PREPARATION AND CHARACTERIZATION OF NANO-ALUMINA FILLED HDPE CONDUCTING POLYMER COMPOSITE

CHON YU YUN

B051210054

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PREPARATION AND CHARACTERIZATION OF NANO-ALUMINA FILLED HDPE CONDUCTING POLYMER COMPOSITE

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) (Hons.)

by

CHON YU YUN B051210054 921008-08-5018

FACULTY OF MANUFACTURING ENGINEERING 2016

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Preparation and Characterization of Nano-Alumina Filled HDPE Conducting Polymer Composite" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	CHON YU YUN
Date	:	21 th JUNE 2016

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Department of Engineering Materials) (Hons.). The member of the supervisory committee is as follow:

PROFESOR DR. QUMRUL AHSAN

(Official Stamp of Supervisor)

ABSTRAK

Secara umumnya, polimer dikenali sebagai penebat elektrik, akan tetapi untuk menjadikan polimer yang mampu digunakan dalam aplikasi elektronik, penyelidikan dalam bidang pengaliran elektrik menjadi satu pedekatan yang menarik. Untuk tujuan ini, salah satu strategi spesifik adalah berdasarkan pengadunan penebat polimer konvensional, "HDPE" dengan pengisi organik yang konduktif, "Pani" dan "MWCNT" bagi membuat polimer komposit yang boleh mengalirkan elektirk. Cara pencampuran dari segi mekanikal diimplikasikan tanpa melakukan pengubahsuaian ke atas bahan yang digunakan. Kaedah pencampuran dengan kedua-dua pengisi organik telah menjanjikan prestasi elektrik pengaliran yang menunjukkan kos yang rendah sekali. Ini adalah disebabkan kelebihan polimer sendiri iaitu kemudahan dalam pemprosesan. Walau bagaimanapun, kelemahan pengisi konduktif termasuk penumpuan nanopartikel dan sensitif kepada kelembapan persekitaran akan menghalang kekuatan penagliran elecktrik. Oleh itu, pengisi inorganik dalam nano saiz seperti alumina diperkenalkan untuk memasukkan ke dalam komposit polimer tidak organik yang konduktif untuk mengatasi isu-isu ini. Kekonduksian elektrik boleh diperolehi dengan menggunakan cara "volume resistity testing". Selain itu, penjelmaan Fourier inframerah (FTIR) dan teknik pengimbasan pembezaan kalorimeter (DSC) telah digunakan untuk menganalisis ciri-ciri elektrik dalam polimer komposit yang kondutif yang disediakan. Sampel Pani (6.69 Scm⁻¹) adalah lebih konduksif daripada sampel MWCNT, iaitu 1.15 Scm⁻¹. Walaubagaimanapun, kedua-dua sampel telah menunjukkan penurunan dalam konduktiviti. Tetapi, selepas pencampuran dengan nano saiz alumina, konduktiviti sampel telah distabilkan. Pada masa kini polimer konduktif digunakan untuk pelindungan untuk elektromagnet, perencat penghakisan, dalam electroluminescent dan paparan untuk telefon selular, untuk pelesapan statik, dan untuk pelbagai peranti pengesan. Akhir sekali, usaha besar dalam bidang elektronik polimer telah membawa kepada perkembangan yang terbaharu dan ke arah peningkatan prestasi yang berterusan.

ABSTRACT

Polymers are generally known as electrical insulators, but to enable their use in electronic applications, development of conducting polymer seems an interesting approach in recent years. For this purpose, one specific strategy is based on blending conventional polymeric insulator, HDPE with organic conductive fillers, polyaniline (PAni) and multiwalled carbon nanotube (MWCNT) to form conducting polymer composites, CPCs. The most basic mechanical mixing without modification on the original conductive fillers is used. This indigenous design guarantees an outstanding of electrical conductivity performance with low cost processing due to the advantage of polymer itself. However, the drawbacks of those conductive fillers including agglomeration of nanoparticles and sensitive to the humidity surrounding will inhibit the conductivity. Hence, nano-sized inorganic filler, alumina is called upon to incorporate into the CPCs to overcome these issues. Electrical conductivity is obtained by using the volume resistivity testing. Moreover, Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) techniques were used to characterize and analyse the electrical characteristics of the CPCs. In this case, PAni CPC shows higher conductivity than MWCNT CPC, 6.69 Scm⁻¹ over 1.15 Scm⁻¹. However, conductivity of both CPCs is reduced after 6 weeks preparation. After incorporating with nano-alumina, the conductivity is then stabilised. CPCs are currently used for electromagnetic shielding, as corrosion inhibitors, in electroluminescent and cellular phone displays, for static dissipation, and for various sensing devices. Last but not least, immense efforts in the polymeric electronics field have led to unprecedented progress and to devices of ever increasing performance.

