

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF A POINT-TO-POINT (PTP) POSITIONING CONTROLLER FOR A ROBOTIC HAND

Yeo Chin Kiat

Bachelor of Mechatronics Engineering 2016

C Universiti Teknikal Malaysia Melaka

" I hereby declare that I have read through this report entitle " Development of a Point-to-Point Positioning Controller for a Robotic Hand" and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Mechatronics Engineering "

Signature	:	
Supervisor's Name	:	
Date	:	

2

DEVELOPMENT OF A POINT-TO-POINT (PTP) POSITIONING CONTROLLER FOR A ROBOTIC HAND

YEO CHIN KIAT

A report submitted in partial fulfillment of the requirements for the degree of Bachelor of Mechatronics Engineering

> Faculty of Electrical Engineering UNIVERSITI TEKNIKAL MALAYSIA MELAKA

> > 2016

C Universiti Teknikal Malaysia Melaka

" I declare that this report entitle " Development of a Point-to-Point Positioning Controller for a Robotic Hand" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree "

Signature	:	
Name	:	
Date	:	

4

To my beloved mother and father

ACKNOWLEDGEMENT

The work of this thesis represents the concerted efforts of the individual over almost a year. One of the features of training is collaboration and certainly it required many acts of collaboration by the company people in order to come to completion.

When I first started my work, it was quite hard to adapt to the environment but as time passed, I were able to adapt myself to all the condition. After some time, I begin to say that how blessed I felt that the topic and contents of my work was fascinating and enjoyable to me even after many hours of study, processing information, and working. I am also grateful that the knowledge gained through this training is so relevant and useful to my current teaching practices.

So, I would like to express my deepest appreciation to those who provided me their support and expertise to me for the past few months. First of all, I begin my thanks to my supervisor, Dr. Mariam binti Md Ghazaly for guiding me all the way and giving me some idea on how to accomplish my work while giving me knowledge on the engineering field. Furthermore, I would also like to thanks to my family and my friends who shows their support on me in order for the completion of this thesis.

Last but not least, I wish to acknowledge my friends and to all staff of Department of Mechatronics Engineering, Faculty of Electrical Engineering, UTeM for their help and efforts for this project.

i

ABSTRACT

The point-to-point (PTP) positioning system of a underactuated hand is a difficult and challenges task in order to control their system performance since the point-to-point positioning for the robotic hands must able to move in high precision with fast response. The underactuated hand is where a robotic hand which the finger of the robotic hand is control via a string or wire with the use of single actuator for each finger. This thesis presents the development of the control system for a 3-DOF for Finger 5 of the robotic hand by using the Micro-Box 2000/2000C interfacing and the Proportional-Integral-Derivative (PID) technique. The characteristic equation of the robotic finger is obtain by using the System Identification Tools which is represented by $G(s) = \frac{-0.9772s + 829.9}{s^2 + 47.48s + 0.0728}$. PID controller is designed by using Matlab Simulink to improve the performance of the robotic finger. The PID controller is designed by using Ziegler-Nichols Tuning method and trial and error tuning method. The designed PID controller are implemented and the results for uncompensated closed-loop system are compared with the PID controller. The designed PID controller has the parameters of Proportional gain of 289.8, Integral gain of 0 and Derivative gain of 5. When the input reference of 15° is compared for experimental result, the proposed PID controller shows improvement in rise time from 0.728s to 0.114s, settling time from 1.042s to 0.204s, and steady-state error of 8.111° is eliminated. However, the percentage of overshoot increase from 0% to 0.74% and the overshoot occurred due to the backlash of the mechanical part. Meanwhile, the designed PID controller shows the improvement in simulation result in term of rise time from 2.091s to 0.079s, settling time from 7.246s to 0.200s, steady-state error from 0.023° to 0.0001° and percentage of overshoot remain as 0%. However, the PID controller do not show a good performance in term of controller robustness where the PID controller is hard to track for the reference signal when the angle and frequency is too large. Hence, the designed PID controller shows that the controller has better performance for Point-to-Point Positioning control where the robotic finger can reach the desired position with no error while the PID controller cannot perform well in term of controller's robustness for tracking control.

