DEVELOPMENT OF CUTTING TECHNOLOGY FOR CUTTING POLYMER FOAM MATERIAL

MUHAMAD SHAFIQ BIN CHE ROIZIMI B051310016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2016

C Universiti Teknikal Malaysia Melaka

B051310016 BACHELOR OF MANUFACTURING ENGINEERING (MANUFACTURING PROCESS) (HONS.) 2016 UTeM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF CUTTING TECHNOLOGY FOR CUTTING POLYMER FOAM MATERIAL

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process) (Hons.)

by

MUHAMAD SHAFIQ BIN CHE ROIZIMI

B051310016

920408-03-5875

FACULTY OF MANUFACTURING ENGINEERING

2016

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of Cu	Itting Technology for Cutting Polymer Foam Material		
SESI PENGAJIAN: 2015/2016 Semester 2			
Saya MUHAMAD SHAFIQ B	BIN CHE ROIZIMI		
	oran PSM ini disimpan di Perpustakaan Universiti TeM) dengan syarat-syarat kegunaan seperti berikut:		
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. **Sila tandakan (✓) 			
TERHAD ((Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan bleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:		
Alamat Tetap: NO. 604,	Cop Rasmi:		
Kg Pdg Sakar Salor,			
15100 Kota Bharu, Kelantan			
Tarikh: Tarikh:			
•	RHAD, sila lampirkan surat daripada pihak berkuasa/organisasi li sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT		

DECLARATION

I hereby, declared this report entitled "Development of Cutting Technology for Cutting Polymer Foam Material" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MUHAMAD SHAFIQ BIN CHE ROIZIMI
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) (Hons.). The member of the supervisory is as follow:

.....

(Engr. Dr. Mohd Hadzley Bin Abu Bakar

ABSTRAK

Projek ini memberi tumpuan untuk membangunkan teknologi dalam bentuk mesin gergaji menegak untuk pembuatan polymer foam. Fungsi utama teknologi pemotongan adalah untuk mengurangkan saiz polymer foam seperti 2m (panjang) x 1m (tinggi) x 0.0254m (ketebalan). Pembangunan awal teknologi pemotongan dengan menyatakan masalah untuk mengurangkan ketebalan kerana tidak ada mesin yang sesuai untuk mengurangkan ketebalan polymer foam. Oleh itu, teknologi pemotongan telah dibangunkan dengan melibatkan beberapa kaedah kejuruteraan seperti reka bentuk, proses dan penilaian produk. Dari segi reka bentuk, proses yang terlibat adalah penentuan spesifikasi mesin, memilih dan menganalisis konsep reka bentuk berdasarkan Kaedah Pugh dan membangunkan lukisan sebenar berdasarkan konsep dan spesifikasi yang dipilih. Di samping itu, teknologi pemotongan telah dihasilkan dengan beberapa proses seperti pemesinan, memotong, kimpalan dan pemasangan. Setelah teknologi pemotongan keseluruhan selesai, ia telah dinilai berdasarkan keupayaan fungsi, prestasi belting dan Finite Element Analysis (FEA). Untuk keupayaan fungsi, sistem menunjukkan prestasi yang mencukupi untuk mengurangkan ketebalan. Untuk prestasi belting, pemerhatian pada permukaan baru dan dipakai menekankan mekanisme kegagalan belting dalam bentuk kerosakan, haus dan kemerosotan *belting* struktur. Untuk analisis FEA, simulasi menggunakan Solidwork menunjukkan struktur teknologi pemotongan boleh menahan daya sehingga 1000N dan sesaran. Secara keseluruhan, teknologi pemotongan yang dibangunkan dalam kajian ini berjaya melaksanakan mengikut bertujuan objektif dan sedia digunakan untuk pengeluaran industri sebenar.

ABSTRACT

This project focused to develop cutting technology in the form of vertical bandsaw machine for manufacturing polymer foam. The main function of the cutting technology is to cut large size of foam expected minimum of 2m (length) x1m (high) x 0.0254m (thickness). Early development of the cutting technology expressed the problem to cut the foam due to unavailable machine that suit to reduce the thickness of the foam. Therefore, the cutting technology has been developed involving with several engineering methods such as design, process and evaluation of the product. In term of design, the process involved with determination of machine specifications, select and analyse the design concept based on Pugh Method and develop the real drawing of the cutting technology based on the selected concept and specifications. Further, the cutting technology has been manufactured by machining, cutting, welding and assembly. As the whole cutting technology completed, the newly fabricated produce were evaluated based on function ability, belting performance and Finite Element Analysis (FEA). For function ability, the systems demonstrated adequate performance to cut the foam into reasonable thickness. For belting performance, observation of new and worn surface highlighted the mechanism of belting failure in the form of breakage, burr and deterioration of belting structure. For FEA analysis, the simulation using Solidwork shows the cutting technology enable to retain force up to 1000N with minimum stress and displacement. Overall, the cutting technology developed in this study manage to perform according to the intended objective and ready to be applied for real industry production.