DEDICATION

This thesis work is dedicated to my supervisor, Prof. Dr. Qumrul Ahsan, who has been a constant source of support and encouragement during the challenges of research study. This work is also dedicated to my senior Nurul Akmil binti Mustaffa for her consistent guidance. I am truly thankful for having you throughout this period. This work is also dedicated to my beloved parents and my partner, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve.

ACKNOWLEDGEMENT

Prima facea, I am grateful to the God for the good health and wellbeing that were necessary to complete this study.

I wish to express my sincere thanks to Prof. Dr. Qumrul Ahsan, lecturer in the Department of Engineering Materials as well as my supervisor. I am extremely thankful and indebted to him for sharing expertise, and sincere and valuable guidance for this research. His encouragement extended to me throughout this project is highly appreciated.

I also wish to thanks to my senior, Nurul Akmil binti Mustaffa. She has persistently guided and advised me throughout the completion of project. I have learnt and gained a lot of knowledge as well as engineering skills from her and it would be arduous to complete the project without the supports and advises from her.

I also want to take this opportunity to express gratitude to all of the Department faculty members for their help and support. Special thanks to Encik Hairulhisham bin Rosnan, assistant engineer of FKP Polymer Lab for providing me with all the necessary facilities and valuable advises. I am grateful to Encik Mohd Wahyudi Bin Md Hussain, assistant engineer of FKE High Voltage Lab who providing me the access to do volume resistivity testing in FKE.

Last but not least, I would like to express my gratitude to my parents who always support me through the good and bad days during the completion of this report. I also want to thank to my course mates and friends for their moral support and care that gave me strength to accomplish this task.

TABLE OF CONTENT

Abst	trak	i
Abst	tract	111
Dedi	ication	iv
Ackı	nowledgement	v
Tabl	le of Content	vi
List	of Tables	Х
List	of Figures	xii
List	Abbreviations, Symbols and Nomenclatures	XV
CHA	APTER 1: INTRODUCTION	1
1.1	Background Study	1
1.2	Problem Statement	4
1.3	Objectives	6
1.4	Research Scope	б
CHA	APTER 2: LITERATURE REVIEW	7
2.1	Polymer Matrix Composite	7
2.2	Conducting Polymer	8
	2.2.1 Discovery of Conducting Polymer	8
	2.1.2 Background of Conducting Polymer	9

2.2.3 Theory on Electrical Conduction Polymer 10

	2.2.4	Intrinsic Conducting Polymer	10
	2.2.5	Conducting Polymer Composite	11
2.3	Mater	ials	13
	2.3.1	Polyaniline (PAni)	13
		2.3.1.1 Structure of Polyanilinie (PAni)	13
		2.3.1.2 Conductivity of Polyaniline (PAni)	15
		2.3.1.3 Advantages of Polyanilinie (PAni)	19
		2.3.1.4 Limitation of Polyaniline (PAni)	20
	2.3.2	High Density Polyethylene	20
	2.3.3	Multiwalled Carbon Nanotube	21
	2.3.4	Alumina	23
2.4	Perco	lation Theory	24
2.5	Melt l	Blending	25
2.6	Mater	ial Characterization	27
	2.6.1	Fourier Transformed Infrared Ray Spectroscopy (FTIR)	27
	2.6.2	Differential Scanning Calorimetric (DSC)	30
2.7	Appli	cation of Conducting Polymers	30
CHA	PTER 3	3: METHODOLOGY	33
3.1	Flow	Chart	33
3.2	Mater	ial	35
	3.2.1	Matrix	35
	3.2.2	Fillers	35
		3.2.2.1 Conducting Polymer	35
		3.2.2.2 Carbon Nanotube	36