ABSTRAK

Sistem Point-to-Point (PTP) Positioning bagi tangan underactuated adalah sukar dan merupakan tugas yang mencabar untuk mengawal sistem prestasi memandangkan Point-to-Point Positioning bagi tangan robotik mestilah boleh berfungsi dengan ketepatan yang tinggi dan mempunyai tindak balas yang cepat. Tangan underactuated adalah tangan robotik di mana jari robotik adalah dikawal dengan menggunakan tali untuk setiap jari robotik. Tesis ini menyampaikan pembangunan sistem kawalan untuk Jari 5 yang mempunyai 3-DOF dengan menggunakan Micro-Box 2000/2000C dan Proportional-Integral-Derivative (PID) controller. Ciri persamaan bagi jari robotik adalah memperoleh dengan Identification Tools di mewakili menggunakan System mana $G(s) = \frac{-0.9772s + 829.9}{s^2 + 47.48s + 0.0728}$. PID controller adalah direka dengan menggunakan Matlab Simulink bagi menambah baik sistem prestasi jari robotik. Selain itu, PID controller adalah direka dengan menggunakan dua care iaitu Ziegler-Nichols Tuning Method dan Trial and Error Tuning Method. Kemudiannya, PID controller yang direka sistem prestasinya akan dibandingkan dengan uncompensated closed-loop sistem. Parameter bagi PID controller adalah 289.8 bagi Proportional gain, 0 bagi Integral gain dan 5 bagi Derivative gain. Apabila rujukan input 15 ° dibandingkan untuk keputusan eksperimen, PID controller yang dicadangkan menunjukkan peningkatan dalam rise time dari 0.728s untuk 0.114s, settling time dari 1.042s untuk 0.204s dan steady-state error daripada 8,111 ° dihapuskan. Walau bagaimanapun, percentage of overshoot naik dari 0% hingga 0.74% dan overshoot itu berlaku disebabkan oleh tindak balas bahagian mekanikal. Sementara itu, pengawal PID yang direka menunjukkan peningkatan dalam hasil simulasi dalam tempoh rise time dari 2.091s untuk 0.079s, settling time dari 7.246s untuk 0.200s, steady-stae error daripada 0,023 ° ke 0.0001 ° dan percentage of overshoot kekal sebagai 0 %. Walau bagaimanapun, PID controller tidak dapat menunjukkan prestasi yang baik dalam controller robustness kerana controller yang direka sukar nutuk mengesan isyarat rujukan. Kesimpulannya, PID controller yang direka dapat menunjukkan sistem prestasi yang baik dalam kawalan Pointto-Point Positioning kerana jari robotic dapat bergerak ke posisi yang diingini tetapi PID controller tidak dapat menunjukkan prestasi yang baik semasa tracking control dijalankan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE				
	ACKNOWLEDGEMENT					
	ABSTRACT	ii iii iv vii ix xiv xv				
	ABSTRAK					
	TABLE OF CONTENTS					
	LIST OF TABLES					
	LIST OF FIGURES					
	LIST OF APPENDICES					
	LIST OF SYMBOLS					
	LIST OF ABBREVIATIONS	xvi				
1	INTRODUCTION					
	11 General Overview	1				
	1.2 Motivation	2				
	1.3 Problem Statement	5				
	1.4 Objectives	6				
	1.5 Scope of Project	6				
	1.6 Project Overview	7				
2	LITERATURE REVIEW	8				
	2.1 Overview of Underactuated Robotic Hand and Point-	8				
	to-Point Positioning System					
	2.2 Motion Control of Robotic Hand	14				
	2.3 Actuator of the Robotic Hand	15				
	2.4 Robotic Hand Control Technique	17				
	2.4.1 Proportional-Integral-Derivative (PID)	18				
	Controller					
	2.4.1.1 Ziegler-Nichols Tuning Method	20				

