

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EVALUATION OF RISK FACTOR IN MANUAL LOAD CARRYING

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Management) (Hons.)

by

ERNI NATASYA BT MOHD SANI B051210097 920713-08-5844

FACULTY OF MANUFACTURING ENGINEERING

2016

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Evaluating Risk Factors in Manual Load Carrying" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Erni Natasya Bt Mohd Sani
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Management) with Hons. The member of the supervisory committee is as follow

.....

(Nor Akramin Bin Mohamad)

ABSTRAK

Pengendalian bahan secara manual adalah aktiviti yang melibatkan jumlah beban yang dilaksanakan oleh manusia, contohnya, mengangkat, menurunkan, menolak dan menarik. Kaedah- kaedah seperti salah pemindahan dan kedudukan, serta, kesedaran di tempat kerja adalah di tahap rendah terutamanya dalam sektor pembuatan. Ini boleh menyumbang kepada pendedahan faktor-faktor risiko dan menyebabkan pekerja mengalami penyakit yang digelar sebagai Musculoskeletal Disorders (MSDS). Tiga objektif yang telah di rangka di dalam kajian ini, iaitu untuk mengkaji faktor risiko yang menyumbang kepada ketidakselesaan otot semasa melaksanakan pengendalian bahan secara manual, untuk menganalisis hubungan antara Rapid Upper Limb Assessment (RULA) dan Revised NIOSH Lifting Equation bagi menentukan saranan had berat dan akhir sekali untuk menentukan kesan antropometri dengan berbeza ketinggian meja. Maklumat yang berkaitan telah dikumpulkan melalui satu set soal selidik dan beberapa faktor risiko telah dikenalpasti. Hubungan ketara diantara RULA analisis dan *Recommended Weight Limit (RWL)* telah dikenalpasti dan ketinggian meja yang terbaik adalah 65 cm hingga 80 cm. Antropometri akan memberi kesan kepada setiap ketinggian meja kerana kewujudan postur janggal yang dikenal pasti melalui analisis RULA. Pemilihan ketinggian meja yang terbaik diambil berdasarkan hasil sebelumnya dengan menjadikan ketinggian manusia sebagai pembolehubah. Kesimpulannya, ketinggian meja 75 cm dan 80 cm, telah dikenalpasti sebagai yang paling sesuai untuk ketinggian manusia iaitu 155 cm hingga 180 cm.

ABSTRACT

Manual Material Handling (MMH) is an activity which involves a significant amount of load perform by human such as lifting, loading, pushing and pulling. Improper ways of handling this activity such as wrong transfer method and position together with low level of awareness of MMH in workplace, especially in manufacturing sector can contribute to an exposure of risk factors, resulting workers to suffer from a disease called Musculoskeletal Disorders (MSDs). There are three objectives of this research, which are to study the risk factor contributing to the muscle discomfort during performing manual load carrying, to analyze the relationship between Rapid Upper Limb Assessment (RULA) with Revised NIOSH Lifting Equation and lastly to determine the effects of anthropometry with different range of table height. Related information were gathered through a set of questionnaire and certain risk factor had been identified. A significant relationship between Recommended Weight Limit and RULA analysis was determined and as a result, the best range of table height was from 65 cm to 80 cm. Anthropometry will effect certain table height due to awkward posture identified through RULA analysis. The choice for best table height based on previous result, was narrowed down by implementing the man height as the variable. In the end, the best table range of 75 cm to 80 cm were identified as the most suitable for man height of 155 cm to 180 cm since it can fit wider range of human height.

DEDICATION

My beloved parents, Mr. Mohd Sani Bin Abbas and Mrs.Zainon Bt Hassan Beloved Siblings Motivated Supervisor Respectful Panels Awesome Friends

ACKNOWLEDGEMENT

Alhamdulillah, first of all I would like to thank Allah S.W.T for giving me mercy and guidance throughout completing this research. Besides that, I would like to thank my supervisor Mr. Nor Akramin Bin Mohamad for his constant supervision as well as providing me beneficial information and motivate me not just in this research, but also during my study in UTeM.

A big thank you to Faculty of Manufacturing Engineering (FKP) for giving me an opportunity to do my own research and also to panels that willingly to give comments so that this research can be improved.