		3.1.2.3 Alumina	37
3.3	Chem	ical Composition	38
	3.3.1	HDPE filled conducting polymer nanocomposite	38
	3.3.2	Alumina Filled HDPE conducting polymer nanocomposite	40
3.4	Exper	imental Procedure	42
	3.4.1	Silan Surface Treatment	42
	3.4.2	Melt Blending	43
	3.4.3	Crushing / Shredding	44
	3.4.4	Hot Compression/ Pressing	45
3.5	Mater	ial Characterization	47
	3.5.1	Fourier Infrared Transform Spectroscopy (FTIR)	47
	3.5.2	Differential Scanning Calorimetry (DSC)	47
3.6	Electr	ical Conductivity Measurement	48
	3.6.1	Volume Resistivity Measurement	48
CHAI	PTER 4	: RESULTS AND DISCUSSION	52
4.1	Condu	activity Measurement	52
	4.1.1	HDPE filled PAni conducting polymer nanocomposite (HP)	53
	4.1.2	HDPE filled MWCNT conducting polymer nanocomposite (HMC	2) 54
4.2	Nano-	alumina filled conducting polymer nanocomposite	56
4.3	Mater	ial Characterization	58
	4.3.1	FTIR	58
	4.3.2	DSC	61

CHAPTER 5: CONCLUSION

5.1	Conclusion	65
5.2	Recommendation	67
5.3	Sustainability	68

REFERENCES

68

65

LIST OF TABLES

2.1	Types of conducting polymers	10
2.2	Electrical conductivities of different types of conducting polymers	19
2.3	Properties of carbon nanotubes	22
2.4	Observed characteristic vibrations from FTIR spectra	28
2.5	Individual characteristic vibrations of PAni from FTIR spectra based	
	on few previous findings	29
2.6	Individual characteristic vibrations of HDPE from FTIR spectra based	
	on few previous findings	29
2.7	Individual characteristic vibrations of HDPE from FTIR spectra based	
	on few previous findings	30
2.8	Applications of ICPs	31
3.1	Chemical Composition of HDPE filled with PAni conducting	
	polymer nanocomposite (HP)	38
3.2	Chemical Composition of HDPE filled with MWCNT conducting	
	polymer nanocomposite (HMC)	38
3.3	Chemical Composition of Nano-Alumina Filled HDPE and PAni	
	conducting polymer nanocomposite (HPA)	41
3.4	Chemical Composition of Nano-Alumina Filled HDPE and	
	MWCNT conducting polymer nanocomposite (HMCA)	41

4.1	Conductivity of all HP samples (Control sample of H-100, HP1, HP-2,	
	HP-3, HP-4, HP-5, HP-6 and HP-7)	53
4.2	Conductivity of all HMC samples (HMC-1, HMC-2, HMC-3, HMC-4,	
	HMC-5, HMC-6 and HMC-7)	55
4.3	Conductivity of all HPA samples (HPA -1, HPA -2, HPA -3, HPA -4	
	and HPA -5)	57
4.4	Conductivity of all HMCA samples (HMCA-1, HMCA-2, HMCA-3,	
	HMCA -4 and HMCA -5)	57

LIST OF FIGURES

2.1a	Raman spectra for PAni-CSA with HDPE (20/80% m/m)	12
2.1b	Optical micrograph (Pereira Da Silva et al., 2005)	12
2.2	General form of PANI, where $1-y = 0$, 0.5 and 1	13
2.3	The basic geometrical structure of polyaniline	14
2.4	Three possible oxidation states of PANI	15
2.5	Conductivity of conductive polymers compared to other materials	16
2.6	A simplified explanation of the electrical conductivity of conducting	
	polymers	17
2.7	Band model of polymeric material	18
2.8	Chemical bonding of Polyethylene	20
2.9	Schematic diagram of HDPE	21
2.10	Application of CNT based polymer composite	23
2.11	Melt blending of CNT filled conducting polymer	26
2.12	FTIR peak of PANI blends	28

3.1	Flow chart for sample preparation, material characterization and volume	
	resistivity measurement	34
3.2	High Density Polyethlene (HDPE) used	35
3.3	Polyaniline (PAni) used	36
3.4	Multiwalled Carbon Nanotube (MWCNT) used	37
3.5	Alumina used	37
3.6	Samples of HDPE filled with PAni conducting polymer nanocomposite	