DEDICATION

To my beloved parents

ACKNOWLEDGEMENT

First and foremost, I would like to express my highest appreciation to my supportive academic supervisor, Dr. Mohd Hadzley B. Abu Bakar. His supervision and support that gave me truly helps during the period of conducting my thesis. His never-ending supply of valuable advice and guidance has enlightens me and deeply engraved in my mind.

Next, I would like to dedicate my thankfulness to machinery laboratory technicians, who has been so warmth and kind to provide sincere assistance and good cooperation during the training period. Their co-operation is much indeed appreciated. In addition, I would like to thanks to FKP lecturers, for their assistance, which really spends their time to teach me a lots of knowledge regarding to the design development.

Last but not least, I would like to state my appreciation to my loving parents, friend and colleagues for supporting me and administration department for their help in the project.

TABLE OF CONTENT

Abst	rak	i
Abst	ract	ii
Dedi	cation	iii
Ackr	nowledgement	iv
Table	e of Content	V
List	of Tables	ix
List	of Figures	Х
List .	Abbreviations, Symbols and Nomenclatures	xiv
CHA	APTER 1: INTRODUCTION	1
1.1	Background of Project	1
1.2	Problems Statement	3
1.3	Objective	4
1.4	Scope of Project	5
CHA	APTER 2: LITERATURE REVIEW	6
2.1.	Existing Product	6
2.2.	Components of Vertical Bandsaw Machine	6
	2.2.1. Gear System	6
	2.2.1.1. Helical Gear	7
	2.2.1.2. Spur Gear	8
	2.2.1.3. Straight Bevel Gear	10
	2.2.1.4. Worm Gear	11
	2.2.1.5. Hypoid Gear	12
	2.2.2. Belting System	13

v

2.2.2.1.	Type of Belt Drive	14
2.2.2.2.	V-Belt Drive	16
2.2.2.3.	V-Belt Analysis	18
2.2.2.4.	V-Belt Drive Design	19
2.2.2.5.	Belt Tension	21
2.2.3. Bearing	g System	22
2.2.3.1.	Rolling Contact Bearing	22
2.2.3.2.	Thrust Bearing	24
2.2.3.3.	Mounted Bearing	26
2.2.4. Shaft		27
2.2.5. Electric	c Motor	28
2.2.5.1.	Type of Motor	28
2.2.5.2.	Motor Selection Factor	29
2.2.5.3.	Motor Size	30
2.2.5.4.	Basic Information of AC Motor	30
2.2.5.5.	AC Motor Performance	31
2.2.5.6.	AC Motor Frame Types	32
2.2.5.7.	Induction Motor	35
2.2.6. Band S	aw Blade	37
2.2.6.1.	Blade Selection	39
2.2.7. Pulley	System	43
2.2.8. Finite I	Element Analysis (FEA)	45
2.2.8.1.	Von Mises Stress Failure	46
2.2.9. Manufa	acturing Process	47
2.2.9.1.	Drilling	47
2.2.9.2.	Sawing	48
2.2.9.3.	Mechanical Assembly	49

CHAPTER 3: METHODOLOGY

2 1	Testero durati an	50
3.1.	Introduction	50
3.2.	Fabrication Process Flow	51
3.3.	Overall Methodology	53
	3.3.1. Design Concept	54
	3.3.1.1. Conceptual Design of Vertical Bandsaw Machine	54
	3.3.2. Design for Assembly	57
	3.3.3. Selection Component and Process	57
	3.3.4. Best Design Concept	57
	3.3.5. Design for Manufacture	57
	3.3.6. Prototype	58
	3.3.7. Suggestion for Simplification of Product	58
	3.3.8. Identification Process	58
	3.3.9. Detail Design for Minimum Manufacturing Cost	58
	3.3.10. Production	58
3.4.	Pugh Method	59
	3.4.1. Concept Selection	59
3.5.	Component Selection for Vertical Bandsaw Machine	61
	3.5.1. Gear (Spur Gear)	61
	3.5.2. Belting System (V-Belt)	61
	3.5.3. Bearing (Double Row, Deep Groove Ball Bearing)	62
	3.5.4. Electric Motor (Induction Motor)	62
	3.5.5. Bandsaw Blade (Spring Tooth Bandsaw Blade)	62
3.6.	Manufacturing Process Selection	63
	3.6.1. Sawing Process	63
	3.6.2. Drilling Process	63
	3.6.3. Mechanical Assembly	63
3.7.	Step in Making Finite Element Analysis (FEA)	64

