DESIGN AND ANALYSIS OF OPTIMUM CLEARANCE OF AN OPEN SMALL THIMBLE BENDING DIE

NURUL ATIKAH BINTI ROZULI

B051310002

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

DESIGN AND ANALYSIS OF OPTIMUM CLEARANCE OF AN OPEN SMALL THIMBLE BENDING DIE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design)

By

NURUL ATIKAH BINTI ROZULI

B051310002

FACULTY OF MANUFACTURING ENGINEERING

2016

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN AND ANALYSIS OF OPTIMUM CLEARANCE OF AN OPEN SMALL THIMBLE BENDING DIE

SESI PENGAJIAN:	2015/16	Semester	2
-----------------	---------	----------	---

Saya NURUL ATIKAH BINTI ROZULI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti

Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (/)

atau TERHAD.

SULIT TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan	
	Disahkan oleh:	
Alamat Tetap:	Cop Rasmi:	
3377 KEDAI MULONG,		
16010 KOTA BHARU,		
KELANTAN.		
Tavilaha	Tarikh:	

DECLARATION

I hereby, declared this report entitled "Design and Analysis of Optimum Clearance of an Open Small Thimble Bending Die" is the results of my own project except as cited in references.

Signature	:
Author's Name	: NURUL ATIKAH BINTI ROZULI
Date	:

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design). The member of the supervisory committee is as follow:

.....

Principal Supervisor

C Universiti Teknikal Malaysia Melaka

ABSTRACT

This final year project entitled, "Design and Analysis of Optimum Clearance of an Open Small Thimble Bending Die". The project focused on the design of bending die and to determine the optimum clearance of bending die whether it is able to reduce defect in producing a thimble open small. The bending die was designed by using SolidWorks. The material used for the Open Small Thimble is mild steel flat of 2mm and tool steel for the die. By using Explicit Dynamic Analysis from ANSYS software, the result of the Finite Element Analysis of the new design of bending die will be obtained. The analysis decides the optimum clearance in relation to velocity of upper die in order to have good bending finish with longer life span of die. From the analysis, 0.2 mm is the optimum clearance of the bending die. The clearance 0.2 mm is chosen because its meet all criteria needed in bending process to produce thimble open small. The criteria obtained for the 0.2 mm clearance are the value of total deformation is 79.37mm, shortest time taken to bend the mild steel plate is 2.95×10^{-4} s and there is no tear defect occurred based on the total deformation, shear stress, equivalent elastic strain and equivalent stress. As a result, the new design of bending die presents the shortest process of bending in producing the thimble open small with better productivity, lower cycle time, less manpower and lowest cost compared to existing design with the similar.

DEDICATION

Very thankful to Allah and special thanks to my beloved mother, Hasnah binti Abdulla, my beloved supervisor, Baharudin bin Abu Bakar, my family and friends.

ACKNOWLEDGEMENT

First of all, thanks to my bachelor degree final year project supervisor, Engr. Baharudin Bin Abu Bakar for his guide, help and support towards this project. With his advice, this project can be done according to the plan.

Special thanks to my family for their moral support and some advice and financial support. Thanks also to my academic staff in Universiti Teknikal Malaysia Melaka (UTeM) for teaching me a lot, so that I can finish this project. Thanks also to my friend that share the knowledge and idea to finish this project.

Last but not least, thanks to everyone that involve in this project.

TABLE OF CONTENT

Table	e of Con	tents	iv
List o	of Figure		viii
List o	of Table		XV
List o	of Abbre	viations	xvii
1.0	CHA	PTER 1: INTRODUCTION	1
1.1	Introd	luction	1
1.2	Proble	em Statement	3
1.3	Objec	tives	4
1.4	Scope		4
2.0	CHA	PTER 2: LITERATURE REVIEW	5
2.1	Sheet	Metal Work	5
2.2	Туре	of Metal Stamping	6
	2.2.1	Swaging or Coining	6
	2.2.2	Bend or Multiple Bend Forming	7
	2.2.3	Draw Forming	7
	2.2.4	Deep Draw Forming	8
	2.2.5	Blanking or Fine blanking	8
2.3	Die D	lesign	9
2.4	Defin	ition of Tooling Terms	10
	2.4.1	Shoulder or Stripper Bolt	10
	2.4.2	Punch Holder or Retainer	11
	2.4.3	Punch or Perforator	11
	2.4.4	Spring Stripper Plate	12
	2.4.5	Die Block or Die Deck	13
	2.4.6	Die Set or Die Shore	13
		2.4.6.1 Die Set and Die Shoe Selection Guidelines	14

2.5	Classi	fication and Type of Dies	15
	2.5.1	Die Classification	15
		2.5.1.1 Single-Station Dies	16
		2.5.1.2 Multiple-Station	17
	2.5.2	Types of Dies	19
2.6	Fourte	een Step to Die Design	22
2.7	Stand	ard Guide Lines for Design	25
	2.7.1	First Guideline or Rule	26
	2.7.2	Second Guideline	27
2.8	Desig	n and Tool Specifications	28
2.9	Bendi	ng	30
	2.9.1	Minimum Bend Radius	31
	2.9.2	Bending Force	34
	2.9.3	Bending Process	36
	2.9.4	Bending Die	37
		2.9.4.1 Bending Production Design	37
	2.9.5	Bending Pressure	38
		2.9.5.1 Numerical Application	38
		2.9.5.2 Press Part	39
	2.9.6	Designing a Bending Die	39
	2.9.7	Mechanics of Bending	41
2.10	Spring	g Back	42
	2.10.1	Factor of Spring Back	42
2.11	Param	eter of Thimble Open Small Die	43
2.12	Mech	anical Properties	44
	2.12.1	Stress	45
	2.12.2	2 Strain	45
	2.12.3	Ultimate Strength or Tensile Strengt	h 46
	2.12.4	Shear Stress	47
3.0	CHA	PTER 3: METHODOLOGY	48
3.1	Flow	Chart	51
	3.1.1	Phase 1: Planning	52

	3.1.2 Phase 2: Concept Development	52
	3.1.3 Phase 3: Detail Design	52
	3.1.4 Phase 4: Analysis & Refinement	53
	3.1.5 Phase 5: Report Submission & Presentation	53
3.2	Process to Produce Open Small Thimble	53
3.3	Concept Generation	55
	3.3.1 Bending Concept Generation	55
3.4	Concept Selection	58
3.5	Workpiece	58
3.6	3D-Modeling	59
3.7	Punch Force	60
3.7	FEA Simulating	60
3.8	Expected Result	62

CHAPTER 4 : PROCEDURE OF SOLIDWORK DRAWING AND EXPLICIT		
	DYNAMIC ANALYSIS	63
4.1	Procedure 3D Modelling	63
4.2	Assembly of Bending Die	72
4.3	Create Analysis System	72
4.3.1	Engineering Data	77
4.3.2	Geometry	77
4.3.3	Stiffness Behavior	79
4.3.4	Define Connections	81
4.3.5	Meshing	84
4.3.6	Using 3D Rigid Body Contact Meshing	84
4.3.7	Establish Initial Conditions	85
4.3.8	Analysis Settings	86
4.3.9	Fixed Support	87
4.3.10	Solution	88

CHA	PTER 5	5: RESULT AND DISCUSSION	93
5.1	Resul	ts of Tensile Test	93
5.2	Resul	ts for Each Conceptual Design	96
5.3	Bendi	ng Analysis	96
	5.3.1	Total Deformation	97
		5.3.1.1 Summary Result of Total Deformation	108
	5.3.2	Shear Stress	109
		5.3.2.1 Summary Result of Shear Stress	120
	5.3.3	Equivalent Elastic Strain	121
		5.3.3.1 Summary Result of Equivalent Elastic Strain	132
	5.3.4	Equivalent Stress	133
		5.3.4.1 Summary Result of Equivalent Stress	144
5.4	Propo	sed Clearance for Die Bending	146
СНА	PTER (6: CONCLUSION AND RECOMMENDATION	147
6.1	Concl	usion	147
6.2	Recor	nmendation	147
6.3	Sustai	inable	148

REFERENCES

APPENDIX

LIST OF FIGURE

Figure 1.1: Sheet metal bending profile	2
Figure 1.2: The defect of tearing	3
Figure 2.1: Swaging or coining	6
Figure 2.2: Coins	6
Figure 2.3: Steel stamping bracket	7
Figure 2.4: Bottle caps	7
Figure 2.5: Soda cans	8
Figure 2.6: Key	9
Figure 2.7: Tooling Die	10
Figure 2.8: Shoulder or Stripper Bolt	11
Figure 2.9: Punch Holder or Retainer	11
Figure 2.10: Punch or Perforator	12
Figure 2.11: Spring Stripper Plate	12
Figure 2.12: Die Block or Die Deck	13
Figure 2.13: Die Set	14
Figure 2.14: Compound Die	16
Figure 2.15: Combination Die	17
Figure 2.16: Progressive die	18

Figure 2.17:	Example Strip	26
Figure 2.18:	Feature to bend line	26
Figure 2.19:	Example Strip	27
Figure 2.20:	Strip	27
Figure 2.21:	Bending terminology	31
Figure 2.22:	The effect of elongated inclusion (stringers) on cracking, as a function the direction of bending with respect to the original rolling direction the sheet	n of 1 of 31
Figure 2.23:	Relationship between R/T ratio and tensile reduction of area for sh metal	neet 32
Figure 2.24:	A cupping test	33
Figure 2.25:	a) V die b) Wiping Die	34
Figure 2.26:	Schematic view of the free bending process	35
Figure 2.27:	spring back	40
Figure 2.28:	Illustration of terminology used in the bending process	41
Figure 2.29:	Spring back	43
Figure 2.30:	Variables in bending die	43
Figure 2.31:	Rod under a tensile load	46
Figure 2.32:	Standard tensile test specimen or gauge	46
Figure 2.33:	Before shear load	47
Figure 2.34:	After shear load	47

Figure 3.1: Flow chart of PSM I and PSM II 51

Figure 3.2: Flow chart making thimble open small	54
Figure 3.3: Concept A is clearance 0.8 mm	55
Figure 3.4: Concept B is clearance 0.6 mm	56
Figure 3.5: Concept C is clearance 0.4 mm	56
Figure 3.6: Concept D is clearance 0.2 mm	57
Figure 3.7: Concept E is clearance 0.05 mm	57
Figure 3.8: Flow of 3D modelling for open small thimble	59
Figure 3.9: FEA Simulation using Explicit Dynamic Analysis in ANSYS	61

Figure 4.1: New icon	63
Figure 4.2: New SolidWorks document	64
Figure 4.3: Sketch icon	64
Figure 4.4: Top plane selected	65
Figure 4.5: Top plane	65
Figure 4.6: Select the correct unit system.	66
Figure 4.7: Rectangle icon	66
Figure 4.8: Rectangle with the dimension	67
Figure 4.9: After extrude.	67
Figure 4.10: The icon of sketch.	68
Figure 4.11: Sketching at the front side.	68
Figure 4.12: The process of extrude cut.	69
Figure 4.13: Picture after extrude cut	69

Figure 4.14: Fillet icon	70		
Figure 4.15: Menu of fillet			
Figure 4.16: Edge	71		
Figure 4.17: Design of the lower die			
Figure 4.18: Bending Die	72		
Figure 4.19: Flow chart of the Explicit Dynamics procedure			
Figure4.20: Explicit dynamics icon	74		
Figure 4.21: Engineering data workspace	74		
Figure 4.22: Import of the drawing into ANSYS	75		
Figure 4.23: Windows for attaching geometry from SolidWorks 2010 file to system	n75		
Figure 4.24: To edit the 3D model	76		
Figure 4.25: Selecting desired length unit option before start the Design Mode workspace	eler 78		
Figure 4.26: Design Modeler workspace with successfully imported from SolidWo	orks		
2012assembly file format which can be adjusted as desired	79		
Figure 4.27: Shown the details view for plate changing the Stiffness behavior of die to the flexible behaviour	the 80		
Figure 4.28: Shown the Details view for lower die changing the Stiffness behavior the die to the rigid behaviour	r of 80		
Figure 4.29: Shown the Details view for upper die changing the Stiffness behaviou the die to the rigid behaviour	r of 81		
Figure 4.30: Frictionless- Lower Die	83		
Figure 4.31: Frictionless- Upper Die	84		
Figure 4.32: Mesh	85		

igure 4.33: Details of velocity 80				
Figure 4.34: Analysis setting 87				
Figure 4.35: Fixed support 88				
Figure 4.36: Shown the right-click mouse option to add result in Mechanica Application for Equivalent stress 8	al 9			
Figure 4.37: Shown the right-click mouse option to add result in Mechanica Application for Total Deformation 8	al 9			
Figure 4.38: Shown the right-click mouse option to add result in Mechanica Application for Shear stress 9	al 0			
Figure 4.39: Result of equivalent as an analysis structure9	1			
Figure 4.40: Result of equivalent stress of graph stress verses time92				
Figure 5.1: Variable of ASTM D-638 94	14			
Figure 5.2: Example for Graph of stress versus stroke strain94				
Figure 5.3: Graph of displacement versus time of total deformation for clearance 0.898				
Figure 5.4: Structure analysis of total deformation for clearance 0.899	19			
Figure 5.5: Graph of displacement versus time of total deformation for clearance 0.6				
Figure 5.6: Structure analysis of total deformation for clearance 0.6 100				
Figure 5.7: Graph of displacement versus time of total deformation for clearance 0.4	4			
Figure 5.8: Structure analysis of total deformation for clearance 0.4102	2			
Figure 5.9: Graph of displacement versus time of total deformation for clearance 0.2				
Figure 5.10: Structure analysis of total deformation for clearance 0.2 10)4			
Figure 5.11: Graph of displacement versus time of total deformation for clearance 0.05				

Figure 5.12: Structure analysis of total deformation for clearance 0.05mm	107
Figure 5.13: Graph of stress versus time of shear stress for clearance 0.8	110
Figure 5.14: Structure analysis of shear stress for clearance 0.8	111
Figure 5.15: Graph of stress versus time of shear stress for clearance 0.6	112
Figure 5.16: Structure analysis of shear stress for clearance 0.6	113
Figure 5.17: Graph of stress versus time of shear stress for clearance 0.4	114
Figure 5.18: Structure analysis of shear stress for clearance 0.4	115
Figure 5.19: Graph of stress versus time of shear stress for clearance 0.2	116
Figure 5.20: Structure analysis of shear stress for clearance 0.2	117
Figure 5.21: Graph of stress versus time of shear stress for clearance 0.05	118
Figure 5.22: Structure analysis of shear stress for clearance 0.05	119
Figure 5.23: Graph strain versus time of equivalent elastic strain for clearance 0.8	8 122
Figure 5.24: Structure analysis of equivalent elastic strain for clearance 0.8	123
Figure 5.25: Graph of strain versus time of equivalent elastic strain for clearance	0.6
Figure 5.26: Structure analysis of equivalent elastic strain for clearance 0.6	125
Figure 5.27: Graph of strain versus time of clearance 0.4	126
Figure 5.28: Structure analysis of equivalent elastic strain for design 0.4	127
Figure 5.29: Graph of strain versus time of clearance 0.2	128
Figure 5.30: Structure analysis of equivalent elastic strain for clearance 0.2	129
Figure 5.31: Graph strain versus time of clearance 0.05	130
Figure 5.32: Structure analysis of equivalent elastic strain for clearance 0.05	131
Figure 5.33: Graph stress versus time of equivalent stress for clearance 0.8	134

Figure 5.34: Structure analysis of equivalent stress for clearance 0.8	135
Figure 5.35: Graph of stress versus time of equivalent stress for clearance 0.6	136
Figure 5.36: Structure analysis of equivalent stress for clearance 0.6	137
Figure 5.37: Graph of stress versus time of equivalent stress for clearance 0.4	138
Figure 5.38: Structure analysis of equivalent stress for clearance 0.4	139
Figure 5.39: Graph of stress versus time of equivalent stress for clearance 0.2	140
Figure 5.40: Structure analysis of equivalent stress for clearance 0.2	141
Figure 5.41: Graph of stress versus time of equivalent stress for clearance 0.05	142
Figure 5.42: Structure analysis of equivalent stress for clearance 0.05	143

LIST OF TABLE

Table 2.1: Type of die	19		
Table 2.2: Minimum bend radius for various materials	32		
Table 3.1: Gantt chart PSM 1			
Table 4.1: shown the result of equivalent stress verses time			
Table 5.1: The results of the mean from tensile test.	95		
Table 5.2: Content of bending analysis	97		
Table 5.3: Total deformation for bending analysis of clearance 0.8	98		
Table 5.4: Total deformation for bending analysis of clearance 0.6	99		
Table 5.5: Total deformation for bending analysis of clearance 0.4	101		
Table 5.6: Total deformation for bending analysis of clearance 0.2	103		
Table 5.7: Total deformation for bending analysis of clearance 0.05	105		
Table 5.8: Structural result of total deformation for each clearance			
Table 5.9: Comparison of the maximum total deformation with different clearance109			
Table 5.10: Shear stress for bending analysis of clearance 0.8	110		
Table 5.11: Shear stress for bending analysis of clearance 0.6	111		
Table 5.12: Shear stress for bending analysis of clearance 0.4	113		
Table 5.13: Shear stress for bending analysis of clearance 0.2	115		
Table 5.14: Shear stress for bending analysis of clearance 0.05	117		
Table 5.15: Structural result of shear stress for each clearance	120		

Table 5.16: Comparison of the shear stress with different clearance	121
Table 5.17: Equivalent elastic strain for bending analysis of clearance 0.8	122
Table 5.18: Equivalent elastic strain for bending analysis of clearance 0.6	124
Table 5.19: Equivalent elastic strain for bending analysis of clearance 0.4	126
Table 5.20: Equivalent elastic strain for bending analysis of clearance 0.2	128
Table 5.21: Equivalent elastic strain for bending analysis of clearance 0.05	130
Table 5.22: Structural result of equivalent elastic strain for each clearance	132
Table 5.23: Comparison of the equivalent elastic strain with different clearance	133
Table 5.24: Equivalent stress for bending analysis of clearance 0.8	134
Table 5.25: Equivalent stress for bending analysis of clearance 0.6	136
Table 5.26: Equivalent stress for bending analysis of clearance 0.4	137
Table 5.27: Equivalent stress for bending analysis of clearance 0.2	139
Table 5.28: Equivalent stress for bending analysis of clearance 0.05	141
Table 5.29: Structural result of equivalent stress for each clearance	144
Table 5.30: Comparison of the equivalent stress with different clearance	145
Table 5.31: Summary results of bending analysis for each clearance	146
Table 5.32: Comparison without and with simulation before produce the product	148

LIST OF ABBREVIATIONS

А	-	Area
AISI	-	American Iron and Steel Institute
ASTM	-	American Society Testing and Material
CAD/CAM	-	Computer-aided design and computer-aided manufacturing
CATIA	-	Computer Aided Three-dimensional Interactive Application
CNC	-	Computer numerical control
DOD STD	-	Department of Defense Standard
DXF	-	Drawing eXchange Format.
EDM	-	Electrical discharge machining
F	-	Force
FEA	-	Finite Element Analysis
FEM	-	Finite element method
IGES	-	Initial Graphics Exchange Specification
in	-	Inches
mm	-	Millimetre
OSHA	-	Occupational Safety and Health Administration
Pa	-	Pascal
Psi	-	Pounds per square inch
PSM	-	Project Sarjan Muda
Т	-	Metal Thickness
3D	-	Third Dimensional
%	-	Percent

CHAPTER 1 INTRODUCTION

In this introductory chapter, it contains a brief explanation about this project and the background of the project title, "Design and analysis of optimum clearance of an open small thimble bending die". Basically, this chapter discusses about the introduction of the background, problem statement, objective and scope.

1.1 Introduction

Bending is a metal forming process, it requires force to change the sheet metal to forming an angled or sheet profile. For the bending operation cause deformation along axis. Bending dies is to classify according to their design. To perform single bending operation, die are designed which may include L, V, U or Z bend or other profile. (Boljanovic, 2004)

Figure 1.1: Sheet metal bending profile (CustomPartNet, 2009)

Bending die has been designed to bend the workpiece known as a flat sheet plate of mild steel. Basically, the thickness and width of the workpiece being used by the company are 2mm and 8 mm in thickness and width. The workpiece that commonly been used in the bending die to be done the bending die process where the plate of the workpiece will be drawn to a certain diameter and height trough a bending die. After redesign the bending die, will be analyzed to get the optimum clearance by using a simulation study on FEA by using the plate workpiece. Therefore, the simulation is very significant in a bending die design process. Simulation enables to analyze the design in factor of quality, performance, characteristics and properties of the bending die before development process. In simulation, finite element method, FEM is used for investigation the precision of bending die process. The ANSYS software with actual specification from the industry for an open small thimble will be used to analyze the optimum clearance that will be applied in bending die to get the best surface finish. Apart from that, from the analysis results, the major defect of the burring and tearing can be reduced to produce an open small thimble.