xii C Universiti Teknikal Malaysia Melaka

	(HP)	39	
3.7	Samples of HDPE filled with MWCNT conducting polymer nanocompo-		
	(HMC)	40	
3.8	Samples of Nano-Alumina filled HDPE with PAni conducting polymer nanocomposite (HPA)	41	
3.9	Samples of Nano-Alumina filled HDPE with MWCNT conducting polym nanocomposite (HMCA)	er 42	
3.10	Internal mixer of HAAKE TM PolyLab TM OS Modular Torque Rheometer	43	
3.11	Polymer crusher	44	
3.12	Composite in small pellets form	44	
3.13	Hot compression / pressing of model GT-7014-H	45	
3.14	8 cm diameter and 2 mm thick mold made out of aluminum	46	
3.15	Sample made by hot pressing in thin sheet form	46	
3.16	FTIR of model FT/IR-6100 FT-IR spectrometer	47	
3.17	DSC of model Perkin Elmer DSC 4000	48	
3.18	Portable volume resistivity meter of model Monroe 272a	48	
3.19	Setup for guarded measurement of surface resistivity	49	
3.20	Schematic diagram for the setup	49	
3.21	Electrode was put on the samples above a metallic finished surface		
	support plate	51	

4.1	Conductivity of all HP samples (Control sample of H-100, HP1, HP-2,	
	HP-3, HP-4, HP-5, HP-6 and HP-7)	54
4.2	Conductivity of all HMC samples (HMC-1, HMC-2, HMC-3, HMC-4,	
	HMC-5, HMC-6 and HMC-7)	55

4.3	Conductivity of all HP samples (HP-1, HP-2, HP-3, HP-4, HP-5, HP-6	
	and HP-7) during 1 st week and 6 th week	56
4.4	Conductivity of all HPA samples (HPA -1, HPA -2, HPA -3, HPA -4	
	and HPA -5) and all HMCA samples (HMCA -1, HMCA -2, HMCA -3, HMCA -4 and HMCA -5)	57
4.5	FTIR Spectra of Samples H-100, Pure PAni (P-100), HP-3, HP-4 and	
	HP-5	58
4.6	FTIR Spectra of Samples pure MWCNT and HMC-4	59
4.7	FTIR Spectra of Samples HPA-1, HPA-2 and HPA-3	60
4.8	FTIR Spectra of Samples HMCA-1, HMCA-2 and HMCA-3	61
4.9	DSC Thermogram for sample of H-100	62
4.10	DSC Thermogram for sample of HP-4	62
4.11	DSC Thermogram for sample of HMC-6	63
4.12	DSC Thermogram for HP samples (HP -1, HP -2, HP -3, HP -4, HP-5,	
	HP-6 and HP -7) and HMC samples ((HMC-1, HMC-2, HMC-3,	
	HMC-4, HMC-5, HMC-6 and HMC-7)	64
4.13	DSC Thermogram for all HPA samples (HPA -1, HPA -2, HPA -3,	
	HPA -4 and HPA -5) and all HMCA samples (HMCA -1, HMCA -2,	
	HMCA -3, HMCA -4 and HMCA -5)	64

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

Al	-	Aluminum
ASTM	-	American Society for Testing and Materials
СВ	-	Carbon Black
CNF	-	Carbon Nano Fiber
CNT	-	Carbon Nanotube
CPC	-	Conducting Polymer Composite
CSA	-	Camphorsulfonic Acid
DBSA	-	Dodecylbenzenesulfonic Acid
DSC	-	Differential Scanning Calorimetry
DWCNT	-	Double Walled Carbon Nanotube
EMI	-	Electromagnetic Interference
EMS	-	Electromagnetic Shielding
ESD	-	Electrostatic Dissipation
FTIR	-	Fourier Transformed Infrared Ray Spectroscopy
HCL	-	Hydrochloric Acid
HDPE	-	High Density Polyethylene
HMC	-	HDPE with MWCNT
HMCA	-	HDPE with MWCNT and Alumina
HP	-	HDPE with PAni
HPA	-	HDPE with PAni and Alumina
ICP	-	Intrinsically Conductive Polymer

KBr	-	Potassium Bromide
LED	-	Light Emitting Devices
МО	-	Metal Oxide
MPS	-	(3-Mercaptopropyl) Trimethoxysilane
MWCNT	-	Multiwalled Carbon Nanotube
PAni	-	Polyaniline
PE	-	Polyethylene
PEDOT	-	Poly(ethylenedioxythiophene
PEO	-	Polyethylene Oxide
PMC	-	Polymer Matrix Composite
PMMA	-	Poly(methyl methacrylate)
PP	-	Polypropylene
PPP	-	Poly(Pphenylene)
Рру	-	Polypyrrole
PS	-	Polystyrene
PTh	-	Polythiophene
PVA	-	Polyvinyl Alcohol
SI	-	Standard International
Sn	-	Stannum
SN	-	Sulfur Nitride
SWCNT	-	Single Walled Carbon Nanotube
THF	-	Tetrahydrofuran
μm	-	Micrometer
А	-	Ampere
А	-	Area
Al_2O_3	-	Alumina