CHAPTER	TITL	Æ		PAGE
			2.4.1.2 Trial and Error Tuning Method	20
		2.4.2	Artificial Intelligent Controller	21
		2.4.3	Nominal Characteristic Trajectory Following	22
			(NCTF) Controller	
	2.5	Micro-	Box	24
	2.6	Summa	ary	25
3	МЕТ	HODO	LOGY	26
	3.1	Introdu	iction	26
	3.2	Project	Development	28
	3.3	System	Overview of Robotic Hand System	32
	3.4	Micro-	Box Connection and Wiring Layout	32
	3.5	Roboti	c Hand Experimental Setup	33
	3.6	Calibra	tion of Encoder for DC Geared Motor	36
	3.7	Develo	pment of Open Loop System	36
	3.8	System	Identification Tools	38
	3.9	Develo	pment of Closed Loop System	40
		3.9.1	Development of Uncompensated Closed	40
			Loop System	
		3.9.2	Design of Proportional-Integral-Derivative	41
			(PID) Controller	
		3.9.3	Tracking Control with PID Controller	44
	3.10	Sumn	nary	45
4	RESU	ULTS A	ND DISCUSSION	46
	4.1	Calibra	tion of DC Geared Motor Encoder Gain	46
	4.2	Open I	Loop Characteristic for Robotic Hand	50
		4.2.1	Open Loop Test of Robotic Hand	50
		4.2.2	Characteristic Equation of Robotic Hand	53
		4.2.3	Effect of Open Loop System to Robotic	61
			Finger	

CHAPTER	TIT	LE			PAGE
	4.3	Uncon	npensated	Closed-Loop Performance	63
	4.4	Closed	l-Loop Sys	stem with PID Controller	70
		4.4.1	Ziegler-	Nichols Tuning Method	71
		4.4.2	Trial an	d Error Tuning Method	75
		4.4.3	Perform	ance of PID Controller on Point-to-	79
			Point Po	ositioning Controller	
		4.4.4	Perform	ance of PID Controller on Tracking	86
			Control	ler	
			4.4.4.1	Sine Wave Signal with Frequency of 0.1Hz	86
			4.4.4.2	Sine Wave Signal with Frequency of 0.5Hz	88
			4.4.4.3	Sine Wave Signal with Frequency of 1.0Hz	90
			4.4.4.4	Sine Wave Signal with Frequency of 1.5Hz	92
			4.4.4.5	Sine Wave Signal with Frequency of 2.0Hz	94
			4.4.4.6	Triangular Input Signal	96
			4.4.4.7	Stepwise Input Signal	98
	4.5	Summ	ary		99
5	CON	ICLUSI	ON AND	RECOMMENDATION	101
	5.1	Conclu	usion		101
	5.2	Recon	nmendation	n	103
	REF	ERENC	CES		104
	APP	ENDIC	ES		110

C Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Most Injured Body Parts 2013	4
2.1	The Comparison Between Wire Driven Underactuated	13
	Robotic Hand, Underactuated Robotic Hand and Traditional	
	Robotic Hand.	
2.2	The Comparison between the Characteristic of DC Geared	17
	Motor, Servo Motor and Stepper Motor.	
2.3	The Effect of PID Controller Parameters to the System	19
	Performance.	
3.1	The Gantt Chart for the Projek Sarjana Muda 1	30
3.2	The Gantt Chart for the Projek Sarjana Muda 2	31
3.3	The Ziegler-Nichols Tuning Rule Based on Ultimate Gain	44
	and Ultimate Period.	
4.1	The Angle of Encoder for DC Geared Motor	48
4.2	The Angle on Protractor for DC Geared Motor	49
4.3	The Angle Of The DC Geared Motor With Difference Input	51
	Voltage	
4.4	The Characteristic Equation for the Robotic Hand.	54
4.5	The Average Output Angle For The Encoder and Protractor	62
	At The DC Geared Motor and The Angle of Elevation of The	
	Finger.	
4.6	The Uncompensated Closed Loop Performance of the	64
	Robotic Hand for 15 °.	
4.7	The Uncompensated Closed Loop Performance of the	65
	Robotic Hand for 30 °.	
4.8	The Uncompensated Closed Loop Performance of the	66
	Robotic Hand for 45 °.	