Lastly, to my beloved parents and family who always been my backbone and giving me an encouragement in preparing this report, not to forget my fellow friends who also provides regardless support in terms of energy, time and money.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	V
List of Tables	viii
List of Figures	х
List Abbreviations, Symbols and Nomenclatures	xii
CHAPTER 1: INTRODUCTION	1
1.1 Background of study	1
1.2 Problem Statement	2
1.3 Objectives	5
1.4 Scope	5
1.5 Significant Study	6
1.6 Summary	6
CHAPTER 2: LITERATURE REVIEW	7
2.1 Manual Material Handling (MMH)	7
2.1.1 Manual Material Handling Task	9
2.2 Ergonomic Risk Factor (ERF)	12
2.2.1 Type of Ergonomic Risk Factor (ERF)	13
2.3 Summary Risk Effect in Manual Material Handling	16
2.4 Summary of Works Related to Material Handling Technique	e 18
2.5 Rapid Upper Limb Assessment (RULA)	22
2.6 NIOSH Lifting Equation	23

2.7 Human	Anthropometry	25
2.7.1 H	uman Percentiles	26
2.8 Designi	ing Standing Workstation	27
CHAPTER	3: METHODOLOGY	28
3.1 Overall	Planning and Activities	28
3.2 Gatheri	ng an Information on Risk Factor Contributing to Muscle Discomfort	29
3.3 Relation	nship between RULA analysis and NIOSH Equation	31
3.3.1	Table Height Setup using RULA Analysis	32
3.32	Revised NIOSH Lifting Equation	33
3.4 The effe	ect of anthropometry for certain table height	39
3.5 Expecte	ed Result	40
CHAPTER	4: RESULTS AND DISCUSSION	41
4.1 Risk Fac	ctor Contributing to Muscle Discomfort	41
4.2.1	Gathering Information on Risk Factor Associated with Manual Load	42
	Carrying	
4.2.2	Result of Evaluating Risk Factor Based on Muscle Discomfort	47
4.2.3	Summary of Result of Evaluating Risk Factor Based on Manual	50
	Load Carrying	
4.3 The Rela	ationship between RULA and Revised NIOSH Lifting Equation	51
4.3.1	RULA Analysis for Determining Level of Table Height	51
4.3.2	Example of Revised NIOSH Lifting Equation Calculation	53
4.3.3	Overall Result	58
4.4 Effect of	f Anthropometry for Certain Table Height	60
4.4.1	RULA Analysis for Different Human Anthropometry	60
4.4.2	Application of Anthropometric Data in Workstation Design	63

CH	APTER 5: CONCLUSION AND RECOMMENDATION	64
5.1	Study of Risk Factor among Industry Workers	64
5.2	Analyzing the Relationship between RULA and Revised NIOSH Lifting	65
	Equation	
5.3	Evaluating the Effect of Anthropometry Range with the Different Table	65
	Height	
5.4	Limitation of the Study	66
5.5	Recommendation for Future Study	66
RE	FERENCES	67

APPENDICES

- A Questionnaire for Level of Body Discomfort among Industry Workers
- B Result on Recommended Weight Limit for Each Level of Table Height

LIST OF TABLES

1.1	Potential Risk Factors for Low Back Pain	4
2.1	Different Opinions Related to MMH Research	8
2.2	Percentage of Worker's Perception on Ergonomic and MMH Knowledge	9
2.3	Task Related to Manual Material Handling.	10
2.4	Summary of Risk Effect in MMH	16
2.5	Experiment Sample	18
2.6	Experimental Factor	19
2.7	Material Handling Technique and Their Parameter	21
2.8	Action level score	23
2.9	Comparison of Standard and Revised NIOSH Lifting Equation	25
3.1	Content of Questionnaire	29
3.2	Type of question and description regarding the questionnaire.	30
3.3	Multiplier Factor and its Description	34
3.4	Horizontal Multiplier Look-up Chart	36
3.5	Vertical Multiplier Look-up Chart	36
3.6	Distance Multiplier Look-up Chart	37
3.7	Angle Multiplier Look-up Chart	37
3.8	Frequency Multiplier Look-up Chart	38
3.9	Coupling Multiplier Look-up Chart	38
3.10	Expected Result	40
4.1	Height and Weight Result	43
4.2	Overall Discomfort Result by Workers	48
4.3	Overall Discomfort Result by Workers (Continued)	48

4.4	Overall Discomfort Result by Operators	49
4.5	Summary of Risk Factor and Discomfort Region	49
4.6	RULA Score and Action Level Description	51
4.7	Result of Six Components of the Lifting Task	53
4.8	Horizontal Multiplier (HM)	54
4.9	Vertical Multiplier (VM)	54
4.10	Distance Multiplier (DM)	55
4.11	Angle Multiplier (AM)	56
4.12	Coupling Multiplier (CM)	56
4.13	Frequency Multiplier (FM)	57
4.14	Result of RULA Analysis and Revised NIOSH Lifting Equation	58
4.15	Result of RULA Analysis for Different Anthropometry Range	61
5.1	Summary for Effect of Anthropometry with Different Table Height	65

