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ABSTRACT 

 

 

 

 Dissimilar pipe welding is widely used in industry especially power plant. The 

purpose of this method is to have the transition in mechanical properties to meet the 

requirement in different working condition. In addition, the economic purpose is 

another important factor because 304L austenitic stainless steel pipe is more 

expensive than BS1387 low carbon steel and material cost is limited for industry. 

The 304L austenitic stainless steel is used in the critical environment like high 

pressure and temperature region while BS1387 is used in low pressure and 

temperature region. In order to join both pipes, Gas Metal Arc Welding is performed 

and rotating jig is used to increase the consistency of the welding process. However, 

different physical properties of two different types of the steels cause them hard to 

join together. Hence, the objectives of this study are to study the effect of welding 

parameters that are current and welding speed to tensile and hardness properties of 

welded specimens, suggest optimized parameters for BS 1387 and SS 304L pipes 

welding and generate the regression models of tensile and hardness   properties in 

BS1387 and SS304L pipes welding. Various currents and welding speeds are 

introduced and  they are 175, 180, 185A and 60, 70, 80cm/min. Mechanical tests like 

tensile testing and microhardness testing are carried out after all the welding 

specimens were cut into desired shape by using Electro-Discharge Machine. The 

results revealed that welding speed is dominants the influence to the changes of the 

strength and hardness of the welded zone. Moreover, optimized set of parameters and 

regression models are suggested.  
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ABSTRAK 

 

 

 

 Kimpalan logam yang berbeza banyak digunakan dalam sektor industri terutamanya 

di dalam loji janakuasa. Tujuan untuk mengaplikasikan kaedah ini adalah untuk 

mendapatkan peralihan dalam sifat mekanik supaya dapat memenuhi keperluan 

dalam keadaan yang berbeza. Di samping itu, tujuan ekonomi juga adalah salah satu 

faktor yang penting sebab paip 304L keluli tahan karat austenit lebih mahal daripada 

paip BS1387 keluli karbon rendah dan kos bahan untul industri adalah terhad. Paip 

304L keluli tahan karat austenit digunakan dalam persekitaran kritikal seperti 

kawasan yang mempunyai tekanan dan suhu yang tinggi manakala paip BS1387 

keluli karbon rendah digunakan dalam kawasan yang mempunyai tekanan dan suhu 

yang rendah.  Untuk mengabungkan dua jenis paip yang berlainan, Kimpalan Arka 

Logam Gas Lengai telah dijalankan dan jig yang berputar juga digunakan untuk 

menambahkan ketekalan proses kimpalan. Walau bagaimanapun, sifat-sifat fizikal 

yang berbeza untuk dua jenis keluli ini telah menyebabkan peningkatan kesusahan 

untuk mengabungkan dua jenis paip keluli ini. Oleh itu, matlamt untuk kajian ini 

adalah untuk mengajikan pengaruhan parameter seperti arus dan kelajuan kimpalan 

terhadap sifat ketegangan dan kekerasan untuk sampel-sampel dikimpal, 

mencadangkan jumlah optimum parameter untuk kimpalan paip BS1387 dan 304L, 

dan menghasilkan model-model regresi untuk sifat-sifat tegangan dan kekerasan 

dalam kimpalan paip BS1387 dan 304L. Beberapa arus dan kelajuan kimpalan telah 

diperkenalkan iaitu 175, 180, 185A dan 60, 70, 80cm/min. Ujian-ujian mekanikal 

seperti ujian tegangan dan ujian mikro-kekerasan telah dijalankan setelah sampel-

sampel kimpalan telah dipotong kepada bentuk yang diiinginkan dengan 

menggunakan mesin Elektro-Discaj. Keputusan telah menunjukan kelajuan kimpalan 

adalah amat berpengaruh terhadap perubahan kekuatan dan kekerasan pada zon 

dikimpal. Selain itu, jumlah optimum untuk set parameter dan model-model regresi 

telah dicadangkan.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background  

Dissimilar Metal Welding is used in various applications in manufacturing sector like 

nuclear power plant, coal fired boilers, pharmaceutical, foods and beverages, and 

chemical industries. It is needed when transition in mechanical properties and 

performances in certain conditions are required. In power generation plant, the pipes 

that used to transfer high temperature steam are made of the austenitic stainless steels. 

However, at the region that has lower temperature and pressure, the application of 

austenitic stainless steels is unnecessary. Therefore, transition of the stainless steels 

to carbon steels is applied for economic purposes since the carbon steels can perform 

sufficiently at that environment (Kotecki and Lippold, 2005). In addition, the 

dissimilar thickness of pipes is used due to the different workload of the parts. 

Thinner part can be used in low working load while thicker part can be used in high 

working load (Hussein et al, 2016).  