С	-	Carbon	
cm	-	Centimeter	
eV	-	Electron Volt	
G	-	Giga	
g	-	Gram	
Н	-	Hydrogen	
HRC	-	Hardness Value	
Ι	-	Current	
K	-	Kelvin	
m	-	Meter	
$mAhg^{-1}$	-	Discharge Capacity	
Min	-	Minute	
mL	-	millilitre	
mm	-	Millimeter	
Ν	-	Nitrogen	
nm	-	Nanometer	
0	-	Oxygen	
°C	-	Degree Celsius	
Pa	-	Pascal	
рН	-	Measurement of the concentration of hydrogen ions in a	
		solution	
R	-	Resistance	
R _m	-	Measured Resistance	
S	-	Siemen	
Т	-	Tera	
t	-	Thickness	

T _c	-	Ccrystallization Temperature
T _m	-	Melting Temperature
U	-	Potential difference
V	-	Volt
W	-	Watt
Wt%	-	Weight Percent
X _c	-	Crystallinity Percent
ΔH	-	Heat of Fusion
ρ	-	Resistivity
$ ho_v$	-	Volume Resistivity
σ	-	Conductivity
Фс	-	Percolation Threshold
Ω	-	Ohm

CHAPTER 1 INTRODUCTION

This chapter discusses the background study, problem statement, objectives and research scope of this project.

1.1 Background Study

In current trend of technology advancement in polymer industries, new components with low cost-high performance materials are highly demanding. Polymer matrix composite (PMCs) is widely developed due to its superior properties such as high strength-low weight ratio, good electrical insulation, capability to transfer load, and ease of processing. Additionally, another trend in advanced polymer industry which rapidly study by the researchers is the conducting polymers. In particular, it is a promising material in nano-scaled electronic devices which are advantageous over than metal.

Conducting polymer is the new class of material which can be categorized into two classes, intrinsically conducting polymers (ICPs) and conducting polymer composites (CPCs). ICPs are an organic polymer which can conduct electricity. It is discovered by Alan G. MacDiarmid, Hideki Shirakawa, and Alan J. Heeger over 150 years ago. It is known as semiconductor or "synthetic metal" as it can undergo insulator-conductor transition under different processing condition. Since then, intensive growth of research effort has been directed towards the development, synthesis, and characterization of new types of conducting polymer materials. (Song & Choi, 2013)

On the other ground, CPCs is the material in which conductive fillers are introduced into conventional insulating polymer matrix to enable electricity flow through the material. These organic-inorganic hybrids make up a new prospective material, owing to the advantageous properties of the polymer matrix and the embedded organic or inorganic particles. It is easily processed and thus considered more economically than ICPs in electronic application. As reported in Deng *et al.* (2014), a large variety of conductive fillers has been used to fabricate CPCs including most metals, carbonaceous fillers, metal fibres, metal-coated fibres and intrinsic conductive polymer.

Conjunctionally, High density polyethylene (HDPE) is one of the most commonly used thermoplastic in the world. (Khanam *et al.*, 2016) It consists of a linear structure with no or few side branches making it a denser polymer as well as more crystalline material. In that case, it has been a high strength yet lighter polymer than other PEs. As reported by Khanam *et al.* (2016) also, it exhibits excellent properties such as chemical inertness, near-zero moisture absorption, low coefficient of friction, low electrical properties and ease of processing and. Therefore, HDPE is widely used by researchers as polymer matrix in engineering composites (PMCs) because of its superior properties.

It is a well-known fact that, Polyaniline (PANI) is the most important industrial conducting polymer. (Molapo *et al.*, 2012) It is one of the ICPs which consist of diverse properties like relatively inexpensive monomer, easy preparation, and high yield of polymerization, environmental stability, and unique processability for device fabrication. (Nagaraju *et al.*, 2014) Moreover, it can be processed from solutions into thin film, with low synthetic cost which finds application in electronic and optoelectronic devices. Intensive studies have been done to the research of this class of material to improve its mechanical, electrical, thermal, gas barrier and other properties.

Moreover, with the growth of nanotechnology advancement, carbonaceous nanofillers such as graphite, diamond and fullerene, and carbon nanotubes (CNTs) have established part of widespread research and challenging due to their superior