LIST OF FIGURES

2.1 H		
2.1 1	Example of MMH Task in Manufacturing Industry	12
2.2	Гуре of Risk Factor	13
2.3 H	Factors That Contribute to Amount of Force	14
2.4 H	Factors of Extreme Temperature	16
2.5 F	RULA Method Scoring	22
2.6	Graphical Presentation of Hand Location	24
2.7	The Different Percentile of Females and Males	26
2.8	The Acceptable Table Height for Standing Workstation	27
3.1 H	Process Flow for Achieving Second Objective	31
3.2 U	User Interface of RULA software in CATIA V5R20	33
3.3 I	llustration for Determining the Multiplier Factor	34
3.4 I	Illustration for Determining the Angle Multiplier	35
3.5 U	User Interface for Human Measurement Editor in CATIA V5R20	39
4.1 (Gender Distribution	42
4.2 A	Age Distribution	42
4.3 I	Health Issue	43
4.4 (Common Posture Exposed When Lifting a Load	44
4.5 A	Amount of Load Lift in a Day	45
4.6 I	Height of Table Used When Lifting a Load	46
4.7 I	Example of RULA Analysis for 65 cm Table Height.	52
4.8	The Illustration of Lifting Task	53
4.9 (Graph of Table Height VS RWL Result	59

4.10	Example of RULA Analysis	61
4.11	Illustration of Boundary Region for Score 3 and Score 4	62

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

3DSSPP	-	3D Static Strength Prediction Program
AL	-	Action Limit
AM	-	Asymmetry Multiplier
ANOVA	-	Analysis of Variance
BMI	-	Body Mass Index
CATIA	-	Computer Aided Three-Dimensional Interactive Application
СМ	-	Coupling Multiplier
DM	-	Distance Multiplier
ERF	-	Ergonomic Risk Factor
FM	-	Frequency Multiplier
G	-	Group
LBP	-	Low Back Pain
LC	-	Load Constant
MAW	-	Maximum Acceptable Weight
MMH	-	Manual Material Handling
MSDs	-	Musculoskeletal Disorders
NIOSH	-	National Institute for Occupational Safety and Health
OSH	-	Occupational Safety and Health
RULA	-	Rapid Upper Limb Assessment
RWL	-	Recommended Weight Limit
SOCSO	-	Social Security Organization
SEMG	-	Surface Electromyography
VM	-	Vertical Multiplier
WMSDs	-	Work-related Musculoskeletal Disorders

CHAPTER 1 INTRODUCTION

1.1 Background of Study

Manual material handling (MMH) are the most common task perform by human in working sector, especially in the manufacturing sector, such as food processing and plastic production. In Malaysia, the statistics of monthly manufacturing reported that there are approximately 2.22 million people working in the manufacturing industry (Sazarina et al., 2012). Even though there is an increasing demand for the usage of automation robots in most workplaces, a large proportion of industrial activities are still demanding the jobs to be remain handled manually. While, Deros et al., (2015) agreed that manual work resource or the term used as MMH activities is still dominant in most manufacturing industry. According to Chung and Kee (2000), it is estimated that more tasks are manually performed in Korea, where labor-intensive industries are more prevalent and industrial processes are less automated. MMH actually requires a person to perform an activity which involve a significant amount of load. However, MMH also has been considered as a major occupational hazard to workers. One of the various task of MMH which is load-lifting is thought to be the source of Musculoskeletal Disorders (MSDs) especially low back problems.

Matsui et al., (1997) found that physical job demands show a clear association with the point and lifetime prevalence of low back pain (LBP). The incidence, severity, and potential disability of low back pain are all related to the demands on the individual in the workplace.

Health and Safety Review (2010) state that a study of civil court judgments on cases concerning injury due to manual handling had identified the key factors which include:

- i. Lack of safe system of work plans.
- ii. Mechanical aids were not provided and maintained.
- iii. No risk assessment of work activities and no evidence of work supervision.