 

In this study, BS 1387 low carbon steel pipes and 304L austenitic stainless steel pipes 

are used. BS 1387 low carbon steel pipes are used for low pressure transportation 

while 304L stainless steels are widely used in varies applications. To join them, 

orbital pipe welding technique is needed. With the help of orbital pipe welding, 

human error is decreases and the productivity is increases. Besides, there are few 

methods to perform orbital pipe welding and Gas Metal Arc Welding (GMAW) is 

chosen. GMAW is consumable electrode arc welding process that equipped with 

continuous consumable solid wire electrode and shielding gas to perform welding 

process (Robert, 1999).  
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However, the different characteristics in between 304L stainless steel and low carbon 

steel influence the quality of the weld. The melting point and the heat conductivity of 

304L stainless steel is lower than carbon steel and thermal stress is more contribute at 

the carbon steel (AISI, 1988). Therefore, the heat input needs to be controlled to 

prevent failure or low quality. To optimize the parameters, design of experiment 

method is used to list out all possible combinations of parameters and experiment is 

undergoes with the available combinations of parameters. With the tensile and 

hardness testing results, the optimized parameters can be found by using the design 

of experiment method. 

1.2 Problem Statement 

Dissimilar metal welding process is used to join the stainless steels to other materials 

like low carbon steels. This method is often used when transition in mechanical 

properties of two different materials are needed (Kotecki and Lippold, 2005). 

Moreover, the inherent cost can be reduced because the cost of the stainless steel is 

higher than low carbon steel (Westin and Garrett, 2010).  

 

In this study, BS1387 carbon steel pipe and 304L stainless steel pipe are used. The 

filler material is 308L stainless steel. When welding is applied to the base metal, the 

hardness at heat affected zone (HAZ) is decreasing and the length of the HAZ is 

increasing. This is due to the changing at the microstructure of the HAZ 

(Ranjbarnodeh et al, 2012). Then, the melting point of the carbon steel is higher than 

the 304L stainless steel which means the stainless steel can be welded faster. In 

another perspective, the heat input to melt the carbon steel is higher than the heat 

input to melt the stainless steel. Moreover, the heat conductivity of the stainless steel 

is lower than the carbon steel and the heat expansion is higher than the carbon steel 

and this leads to the happen of distortion (AISI, 1988). In addition, the thickness of 

the stainless steel is thicker than the thickness of carbon steel and this has increases 

the difficulty of welding.  
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Therefore, optimization of the parameters is focused in this study rather than study 

effect of repetitive repair welding on the weld part. The optimized parameters can be 

used to study the effect of repetitive repair welding on the weld part and suggest the 

optimum number of repair welding to BS1387 low carbon steel pipe and 304L 

austenitic stainless steel pipe.  

1.3 Objectives of Study 

Objectives of the study are: 

i. To study the effect of welding parameters that are voltage, current and 

welding feed speed to tensile and hardness properties of welded specimens. 

ii. To suggest optimized parameters for BS1387 and 304L pipes welding.  

iii. To generate the regression models of tensile and hardness   properties in 

BS1387 and 304L pipes welding. 

1.4 Scope of Study 

In this study, two types of steel pipes were prepared, 304L austenitic stainless steel 

and low carbon steel. The pipe specimens of stainless steel had outer diameter 40mm, 

length 100mm and thickness 5mm. On the other hand, the pipe specimens of low 

carbon steel had outer diameter 40mm, length 100mm and thickness 4mm. GMAW 

was the heat source to perform orbital pipe welding. The type of shielding gas was 30% 

Carbon Dioxide and 70% Argon, and wire electrode used was AWS ER 308L with 

diameter 1.2mm. The parameters that have been studied were current and welding 

speed. The levels of the current were 175, 180 and 185A while levels of the welding 

speed were 60, 70 and 80cm/min. Full factorial design technique was used to list out 

all the possible parameters combinations. 

 

During the welding process, rotational jig that available in the lab was used to hold 

the pipe and rotate the pipe. Torch was fixed by the holder located at the rotational 

jig and rotational speed which acted as welding speed. In addition, tack weld was 
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performed before the welding process to temporary hold the pipe at correct alignment 

and distance. After the welding process, tensile test and micro-hardness test were 

carried out to get the data such as ultimate tensile strength (UTS), elongation and 

hardness level of the base metals and weld part. Micro-hardness testing machine and 

universal tensile machine that available in the laboratory were used to carry out these 

testing. 

1.5 Significance of Study 

Dissimilar welding process is important in industries such as power generation plant 

that contain high temperature steam. Dissimilar welding process is needed due to the 

transition of mechanical properties and cost effectiveness (Kotecki and Lippold, 

2005). Unfortunately, the different characteristics of the materials are increasing the 

possibility of failure to joint them. Therefore, this study is focus on the optimization 

of the parameters used to weld the stainless steel to carbon steel pipes. With the 

optimized parameters, the cost used to join stainless steel to carbon steel pipes is 

decreases and the properties at the weld part are sustainable at the service 

environment.  