TABLE	TITLE	PAGE
4.9	The Uncompensated Closed Loop Performance of the	67
	Robotic Hand for 60 °.	
4.10	The Uncompensated Closed Loop Performance of the	68
	Robotic Hand for 75 °.	
4.11	The Uncompensated Closed Loop Performance of the	69
	Robotic Hand for 90 °.	
4.12	Performance of Robotic Hand $Kp = 289.8$.	75
4.13	Performance of Robotic Hand $Kp = 289.8$ and $Ki = 3.5$.	76
4.14	Performance of Robotic Hand $Kp = 289.8$ and $Kd = 5$.	77
4.15	Comparison between the Robotic Hand Performance with	78
	Derivative Gain Tuned.	
4.16	Performance of Robotic Hand with PID Controller for	83
	Experimental.	
4.17	Performance of Robotic Hand with PID Controller for	83
	Simulation.	
4.18	Comparison between the Performance of Uncompensated and	83
	Compensated Closed-Loop System with PID Controller.	
4.19	The Relationship between Base Reference Angle and Finger	85
	5 Fingertip to Robotic Hand Palm Angle.	
4.20	Comparison of Performance of Uncompensated Closed-Loop	100
	System with PID Controller.	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Estimated Rates of Total Cases of Self-Reported Work-Related	3
	Illness and Non-Fatal Injury by Industry 2013 in Great Britain.	
2.1	The 2-DOF Underactuated iHY Hand.	9
2.2	The 12-DOF UT Hand I	10
2.3	The Baxter Easyhand Underactuated Robotic Hand Prototype.	10
2.4	The Underactuated RBO Hand	11
2.5	The Underactuated Colombia Hand	11
2.6	The SARAH Hand	12
2.7	The iHY Hand Underactuated Hand Design.	15
2.8	The Block Diagram of the Fuzzy Logic Controller.	21
2.9	The Structure of the Fuzzy Logic Controller.	22
2.10	The Structure of the Nominal Characteristic Trajectory	23
	Following (NCTF) controller.	
2.11	Micro-Box.	24
3.1	Flowchart For Point-to-Point Positioning System Robotic	29
	Hand Design.	
3.2	The System Overview of Robotic Hand by Using the Micro-	32
	Box.	
3.3	The Driver Board Connection.	33
3.4	Top View of Robotic Hand.	34
3.5	Side View of Robotic Hand.	34
3.6	Angle of Rotation of the DC Geared Motor with Protractor 1.	35
3.7	Angle Between the Fingertip and the Palm of the Robotic	35
	Hand with Protractor 2.	
3.8	The String Connect To The Coupling.	36
3.9	The Block Diagram of the Open Loop System for Robotic	37
	Hand.	

FIGURE	TITLE	PAGE
3.10	The Open Loop System Model Block Diagram.	37
3.11	Real Time Simulation and Experimental Block Diagram.	38
3.12	System Identification Tools.	39
3.13	The Block Diagram of the Uncompensated Closed Loop	40
	System for the Robotic Hand.	
3.14	The Uncompensated Closed Loop System.	41
3.15	The Block Diagram of the Compensated Closed System with	41
	PID Controller for Robotic Hand.	
3.16	Compensated Closed Loop System With PID Controller Using	42
	Matlab Simulink	
3.17	The Flow Chart For Designing The Proportional-Integral-	43
	Derivative Controller.	
3.18	Tracking Control for the PID Controller in Matlab Simulink.	45
4.1	The Output Angle of DC Geared Motor Encoder With Input of	47
	1V.	
4.2	The Output Angle of DC Geared Motor Encoder With Input of	47
	10V.	
4.3	Comparison the Angle of Encoder and Protractor Reading with	49
	Error.	
4.4	The Changes of the Input Voltage with Respect to the Output	52
	Angle and Standard Deviation.	
4.5	Experimental and Simulation Output Model for Transfer	54
	Function 1.	
4.6	Experimental and Simulation Output Model for Transfer	55
	Function 2.	
4.7	Experimental and Simulation Output Model for Transfer	55
	Function 3.	
4.8	Experimental and Simulation Output Model for Transfer	56
	Function 4.	
4.9	Experimental and Simulation Output Model for Transfer	56
	Function 5.	