1.2 Problem Statement

Health and Safety Review (2010) stated that, musculoskeletal injuries at work are one of the major drain on the resources of an employer, which includes increasing in cost such as sick pay, lost productivity, legal fees and injury benefit. In fact, injuries due to manual handling are reported to be 33% of all accidents each year, and nearly 20% take place in the manufacturing sector. This type of the problem does not terminate in a developed country like the United States, but it is also quite prevalent in Malaysia as well (Mohamed and Ideris, 2012). According to Sazarina et al., (2012), they claimed that due to further development in industry, Malaysia are not exempted to face the issue of work-related musculoskeletal disorder (WMSDs) arise from MMH activity. Figure 1.1 shows the accident statistics reported by Social Security Organization (SOCSO) in Malaysia whereby the number of accidents related to musculoskeletal diseases increased from 10 cases in 2005 to 675 in 2014 (SOCSO, 2014).

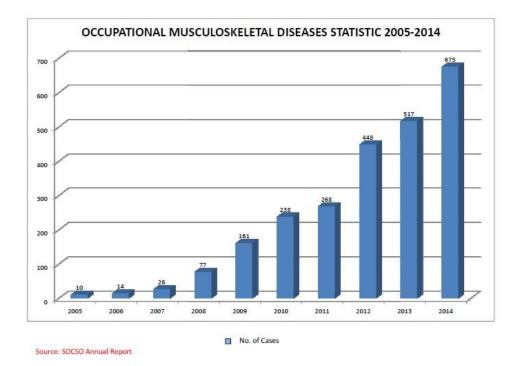


Figure 1.1: Accidents Statistics Related to Musculoskeletal Diseases (SOCSO, 2014).

Inappropriate ways of performing MMH activities including repetitive lifting heavy loads, wrong transfer method and position may result a person suffering from a Work-related Musculoskeletal Disorders. WMSDs are injuries of the soft tissues muscles, tendons, ligaments, joints, and cartilage and nervous system. They can affect nearly all tissues, including the nerves and tendon sheaths, and most frequently involve the arms and back (Jaffar et al., 2011). While Nimbarte (2014) states that, WMSDs are the non-traumatic soft tissue disorders that are caused or exacerbated by workplace exertions. Studies show that MSD in the workplace are a common notion which the work itself is the root cause of the MSD (Wind et al., 2005). In fact, MSD is a leading cause in manual handling injuries that gives a major burden to the employee, society, and organizations.

According to the year 2007 in-house report of an automotive manufacturing company in Malaysia, the total number of workers suffering from back pain had increased from the year 2005 until 2006. A total of 954 cases of back pain and 783 workers had been involved with this illness were reported by the in-house clinic throughout the year (Baba et al., 2010). Low back pain may be acute or chronic. Acute low back pain can be treated within a short time of period, compared to chronic low back pain that take long time to recover (Pengel et al., 2003). Marras et al., (2007) states that three general risk factor categories for LBP have been identified in Table 1.1.

- i. Personal (associated with the individual predisposing them to the condition).
- ii. Psychosocial (associated with organizational work practiced).
- iii. Occupational (associated with the work task).

Classification	Risk Factors		
Personal	Age, gender, Body Mass Index (BMI),		
	family history, smoking, and alcohol.		
Psychosocial	Job demands, job stress, social		
	relations, and decisions.		
Occupational	Force, lifting, posture, bending,		
	twisting, repetition and vibration.		

Table 1.1: Potential risk factors for Low Back Pain (Marras et al., 2007)

However, most data concerning back pain are related to developed countries and information about back pain in developing and low-income countries are lacking (Ghaffari et al., 2006). In Malaysia, the awareness of injuries such as back pain is still at the low level compared to other develop countries and it is still being promoted by the Occupational Safety and Health (OSH) practitioners to enhance the awareness level of all Malaysians (Deros et al., 2009). Earlier, Durishah et al., (2004) found that

ergonomic staff in workplace are still low level of awareness of safety and health. The manufacturing sector involves different types of production from semiconductors, plastics, automotive and others. The task conducted frequently required human to perform manually, such as lifting a heavy load in the workstation. However, not all MMH tasks are hazardous, and if it is implemented correctly, the chance to expose for injury are low. Noriah (2010) claimed that, company should take responsibility to provide safety and health requirements, either by giving out information, organize an exhibition or seminar to the workers. Therefore, it is very important for workers to be aware of potential workplace hazard so that workers can develop better ways of performing MMH tasks.

1.3 Objectives

- i. To study the risk factor contributing to musculoskeletal injuries during performing manual load carrying by using ergonomics assessment tools.
- To analyze the relationship between Rapid Upper Limb Assessment (RULA) and Revised NIOSH Lifting Equation.
- iii. To evaluate the effects on anthropometry with different range of table height.

