0sy8_P084vSE_MyqxJBnGKr5PzSvJKiSoX8NIX8osz0zDwAcBjlWUgAAAA&sa=X&ved=0ahUKEwjanqSSpujMAhXK7SYKHSLEDywQmxMIiwEoATAU
file:///C:/Users/User/Downloads/DE0_User_manual_2012.pdf
https://docs.google.com/document/d/1Y-yZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit
https://docs.google.com/document/d/1Y-yZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit
http://electrodesigns.net/fpgas-microcontrollers/

88

Ken Smyers (2013) StatTalk: Warren S. Johnson Patented the Thermostat in 1883.

Thanks ASME Milwaukee for the History & Heritage. Available at:

http://controltrends.org/building-automation-and-integration/06/stattalk-warren-s-

johnson-patented-the-thermostat-in-1883-thanks-asme-milwaukee-for-the-history-

heritage/#more-9415

A. Rogalski* (2012) History of infrared detectors. Available at:

http://antonirogalski.com/wp-content/uploads/2012/12/History-of-infrared-

detectors.pdf

XILINX (2016) Field Programmable Gate Array (FPGA). Available at:

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm

Jeff Johnson (2011) List and comparison of FPGA companies. Available at:

http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-

companies.html

Verilog Dot Com (2012) Verilog Resources. Available at: http://www.verilog.com/

Adela Megan Willy (2015) 5 common causes of road accidents in Malaysia.

Available at:

http://www.motorme.my/5-common-causes-of-road-accidents-in-malaysia

Free Malaysia Today. 2014. Sudden braking causes 13-vehicle pile-up. 3 December

2014.

International News. 2011. Human Error Accounts For 90% of Road Accidents.

http://controltrends.org/building-automation-and-integration/06/stattalk-warren-s-johnson-patented-the-thermostat-in-1883-thanks-asme-milwaukee-for-the-history-heritage/#more-9415
http://controltrends.org/building-automation-and-integration/06/stattalk-warren-s-johnson-patented-the-thermostat-in-1883-thanks-asme-milwaukee-for-the-history-heritage/#more-9415
http://controltrends.org/building-automation-and-integration/06/stattalk-warren-s-johnson-patented-the-thermostat-in-1883-thanks-asme-milwaukee-for-the-history-heritage/#more-9415
http://antonirogalski.com/wp-content/uploads/2012/12/History-of-infrared-detectors.pdf
http://antonirogalski.com/wp-content/uploads/2012/12/History-of-infrared-detectors.pdf
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
http://www.fpgadeveloper.com/2011/07/list-and-comparison-of-fpga-companies.html
http://www.verilog.com/
http://www.motorme.my/5-common-causes-of-road-accidents-in-malaysia

89

APPENDICES

A. Coding of sensor controller finite state machine

module sensor_controller(clock, reset, echo,

compare_done, speed, trigger, distance, en_compare,

en_next_comp, state);

input clock, reset, echo, compare_done, speed;

output trigger, en_compare, en_next_comp;

output [31:0] distance;

output [3:0] state;

reg trigger, en_compare, en_next_comp, old_speed;

reg [31:0] distance;

reg [31:0] trig_counter = 32'd0;

reg [31:0] dist_counter = 32'd0;

reg [31:0] cycle_counter = 32'd0;

reg [3:0] current_state;

reg [3:0] next_state;

wire [3:0] state;

wire speed_change;

parameter idle = 3'b000,

 start = 3'b001,

 waiting = 3'b010,

 receive = 3'b011,

 stop = 3'b100;

//reset

always @(posedge clock)

begin

 if(reset == 1'b1)

 begin

 current_state <= idle;

 end

90

 else if (speed_change == 1'b1)

 begin

 current_state <= idle;

 end

 else

 begin

 current_state <= next_state;

 end

end

//state always equal to current_state

assign state = current_state;

//to allow detection of change of speed

always @ (posedge clock)

begin

 if(reset == 1'b1)

 begin

 old_speed <= 1'b0;

 end

 else

 begin

 old_speed <= speed;

 end

end

//to detect the change of speed

assign speed_change = (speed != old_speed)?

1'b1 :1'b0;

//next state

always @(current_state or compare_done or trig_counter

or cycle_counter or echo or en_next_comp or distance

or dist_counter)

begin

 next_state <= current_state;

91

 case (current_state)

 idle:

 begin

 if (compare_done == 1'b1)

 begin

 next_state <= start;

 end

 end

 start:

 begin

 if(trig_counter == 32'd500)

//trigger for 10us

 begin

 next_state <= waiting;

 end

 end

 waiting:

 begin

 if (echo == 1'b1)

 begin

 next_state <= receive;

 end

 end

 receive:

 begin

 if (echo == 1'b0)

 begin

 next_state <= stop;

 end

//assume max distance to detect echo is 30cm

 else if(dist_counter == 88235)

 begin

 next_state <= stop;

 end

 end

92

 stop:

 begin

 distance <= dist_counter;

 //1 cycle measurement = 60ms =

3000000

 if(cycle_counter == 32'd2999999)

 begin

 next_state <= idle;

 end

 end

 default: next_state <= idle;

 endcase

end

//Action in each state

always @(posedge clock)

begin

 if(current_state != idle)

 begin

 cycle_counter <= cycle_counter + 1;

 end

 if(reset == 1'b1)

 begin

 cycle_counter <= 32'd0;

 trig_counter <= 32'd0;

 dist_counter <= 32'd0;

 trigger <= 1'b0;

 en_compare <= 1'b0;

 en_next_comp <= 1'b0;

 end

 else

 begin

 case (current_state)

93

 idle:

 begin

 cycle_counter <= 32'd0;

 trig_counter <= 32'd0;

 dist_counter <= 32'd0;

 trigger <= 1'b0;

 en_compare <= 1'b0;

 en_next_comp <= 1'b0;

 end

 start:

 begin

 trigger <= 1'b1;

//count trigger time

 trig_counter <= trig_counter + 1;

 end

 waiting:

 begin

 trigger <= 1'b0;

 end

 receive:

 begin

 //if

echo ==1, count distance

 dist_counter = dist_counter +

1'd1; end

 stop:

 begin

 if(distance != 32'd0)

//to enable the comparison of distance

 en_compare <= 1'b1;

 //1 cycle measurement = 60ms =

3000000

94

 if(cycle_counter == 32'd2999999)

 begin

//to enable next comparison

 en_next_comp <= 1'b1;

//to disable the comparison of distance

 en_compare <= 1'b0;

end

 end

 endcase

 end

end

endmodule

B. Coding of comparator finite state machine

module comparator2

(clock,

reset,

en_compare,

en_next_comp,

speed,

distance,

compare_done,

safe_distance_alert,

collision_alert,

comp_state,

diff_dist,

current_dist);

input clock, reset, en_compare, en_next_comp, speed;

input [31:0] distance;

output [31:0] diff_dist;

output [31:0] current_dist;

output compare_done, safe_distance_alert,

collision_alert;

output [3:0] comp_state;

reg compare_done, safe_distance_alert,

collision_alert, hold_on;

reg [31:0] safe_distance;

95

reg [31:0] prev_dist;

reg [31:0] current_dist = 32'd0;

reg [3:0] current_state;

reg [3:0] next_state;

reg en_collision_alert;

reg en_safe_distance_alert;

reg old_speed;

wire [31:0] diff_dist;

wire [3:0] comp_state;

wire speed_change;

parameter idle =

3'b000,

 update = 3'b001,

 compare_distance = 3'b010,

 compare_diff = 3'b011,

 waiting = 3'b100;

//reset

always @(posedge clock)

begin

 if(reset == 1'b1)

 begin

 current_state <= idle;

 end

 else if (speed_change == 1'b1)

 begin

 //delay for one clock

 hold_on <= 1'b1;

 current_state <= next_state;

 end

 else if (hold_on == 1'b1)

 begin

 current_state <= idle;

 hold_on <= 1'b0;

 end

 else

 begin

 current_state <= next_state;

 end

end

96

assign comp_state = current_state;

//update prev and current distance

always @(posedge clock)

begin

 if(reset == 1'b1)

 begin

 prev_dist <= 32'd0;

 current_dist <= 32'd0;

 end

 else

 begin

 if(current_state == update)

 begin

 //update previous distance

 prev_dist <= current_dist;

 //update current distance

 current_dist <= distance;

 end

 end

end

assign diff_dist = (prev_dist >= current_dist)?

prev_dist - current_dist : 32'd0;

//safe distance alert

always @(posedge clock)

begin

 if(reset == 1'b1)

 begin

 safe_distance_alert <= 1'b0;

 end

 else

 begin

 if (current_state == compare_distance ||

speed_change == 1'b1)

 begin

 safe_distance_alert <=

en_safe_distance_alert;

 end

 end

end

//collision alert

97

always @(posedge clock)

begin

 if(reset == 1'b1)

 begin

 collision_alert <= 1'b0;

 end

 else

 begin

 if (current_state == compare_diff ||

current_state == compare_distance || speed_change ==

1'b1)

 begin

 collision_alert <= en_collision_alert;

 end

 end

end

//To allow detection of change of speed

always @ (posedge clock)

begin

 if(reset == 1'b1)

 begin

 old_speed <= 1'b0;

 end

 else

 begin

 old_speed <= speed;

 end

end

assign speed_change = (speed != old_speed)?

1'b1 :1'b0;

//next state and action

always @(current_state or speed_change or speed or

en_compare or en_next_comp or distance

or current_dist or safe_distance_alert or diff_dist or

collision_alert or prev_dist)

begin

 compare_done = 1'b0;

 en_safe_distance_alert = 1'b0;

 en_collision_alert = 1'b0;

 safe_distance = (speed == 1'b0)? 32'd14706 :

32'd29412; //5cm , 10cm

98

 //if there is switching of mode, reset the system

 if (speed_change == 1'b1)

 begin

 en_safe_distance_alert = 1'b0;

 en_collision_alert = 1'b0;

 end

 next_state <= current_state;

 case (current_state)

 idle:

 begin

 compare_done <= 1'b1;

 if (en_compare == 1'b1)

 begin

 next_state <= update;

 end

 end

 update:

 begin

 next_state <= compare_distance;

 end

 compare_distance:

 begin

 //if no distance detected,

deactivate the alert system

 if (current_dist == 32'd0)

 begin

 en_collision_alert <=

1'b0;

 en_safe_distance_alert <=

1'b0;

 next_state <=

idle;

 end

 //safe distance = 10cm/5cm

 else if (current_dist <=

safe_distance)

 begin

 if(collision_alert <= 1'b1)

 begin

 en_collision_alert <=

99

1'b0;

 end

 en_safe_distance_alert <=

1'b1;

 next_state <=

waiting;

 end

 //when it is safe but the alert

still activated, turn it off

 else if (current_dist >

safe_distance && safe_distance_alert == 1'b1)

 begin

 en_safe_distance_alert <=

1'b0;

 end

 else if (current_dist >

safe_distance && safe_distance_alert == 1'b0)

 begin

 //in parking mode, speed = 0

 if (speed == 1'b0)

 begin

 next_state <= waiting;

 end

 else

 begin

 next_state <=

compare_diff;

 end

 end

 end

 compare_diff:

 begin

 //diff_dist = difference between

current and previous distance, difference = 5cm

 if (diff_dist >= 32'd14706)

 begin

 en_collision_alert <= 1'b1;

 //to get the next distance

 next_state <=

waiting;

 end

100

 //when it is safe but the alert

still activated, turn it off

 else if (diff_dist < 32'd14706 &&

collision_alert == 1'b1)

 begin

 en_collision_alert <= 1'b0;

 next_state <=

waiting;

 end

 else if (diff_dist < 32'd14706 &&

collision_alert == 1'b0)

 begin

 next_state <= waiting;

 end

 end

 waiting:

 begin

 if(en_next_comp == 1'b1)

 begin

 next_state <= idle;

 end

 end

 default: next_state <= idle;

 endcase

end

endmodule

C. Coding of main module

module main2

(clock,

reset,

speed,

trigger,

echo,

safe_distance_alert,

collision_alert,

state,

comp_state,

diff_dist,

current_dist,

distance);

101

input clock, reset, echo, speed;

output trigger, safe_distance_alert, collision_alert;

output [3:0] state, comp_state;

output [31:0] distance;

output [31:0] diff_dist;

output [31:0] current_dist;

wire echo, speed, compare_done, en_compare,

en_next_comp;

wire [31:0] distance;

sensor_controller inst_1 (

clock,

~reset,

echo,

compare_done,

speed,

trigger,

distance,

en_compare,

en_next_comp,

state);

comparator2 inst_2 (

clock,

~reset,

en_compare,

en_next_comp,

speed,

distance,

compare_done,

safe_distance_alert,

collision_alert,

comp_state,

diff_dist,

current_dist);

endmodule