FIGURE	TITLE	PAGE
4.10	Experimental and Simulation Output Model for Transfer	57
	Function 6.	
4.11	Experimental and Simulation Output Model for Transfer	57
	Function 7.	
4.12	Experimental and Simulation Output Model for Transfer	58
	Function 8.	
4.13	Experimental and Simulation Output Model for Transfer	58
	Function 9.	
4.14	Experimental and Simulation Output Model for Transfer	59
	Function 10.	
4.15	Graph of Error Against Time for Transfer Function 1 to	59
	Transfer Function 5.	
4.16	Graph of Error Against Time for Transfer Function 6 to	60
	Transfer Function 10.	
4.17	The Relationship Between the DC Geared Motor Encoder and	61
	Protractor with the Angle of Elevation of the Finger.	
4.18	The Performance of the Robotic Hand for 15° of Reference	64
	Angle.	
4.19	The Performance of the Robotic Hand for 30° of Reference	65
	Angle.	
4.20	The Performance of the Robotic Hand for 45° of Reference	66
	Angle.	
4.21	The Performance of the Robotic Hand for 60° of Reference	67
	Angle.	
4.22	The Performance of the Robotic Hand for 75° of Reference	68
	Angle.	
4.23	The Performance of the Robotic Hand for 90° of Reference	69
	Angle.	
4.24	The Ziegler-Nichols Tuning Method with Gain, K=482.	71
4.25	The Ziegler-Nichols Tuning Method for Gain, $K = 482$ Zoom	72
	View for Angle.	
4.26	The Ziegler-Nichols Tuning Method for Gain, $K = 483$.	72

FIGURE	TITLE	PAGE
4.27	The Ziegler-Nichols Tuning Method for Gain, $K = 483$ Zoom	73
	View for Angle.	
4.28	The Ziegler-Nichols Tuning Method for Gain, $K = 484$.	73
4.29	The Ziegler-Nichols Tuning Method for Gain, K = 484 Zoom	74
	View for Angle.	
4.30	The Robotic Hand Performance with P Controller.	75
4.31	The Robotic Hand Performance with PI Controller.	76
4.32	The Performance Robotic Hand with PD Controller.	77
4.33	Performance of Robotic Hand with PID Controller for 15° of	80
	Reference Angle.	
4.34	Performance of Robotic Hand with PID Controller for 30° of	80
	Reference Angle.	
4.35	Performance of Robotic Hand with PID Controller for 45° of	81
	Reference Angle.	
4.36	Performance of Robotic Hand with PID Controller for 60° of	81
	Reference Angle.	
4.37	Performance of Robotic Hand with PID Controller for 75° of	82
	Reference Angle.	
4.38	Performance of Robotic Hand with PID Controller for 90° of	82
	Reference Angle.	
4.39	The Relationship between Base Reference Angle and Finger 5	85
	Fingertip to Robotic Hand Palm Angle.	
4.40	Performance of Tracking Control with Sine Wave Signal for	87
	15° at 0.1 Hz.	
4.41	Performance of Tracking Control with Sine Wave Signal for	87
	30° at 0.1 Hz.	
4.42	Performance of Tracking Control with Sine Wave Signal for	88
	45° at 0.1 Hz.	
4.43	Performance of Tracking Control with Sine Wave Signal for	89
	15° at 0.5 Hz.	
4.44	Performance of Tracking Control with Sine Wave Signal for	89
	30° at 0.5 Hz.	

FIGURE	TITLE	PAGE
4.45	Performance of Tracking Control with Sine Wave Signal for	90
	45° at 0.5 Hz.	
4.46	Performance of Tracking Control with Sine Wave Signal for	91
	15° at 1.0 Hz.	
4.47	Performance of Tracking Control with Sine Wave Signal for	91
	30° at 1.0 Hz.	
4.48	Performance of Tracking Control with Sine Wave Signal for	92
	45° at 1.0 Hz.	
4.49	Performance of Tracking Control with Sine Wave Signal for	93
	15° at 1.5 Hz.	
4.50	Performance of Tracking Control with Sine Wave Signal for	93
	30° at 1.5 Hz.	
4.51	Performance of Tracking Control with Sine Wave Signal for	94
	45° at 1.5 Hz.	
4.52	Performance of Tracking Control with Sine Wave Signal for	95
	15° at 2.0 Hz.	
4.53	Performance of Tracking Control with Sine Wave Signal for	95
	30° at 2.0 Hz.	
4.54	Performance of Tracking Control with Sine Wave Signal for	96
	45° at 2.0 Hz.	
4.55	Comparison of Performance for PID Controller with	97
	Triangular Input Signal for 15° at 0.5Hz and 1.0Hz.	
4.56	Comparison of Performance for PID Controller with	97
	Triangular Input Signal for 30° at 0.5Hz and 1.0Hz.	
4.57	Comparison of Performance for PID Controller with	98
	Triangular Input Signal for 45° at 0.5Hz and 1.0Hz	
4.58	Performance of PID Controller with Stepwise Input Signal.	99