 

Besides, the microstructure and properties of the weld part and HAZ are changing 

and weakening when the number of repair welding is increases. With the increasing 

of number of repair welding, the properties of weld part and HAZ will fail to service 

at the particular environment, temperature and pressure. Therefore, the optimized 

parameters that obtained in this study can be used to further study on the optimum 

number of repetitive repair welding can be done to this dissimilar pipe welding. 

1.6 Activity Planning 

Activity planning of this study is outlined in the Gantt Charts as in Appendix A and 

B. The Gantt Charts are prepared for both PSM 1 and PSM 2.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

This chapter focuses on the review of the literature from the journal, article, book and 

other resources. Generally, this chapter has been divided into four sections, materials, 

welding methods，parameters of welding process and testing methods. 

2.1 Carbon Steel 

Carbon steel is most widely used steel in the world. Composition of the carbon will 

affects the properties of the carbon steel in hardness, tensile strength, ductility and 

others. Carbon steel can be divided into low carbon steel, medium carbon steel and 

high carbon steel. The amount of the carbon contain is the way to differentiates them 

into the three groups (Seblin et al, 2005). Generally, carbon steel is iron-based alloy 

that contains less than 2% composition of carbon.  

 

Other than carbon, elements like silicon, aluminium, manganese and cerium are 

added to improve the properties of the carbon steel. In industry sector, carbon steel is 

famous materials to use due to the mechanical properties, ease of fabrication and 

availability. For sure, the most important factor is the cost. It is not only use in 

structural fabrication, it also widely used in water and steam containing system. 

Moreover, carbon steel is used to manufacture boilers, pressure vessels, tubes, pipes 

and heat exchangers (Handbook, 2007). Not only for industry purpose, carbon steel is 

used to produce car bodies, kitchen appliances and cans (Seblin et al., 2005). 
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2.1.1 Low Carbon Steel 

Carbon steel with below 0.25% of carbon is categories as low carbon steel (Seblin et 

al., 2005). The microstructure of the low carbon steel is builds up mainly by pearlite 

and ferrite phases. Normally, low carbon steel is directly goes through hot forming or 

cool forming process due to its workability and ease of fabricate. The ease of 

fabricate characteristic of low carbon steel is encourages manufacturers to form it 

into certain shapes through few methods like pouring, moulding and pressing. Low 

carbon steel can changes its formation easily through the manufacturing process. 

 

 Therefore, it is uses to produce machine parts, chains, rivets, nails, wires and pipes 

(Litherland, 1999). Although the strength of the low carbon steel is not outstanding 

due to the composition of carbon is low but it has better formability that other types 

of steel would not have. Another advantages that low carbon steel had is the weld 

ability, this is due to the low content of carbon composition. The hardness of the steel 

increase with the amount of carbon content in the steel, but the probability of cracks 

will occurs is increasing (Weiss, 2013). 

2.1.2 Medium Carbon Steel 

The carbon content of medium carbon steel is in between 0.25% to 0.70%. It is needs 

to undergo heat treatment to improve the machinability (Seblin et al., 2005). Medium 

carbon steel is alloying with chromium, nicker and molybdenum to improve the 

tensile strength, wear resistance and toughness. With these properties, medium 

carbon steel is widely uses in producing gears, axles, studs and other machine parts 

that need high strength and high toughness (Misumi, 2014).   
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2.1.3 High Carbon Steel 

High carbon steel is steel with carbon content in between 0.70% to 1.05%. To obtain 

high shear and wear resistance, fully heat-treatment is applies to the high carbon steel. 

Therefore, it can have high hardness thus little deformation occurs when subjected to 

forces. At high hardness, high carbon steel has more brittle behaviour. If toughness is 

required, the adjustment in between hardness and toughness needs to be considered 

(Seblin et al., 2005). With the high hardness, high strength and good wear resistance, 

high carbon steel is manufactures to knife, saw blade, spring, gear wheel, chain and 

others wear parts (Metals, 2012).  

 

Moreover, different carbon content in the steel is determines the mechanical 

properties, brittle or ductile behaviour of the steel and this is depends on the 

application. It is influences by the microstructure of the steel. For carbon content 

lower than 0.2%, 75% of the microstructure of carbon steel is made up of pro-

eutectoid ferrite phase and the other 25% is pearlite phase. As the rises of the carbon 

content, the amount of pearlite is increases. At 0.8% of carbon content, the fully 

pearlite structure is obtained. Beyond that carbon content, microstructure of the 

carbon steel is consists of pro-eutectoid cementite and pearlite. The increase of the 

cementite content is increases the hardness but decreases the ductility. Therefore, 

high carbon steel is more brittle than low carbon steel and medium carbon steel 

(Seblin et al., 2005).  

2.1.4 BS1387 Low Carbon Steel  

BS 1387 low carbon steel is standardized according to British Standard BS 

1387:1985. Typically, it is used in scaffolding and low pressure liquids flow such as 

water, gas, oil and machinery. It is categories to three degrees which are light, 

medium and heavy. It is differentiates by the colours, brown, red and blue.  

 

 