50

CHAPTER 4: RESULT AND DISCUSSION

4.1.	Development and Fabrication Process	71
	4.1.1. The Fabrication of Vertical Band Saw Machine	71
	4.1.2. Components Assembly of Vertical Bandsaw Machine	74
4.2.	Analysis on Vertical Bandsaw Machine	80
	4.2.1. Test Cutting	80
4.3.	Analysis on Belting Performance	82
	4.3.1. New Belt	82
	4.3.2. Broken Belt	83
	4.3.3. Worm Belt	85
4.4.	Analysis of FEA Result	86
	4.4.1. Upper Load	86
	4.4.2. Side Load	93

CHAPTER 5: CONCLUSION AND RECOMANDATION	102
5.1. Conclusion	102
5.2. Recommendation	103
5.3. Sustainability	104

REFERENCE

105

71

LIST OF TABLES

3.1	Pugh method table for Vertical Bandsaw Machine	60
3.2	Type of material for each components of Vertical Bandsaw Machine	66
3.3	Mesh information	69

LIST OF FIGURES

1.1	Polymer foam material	1
1.2	Commercial Vertical Bandsaw Machine	2
1.3	The possible failure of bandsaw blade	3
1.4	The possible failure belting that normally occurred	4
2.1	Gear System	7
2.2	Helical Gear	8
2.3	Automotive Gearboxes	8
2.4	Spur Gear	9
2.5	Spur Gear with Spoked	9
2.6	Straight Bevel Gear	10
2.7	Differential of an automobile	11
2.8	Worm and Worm Gear Set	12
2.9	Single-enveloping Worm Gear Set	12
2.10	Hypoid Gear	13
2.11	Belt Drive	14
2.12	Basic belt drive geometry	14
2.13	Example of belt construction	15
2.14	Cross section of V-belt and sheave groove	16
2.15	Basic belt drive geometry	17
2.16	Heavy-duty industrial V-belts	20
2.17	Industrial narrow-section V-belts	20
2.18	Light-duty, fractional horsepower (FHP) V-belts	20
2.19	Automotive V-belts	21
2.20	Belt tension	21
2.21	Single Row, Deep Groove Ball Bearing	23

2.22	Double Row, Deep Groove Ball Bearing	24
2.23	Spherical Roller Thrust Bearing	24
2.24	Cylindrical Roller Thrust Bearing	25
2.25	Tapered Roller Bearings	25
2.26	Ball Bearing Pillow Block	26
2.27	Shaft Bearing	27
2.28	Single phase AC power	31
2.29	Three phase AC power	31
2.30	General form of motor performance curve	32
2.31	Foot mounted	33
2.32	Cushion base	33
2.33	C-face mounting	34
2.34	Induction motor cross section	35
2.35	Induction motor lamination	36
2.36	Squirrel cage rotor without laminations	36
2.37	Spring and swage set	37
2.38	Tooth Swaging Phases	38
2.39	Spring Tooth Blade	38
2.40	Raker Tooth Setting	39
2.41	Pitch of Teeth	40
2.42	Selection of Blade Pitch	41
2.43	Bandsawing Radius Guide	41
2.44	Angular Blade Guide Attachment	43
2.45	Pulley System	44
2.46	Pulley Wheel	44
2.47	Pulley Wheel with Keyed Shaft	45
2.48	Example of FEA analysis	46
2.49	The six stress components in 3-D state	46
2.50	Drilling Process	48
2.51	Sawing Process	48

2.52	Mechanical Assembly	49
3.1	Flow Chart of Project Planning	51
3.2	Flowchart for Overall Methodology	53
3.3	Concept Design 1	54
3.4	Concept Design 2	55
3.5	Concept Design 3	56
3.6	The main components of the vertical bandsaw machine	65
3.7	The complete sketch of Vertical Bandsaw Machine	66
3.8	The applied material for FEA analysis	67
3.9	The fixed location of FEA analysis	67
3.10	Upper load direction	68
3.11	Side load direction	69
3.12	The applying mesh for structure of machine	70
4.1	Measuring process by using measuring tape	72
4.2	Cutting process of aluminum steel bar	72
4.3	The drilling process	73
4.4	The components of Vertical Bandsaw Machine	76
4.5	The assembly process of Vertical Bandsaw Machine	79
4.6	The polymer foam material is placed at the jig	80
4.7	Cutting process	81
4.8	Feeding direction curing the cutting process	81
4.9	The burr at surface of new belt	83
4.10	The burr at surface of broken belt	84
4.11	The burr at surface of worm belt	85
4.12	The result of FEA analysis based on the load simulation from upper load	
	direction	88
4.13	The maximum stress at the upper junction between upper frame and	
	aluminum steel bar	88

4.14	The displacement result of FEA analysis based on the load simulation	
	from upper load direction	92
4.15	The maximum displacement at the top upper frame and at the corner	
	between aluminium steel bar	92
4.16	The Stress result of FEA analysis based on the load simulation from	
	side load direction	95
4.17	The maximum stress between the joining for the both frame and	
	aluminium steel bar	96
4.18	The displacement result of FEA analysis based on the load simulation	
	from side load direction	100
4.19	The critical displacement	101

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AC	-	Alternative Current
С	-	Center Distance
D	-	Diameter
DC	-	Direct Current
FEA	-	Finite Element Analysis
FHP	-	Fractional Horsepower
Hz	-	Hertz
HP	-	Horse Power
kW	-	Kilowatts
L	-	Pitch Length
Mm	-	Millimeter
mhp	-	Milihorsepower
Ν	-	Newton
NEMA	-	National Electrical Manufacturers Association
Pa	-	Pascal
R	-	Radius
tpi	-	Teeth per inch
W	-	Watts
ω	-	Angular Velocity
θ	-	Angle

CHAPTER 1 INTRODUCTION

1.1 Background of Project

Polymer foam is made up from solid and gas phase mixed together to form a foam. The polymer foam is found virtually everywhere in modem world and are used in a wide of application such as producing automotive components, aerospace part, construction material, the cushioning furniture, toys, games, packaging and decoration. Most of the polymer foam prepared with the size around 1m (length) x 2m (high) 0.0254m (thickness). Certain this polymer foam thickness need to reduce for specific propose. In this manner, the vertical band saw machine is the most suitable machine to cut the thickness of polymer foam with the minimum expense required. Figure 1.1 shows the example of polymer foam material.

Figure 1.1: Polymer foam material (Source: Okolieocha et al,2015)

(C) Universiti Teknikal Malaysia Melaka

The bandsaw machine is the machine that produces continuous cutting process with teeth along one edge to cut many types of workpiece. The band saw blade is underpinned and determined by a drive wheel and an idler wheel. The bandsaw machines are divided into two classifications which are horizontal and vertical machines. On vertical machines, the position of cutting edge is vertical and cut into the side of the workpiece. The blade is rotated on the fixed track between the idler wheel mounted over the worktable while the drive wheel mounted underneath the worktable. The workpiece is moved by manually against the blade to make the cut.

Two major components that controlled the performance of bandsaw in blade and belting. The function of blade is to cut the material according to the shape and precision required. There are many blades available for the bandsaw, consisted of high speed steel and coated high speed steel. The performance of the blade depended on the wear resistance of the tooth of blade. On the other hand, the belting of the bandsaw control the movement of the blade according to the ratio of motor belting rotation. The belting normally made from leather, available of various size according to the motor. Performance of belting influence by the strength of tooth that engage with the pulley form motor. Low performance of belting will reduce the durability of bandsaw. Figure 1.2 shows example of commercial vertical bandsaw machine.

Figure 1.2: Commercial vertical bandsaw machine (Source: Yandles, 2015)

1.2 Problems Statement

The polymer foam with the size 2m (length) x 1m (high) x 0.0254m (thickness) is supplied by the DK composite company. The material is used as the damper for the body aerospace part and for other thickness components. So, one machine must be produced to cut this thickness of material from 0.0254 m to 0.02 m and the machine that provide this process is Vertical Bandsaw. This type of machine does not exist at any industrial and it must be done by custom made. Commercial Vertical Bandsaw Machine is too small and it's not suitable to cut this thickness of material. Bandsaw blade in the market also small and the space between the blade guides for cutting is too short. Usually the operator load the workpiece through the cutting blade by manual using their hands and it very difficult to load a bigger size of workpiece.

On the other hand, there are no analysis of belting performance the available bandsaw. Normally failure will occur when one of the belting tooth distort. Such situation affected the bandsaw process as the cutting process will be interfered when the belting damaged. Figure 1.3 and Figure 1.4 shows the possible failure of bandsaw blade and belting that normally occurred. This project will fabricate a new bandsaw for polymer foam cutting, evaluate the function ability of machine in term of belting performance and demonstrate the structure performance of the machine by applying FEA analysis.

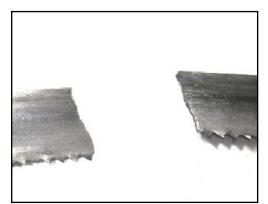


Figure 1.3: The possible failure of bandsaw blade (Source: Soediono, 1989)