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	DC Geared Motor SPG30-300K with Encoder Specification	110
В	Matlab Simulink Block Diagram for Control System of	111
	Underctuated Robotic Hand	

LIST OF SYMBOLS

- V Voltage
- - Degree
- θ Angle
- e error
- s second
- T Torque

LIST OF ABBREVIATIONS

DOF	-	Degree of Freedom
SISO	-	Single-Input-Single-Output
PID	-	Proportional-Integral-Derivative
РТР	-	Point-to-Point
DC	-	Direct Current
PWM	-	Pulse Width Modulation
NCTF	-	Nominal Characteristic Trajectory Following
NCT	-	Nominal Characteristic Trajectory
FLC	-	Fuzzy Logic Controller
GUI	-	Graphical User Interface
3D	-	Three Dimensional

xvi

CHAPTER 1

INTRODUCTION

1.1 General Overview

Robotic hand is a kind of mechanical hand that had similar functions as a human hands which using either an actuator or string mechanism to obtain the force to provide the motion, action and position. Nowadays, most of the robotic design are depend heavily on the automatic control system to control and monitor the operation of the robots. The using of the automatic control system on the robotic designs and robotic hands will reduce the humans workload due to their repeatability, high accuracy and able to operate continuously without humans control. Furthermore, the robotic hands also can be useful where the robotic hands can replace human hands in the dangerous working situation or as a auxiliary for delicate work such as a surgical operation.

Generally, the simplest robotic hands having two degree of freedom (2-DOF) and for the most complex robotic hands can be more than over 30-DOF when high accuracy and precision of the position is needed. A degree of freedom will be formed when there is a joint occurred. In order to design a finger for robotic hands, each finger should had three degree of freedom (3-DOF) so that the finger of the robotic hands had the minimum requirement to mimic the ability and motion of the human hands. Then, the angle and position of the finger will be change by increasing or decreasing the output voltage to the actuator.

The control system of a three degree of freedom (3-DOF) robotic hands which is used in the project is a single-input-single-output (SISO) system. A Proportional-Integral-Derivative (PID) controller will be developed and then the system performance will be improved by modify the PID controller to a better system such as intelligent PID. All the system performance on the finger of the robotic hands are examined and compare the system performance of the robotic hands.

1.2 Motivation

In recent years, the human like skills robotic hands have attracted the attention from the people around the world for replacing the human hand which require the high precision with fast response. The robotic hand can be used not only for the industrial sector, but it also can be implemented in the medical sector and manufacturing sector. Furthermore, the robotic hand also play an important roles in term of healthcare where the aging population and the people who lost their hand may need the service such prosthetic hand to make their daily life more convenience.

According to the Health and Safety Statistics Annual Report for Great Britain 2013/2014, there are 629,000 injuries happened with 133 fatalities or 44% per 100,000 workers. Figure 1.1 shows the estimated rates of total cases of self-reported work related illness and non-fatal injury in Great Britain. Based on the Figure 1.1, the agriculture, forestry and fishing and construction sector are the two sector which are the first and second highest of the rates of non-fatal injury to be happened.

Figure 1.1 : Estimated Rates of Total Cases of Self-Reported Work-Related Illness and Non-Fatal Injury by Industry 2013 in Great Britain [1].

On the other hand, the most injured body parts being reported is back injured with 22% for all types of injured and the closely follow by the hand and fingers with 16.6%. The data shows that hand and fingers also one of the top body parts which are easy to be injured. Table 1.1 shows the most injured body part in Great Britain.

3