1.4 Scope

The focus of this research is identifying the risk factor for a lifting task only. There are two study areas involve in this research. First, in the industry for distribution of questionnaire among 30 respondents. The gender includes female and male with various age group. The second area is in Universiti Teknikal Malaysia Melaka (UTeM) for experimental purpose. This experiment will be focusing on human posture with table height and anthropometry of human as the parameter. Data is collected through RULA analysis by using CATIA software together with Revised NIOSH Lifting Equation for calculation of Recommended Weight Limit (RWL).

1.5 Significant of Study

Ergonomic is an interesting topic to discuss for, in fact, there are some potential benefit in terms of sustainability that can be gained throughout this study. As an example, the industry will increase their productivity if all workers' health is sustained. Therefore, this study will help workers in any workplace to be aware of risk factors that can contribute to body discomfort. Management of the company can use the data collected for purchasing any equipment, or designing a better workstation which can lead to a safe and healthy environment. In the future, the statistic of injuries in the industry, especially in Malaysia will be decreased.

1.6 Summary

This research encounters the main topic that covers the overall study, which is manual material handling. The purpose of this research is to investigate what are the possible risk factor that contribute to musculoskeletal injuries occurred when the person is performing MMH task such as lifting. This chapter is presented in the form of background of study, problem statement, objectives and scope and the significance of study.

CHAPTER 2 LITERATURE REVIEW

This chapter is the summary of Manual Material Handling (MMH) topic. Brief discussion and different opinions from previous researchers on this issue is also provided. Other than that, the basic understanding of MMH is also reviewed such as the definition itself. In addition, since this study relates to the risk factor, the literature review goes down narrow to the type of MMH task, and also the effect to the human body while performing MMH. In the end, a risk assessment used to study about the risk of MSD is discussed.

2.1 Manual Material Handling (MMH)

Ergonomics is a field that integrates knowledge gained from the human science. The primary goals of ergonomics is to optimize the ease of the worker as well as providing a safe and healthy surrounding. In fact, it is an essential in occupational health practice that should be taken seriously by any working organization. In the last 40 years, manual material handling task have been one of the most discussed topic in ergonomic, biomechanics and other subject related (Chung and Kee, 2000). In fact, many researchers are interested in this topic and had discussed different opinions related to MMH in their research. All discussions are tabulated in Table 2.1.

Journals	Researcher/s	Descriptions	
1	Rajesh et al., (2013)	Discussed on ergonomic redesign	
		related to the MMH work system.	
2	Rossi et al., (2013)	Discussed in developing and	
		implementing multi-criteria approach for	
		choosing the optimal alternative for	
		MMH.	
3	Steele et al., (2014)	Discussed on comparing Liberty Mutual	
		Table with biomechanically derived	
		pushing guidelines for shoulder	
		complexity during MMH task.	
4	Pinder and Boocock (2014)	Discussed on how to predict the	
		Maximum Acceptable Weight (MAW) of	
		MMH task which is lifting.	
5	Matebu and Dagnew	Discussed on the MMH working posture	
	(2014)	of an operator using 3D Static Strength	
		Prediction Program (3DSSPP) software.	
6	Ray et al., (2015)	Discussed on survey on occupational risk	
		factors of MMH tasks on a construction	
		site in India.	

Table 2.1: Different Opinions Related to MMH Research.

The usage of MMH also has become wider in most workplaces. In fact, MMH give an advantages, for example, reducing the percentage of having accident when using

automated robots in workplaces so that workers are motivated to finish their task. Uttam, (2013) states that MMH offer benefits for improving productivity and increasing safety if it is implemented properly by the worker. While, Deros et al., (2015) believe that MMH gives an advantage in terms of flexibility of transferring simple and light object when compared to using mechanical aids.

Transferring material should be a non-value added activity in production line since it does not affect the product. In the meantime, most workers in company are lack of knowledge of MMH and they are not mindful of the negative effects of improper MMH handling techniques which leads to an increasing production cost and unsafety environment. Management should lead this issue seriously because the workers might not be able to the see the effect since they are used to do the same task every day and their age is still young, however, for long term period, many workers could suffer from MSD disease. Table 2.2 shows the distribution of the workers' perception regarding knowledge of ergonomics and MMH according to previous research data.

 Table 2.2: Percentage of Worker's Perception on Ergonomics and MMH Knowledge

 (Deros et al., 2015)

Question Items	Yes	No
Ergonomic knowledge	71.9	28.1
Knowing the effects of neglecting ergonomics.	9.4	90.6
Knowing the function of MMH	18.8	81.2
Attended ergonomics seminar	12.5	87.5

2.1.1 Manual Material Handling Task

Uttam (2013) states that, MMH involves manual movement of materials in different position and angle, either in: