

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FORMATION OF IRON OXIDE NANOSTRUCTURE BY THERMAL OXIDATION

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Material) with Honors.

by

NOOR FARAH IDDAYU BINTI ABU BAKAR

B051310051

921104-04-5040

FACULTY OF MANUFACTURING ENGINEERING

2016

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Formation of Iron Oxide Nanostructure by Thermal Oxidation

SESI PENGAJIAN: 2015/16 Semester 2

Saya NOOR FARAH IDDAYU BINTI ABU BAKAR

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (√)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

SULIT

TERHAD

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

JA 2135 Taman Dato Abd Aziz,

Fasa 3, Umbai

77300 Merlimau, Melaka

Tarikh: 17 JUN 2016

Tarikh: 17 JUN 2016

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Formation of Iron Oxide Nanostructure by Thermal Oxidation" is the results of my own research except as cited in references.

Signature	:	
-		
Author's Name	:.	NOOR FARAH IDDAYU BINTI ABU BAKAR
Data		20 IUNE 2016
Date	•	20 JUNE 2010

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Material) (Hons). The Member of the supervisory is as follow:

(Project Supervisor)

ABSTRAK

Oksida ferum nanostruktur telah disintesis pada kepingan Fe tulen dengan pendekatan proses pengoksidaan terma. Konvensional, oksida ferum nanostruktur boleh dihasilkan oleh teknik-teknik seperti; proses sol-gel, kaedah templat, penguraian terma, proses hidroterma dan lain-lain. Walau bagaimanapun, teknik ini adalah mahal dan rumit. Oleh itu, projek ini bertujuan untuk menghasilkan oksida ferum dengan menggunakan pengoksidaan terma. Beberapa parameter telah disiasat seperti kesan masa pengoksidaan, suhu pengoksidaan dan syarat ke atas substrat. The morfologi dan fasa Fe₂O₃ nanostruktur disifatkan. Kesan suhu pengoksidaan membentuk Fe₂O₃ nanostruktur. Beberapa fasa oksida yang dapat diperhatikan seperti α-Fe₂O₃ dan Fe_3O_4 . Tambahan pula, pemerhatian FESEM menunjukkan bahawa Fe_2O_3 struktur telah berjaya ditubuhkan pada kepingan Fe tulen. XRD dan spektroskopi Raman mengesahkan fasa: α -Fe₂O₃ dan Fe₃O₄ berlaku selepas pengoksidaan. Raman spektroskopi telah digunakan untuk menyokong morfologi dan fasa diperolehi oleh SEM dan XRD. Walaupun, sampel optimum (pengoksidaan pada 400°C, 90 minit dalam udara) adalah tertakluk kepada pencirian elektrokimia dalam 250ml KOH elektrolit dan dalam ujian photodegradation bawah keadaan cahaya UV. Hasil daripada degradasifoto ini menunjukkan bahawa, sebagai meningkatkan masa larutan methyl orange telah berubah warna, analisis UV kelihatan digunakan. Berdasarkan keputusan yang diperolehi, dapat disimpulkan bahawa larutan itu berlaku proses degradasi berkesan apabila masa pendedahan kepada cahaya secara semakin meningkat.

ABSTRACT

Iron oxide nanostructure was synthesized on pure Fe foil by thermal oxidation process approach. Conventionally, iron oxide nanostructure can produced by others techniques such as; sol-gel process, template method, thermal decomposition, hydrothermal process and others. However, these technique are costly and complicated. Hence, this project serves to fabricate the iron oxide by using thermal oxidation. Several parameter were investigated such as the effect of oxidation time, oxidation temperature and condition on the substrate. The morphologies and phases of Fe₂O₃ nanostructure was characterized. The effect of oxidation temperature formed Fe₂O₃ nanostructure. Several phase oxide were observed such as α -Fe₂O₃ and Fe₃O₄. Furthermore, FESEM observation showed the ordered Fe₂O₃ nanostructure structure was successfully formed on pure Fe foil. XRD and Raman spectroscopy confirmed variant phase: α-Fe₂O₃ and Fe₃O₄ occurred after oxidizing. Raman spectroscopy were used to support the morphologies and phases observed by SEM and XRD. While, the optimum sample (oxidized at 400°C, 90min in air) was subjected to electrochemical characterization in 250ml KOH electrolyte and in photodegradation testing under UV light conditions. The result obtain from this photodegradation shows that, as increase the time of methyl orange solution has changed color, UV visible analysis is used. Based on the results obtained, it can be concluded that the solution was effective degradation process when the time of exposure to light progressively increase.

DEDICATION

Dedicated to my beloved family members especially my parents, lecturers, and also to all my friends.

ACKNOWLEDGEMENT

First of all, I would like to thank to Allah, for giving a great opportunity, strength and wealthy to complete my Project Sarjana Muda (PSM) titled "Formation of iron oxide nanostructure by thermal oxidation". A grateful to my supervisor, Dr. Syahriza Binti Ismail who had given knowledge, advice and guidance throughout the entire project. Besides, without the moral support and understanding from my family especially my father, En. Abu Bakar Bin Hamid and my mother, Pn.Salbiah Binti Abd Rahman, it would be impossible for me to complete this research. Special thanks to my entire friend give cooperation, support and guidance provided all this while. I am greatly touched by the commitments and dedications they have shown. Finally, I wish to say that I treasure very much the friendship of my friends who have been very supportive in providing all necessary help and advice during journey of completing this research.

TABLE OF CONTENTS

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of contents	v
List of Tables	ix
List of Figures	xii
List Abbreviations, Symbols and Nomenclatures	xvi

CHAPTER 1: INTRODUCTION

1.1	Background	1
1.2	Problem Statement	4
1.3	Research Objective	5
1.4	Scope	5
1.5	Project Outline	6

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	uction	7
2.2	Nanos	tructure materials	8
	2.2.1	Zero dimension (0D) Nanostructure material	8

	2.2.2	One dimension (1D) Nanostructure material	9
	2.2.3	Two dimension (2D) Nanostructure material	10
	2.2.4	Three dimension (3D) Nanostructure material	11
2.3	Metal	Oxide-Iron Oxide: Polymorphs and Properties	12
2.4	Techn	ique to Produce Nanostructure of metal oxide	16
	2.4.1	Sol gel process	17
	2.4.2	Hydrothermal process	18
	2.4.3	Chemical Vapor Deposition (CVD)	19
	2.4.4	Spray pyrolysis	20
	2.4.5	Thermal oxidation	21
2.5	Mecha	anism of the thermal oxidation	
	2.5.1	Mechanism of iron oxide formation by thermal oxidation	22
	2.5.2	Growth mechanism of iron oxide nanowire	25
2.6	Cyclic	voltammetry (CV)	31
	2.6.1	Electrolyte	32
		2.6.1.1 Aqueous electrolyte	32
2.7	Applic	cation of Iron Oxide Nanostructure	33
	2.7.1	Catalyst	33
	2.7.2	Photo electrochemical (PEC)	35
	2.7.3	Photocatalyst	37

CHAPTER 3: METHODOLOGY

3.1	Introduction	42
3.2	Material and Equipment	44

3.3 Design of Experiment

	3.3.1	Substrat	te preparation and cleaning	45
	3.3.2	Therma	l oxidation process	45
	3.3.3	Therma	l Oxidation Parameter	47
3.4	Charac	cterization	1	
	3.4.1	Morpho	logy Characterization	
		3.4.1.1	Field emission scanning electron microscopy	48
			(FESEM)	
			3.4.1.1.1 Quantitative analysis	48
	3.4.2	Structur	al Characterization	
		3.4.2.1	Raman Spectroscopy	49
		3.4.2.2	X-ray Diffraction (XRD)	50
	3.4.3	Electroc	chemical Characterization	
		3.4.3.1	Electrolyte solution preparation	51
		3.4.3.2	Electrochemical process	52
		3.4.3.3	Cyclic voltammetry analysis	52
3.5	Photoc	legradatio	on Testing	53
3.6	UV vis	UV visible Spectroscopy		54
CHA	APTEF	R 4: RES	SULT AND DISCUSSION	
4.1	Introdu	uction		55
4.2	Iron o	kide nanos	structure formation by Thermal oxidation Process	
	4.2.1	Effect o	f growth time	56
	4.2.2	Effect o	f growth temperature	60

4.3	Mechanism of Fe ₂ O ₃ Nanowires Formation		
	4.3.1	Mechanism of Fe ₂ O ₃ nanostructure formation	65
4.4	X-Ray	Diffraction Analysis (XRD)	
	4.4.1	Effect of growth time	67
	4.4.2	Effect of growth temperature	69
4.5	Raman Spectroscopy Analysis		
	4.5.1	Effect of growth time	73
	4.5.2	Effect of growth temperature	74
4.6	Electro	ochemical Characterization	76
4.7	Photod	legradation Testing	78
	4.7.2	Mechanism of photodegradation	80

CHAPTER 5: CONCLUSION, RECOMMENDATION AND SUSTAINABLE DESIGN ELEMENT

5.1	Conclusion	82
5.2	Recommendation	83
5.3	Sustainable Design element	84

REFERENCES

APPENDICES	91
	91

85

LIST OF TABLES

2.1	Physical and magnetic properties of iron oxide	13
2.2	Morphology of nanowires observed	29
2.3	Properties of various electrolyte	32
2.4	Arrangement of photoelectrode	36
3.1	The list of materials used in the research	44
3.2	The list of equipment and apparatus used in the research	44
3.3	List of the parameters	47
3.4	Concentration of solution used as the electrolyte in	
	electrochemical tests	51
4.1	FESEM image of Fe ₂ O ₃ Nanowires oxide layer formed by	
	thermal oxidation with time (a) 90 minutes, (b) 120 minutes at	
	400°C.	56
4.2	Skewed value with time (a) 90 minutes, (b) 120 minutes	58
4.3	Summary of description of SEM image observation in term of	
	α -Fe ₂ O ₃ nanowires/nanorods formation for effect of oxidation	
	time	58
4.4	FESEM image of Fe ₂ O ₃ Nanowires oxide layer formed by	
	thermal oxidation with temperature (a) 200° C (b) 400° C and	
	(c) 600°C at 90minutes	61

4.5	Image of iron oxide on oxidized Fe foil with different temperature,	
	(a) 200°C, (b) 400°C, and (c) 600°C	62
4.6	Skewed value with temperature (a) 400° , (b) 600° at 90 minutes	
	in air	63
4.7	Summary of description of SEM image observation in term of	
	α -Fe ₂ O ₃ nanowires/nanorods formation for effect of oxidation	
	temperature	64
4.8	Various phases ICDD of iron oxide that match XRD pattern of	
	iron oxide nanostructure formed with heating temperature 400°C	
	at 90minutes	68
4.9	Various phases ICDD of iron oxide that match XRD pattern of	
	iron oxide nanostructure formed with heating temperature $400^{\circ}C$	
	at 120minutes	68
4.10	Various phases ICDD of iron oxide that match XRD pattern of	
	iron oxide nanostructure formed with heating temperature $200^{\circ}C$	
	at 90minutes	70
4.11	Various phases ICDD of iron oxide that match XRD pattern of	
	iron oxide nanostructure formed with heating temperature $400^{\circ}C$	
	at 90minutes	70
4.12	Various phases ICDD of iron oxide that match XRD pattern of	
	iron oxide nanostructure formed with heating temperature $600^{\circ}C$	
	at 90minutes	71
4.13	Raman shift of variant phase's iron oxide that match Raman shift	
	of iron oxide nanowires at 90 minutes, with annealing temperature	

4.14	Raman shift of variant phases iron oxide that match Raman shift	
	of iron oxide nanowires at 120 minutes, with annealing temperature	
	400°C	73
4.15	Raman shift of variant phases iron oxide that match Raman shift	
	of iron oxide nanowires at 90 minutes, with annealing temperature	
	400°C	75
4.16	Raman shift of variant phases iron oxide that match Raman shift	
	of iron oxide nanowires at 90 minutes, with annealing temperature	
	600°C	75
4.17	Sample used for cyclic voltammogram (CV)	76
4.18	Specific capacitance of Fe_2O_3 electrode at (a) 10 mV/s, (b)	
	50 mV/s and (c) mV/s.	77
4.19	Sample used for degradation of methyl orange	78

LIST OF FIGURES

1.1	Application of iron oxide in nano-scale	3
2.1	SEM and TEM image of different type of zero dimension nanostructures ,(A) Quantum dots, (B) nanoparticle arrays, (C) Core-shell nanoparticle,(D) Hollow cubes, and (E) nanospheres	9
2.2	Typical SEM image of 1D nanostructure. (A) nanowire, (B) nanorods, (C) nanotubes, (D) nanobelts, (E) nanoribbons and (F) hierarchical nanostructure	10
2.3	Typical SEM and TEM image of different kinds of 2D nanostructure. (A) junction (continuous isand), (B) branched structures, (C) nanoplates, (D) nanosheets, (E) nanowalls, and (F) nanodisks	11
2.4	SEM and TEM image of different kinds of 3D nanostructure. (A) nanoballs, (B) nanocoils, (C) nanocones, (D) nanopillers, (E) nanoflowers	12
2.5	Crystal structure of hematite (α - Fe ₂ O ₃)	14
2.6	Crystal structure of magnetite (α- Fe ₂ O ₃)	15
2.7	Crystal structure of maghemite	16
2.8	Basic scheme for the sol gel process	18
2.9	Schematic diagram for hydrothermal process	19

2.10	Schematic diagram for chemical vapor deposition (CVD)	20
2.11	Schematic diagram of spray pyrolysis	
2.12	Schematic diagram of thermal oxidation	
2.13	Schematic diagram of four possible mechanisms of ion transport of ion transport in oxidation reaction, a)the transportation oxygen ions by oxygen interstitial mechanism(b)transportation oxygen ions by oxygen vacancy mechanism, (c) the transportation metal ions by metal interstitial mechanism, (d) the transportation metal ions by metal vacancy mechanism	23
2.14	The cross-section SEM image of Fe substrate oxidized at (a) 400°C (b) 600°C; the oxidation at 400°C results in the growth of a two-layered oxide scale structure while the oxidation at 600°C leads to the growth of a three layered oxide structure	24
2.15	Four step of iron oxide nanowire growth mechanism: 1) oxygen adsorption, 2) surface oxidation to form nuclei, 3) nuclei arrangement and 4) formation of nanowires	25
2.16	XRD pattern, SEM image and size distribution histogram showing the effect of temperature on growth	27
2.17	SEM surface micrograph of nanowires grown for different times	28
2.18	The pseudocapacitor shape of CV	31
2.19	General catalytic cycle	34
2.20	Change in activation energy brought about by a catalyst	35
2.21	Mechanism of photoelectrochemical (PEC) cells	36
2.22	Mechanism of photocatalyst reaction	38
2.23	The pathway the photocatalytic degradation of the pollutant by	40

iron oxide

3.1	Flow chart of experimental work	43
3.2	Oxidation curve, time versus temperature	46
3.3	Chamber furnace for thermal oxidation process	46
3.4	Raman spectroscopy	49
3.5	X-ray Diffraction (XRD) machine	50
3.6	Schematic diagram of degradation methyl orange dye	53
3.7	UV-visible spectroscopy	53
4.1	Droplets number within a quadrate with temperature 400° at	
	90 minutes	57
4.2	Droplets number within a quadrate with temperature 400° at	
	120 minutes	57
4.3	Droplets number within a quadrate with temperature 400° at	
	90 minutes	62
4.4	Droplets number within a quadrate with temperature 600° at	
	90 minutes	63
4.5	Schematic stress-driven mechanism of Fe ₂ O ₃ nanowires growth	
	via diffusion	65
4.6	XRD patterns for Fe substrate formed by thermal oxidation	
	process with time (a) 90 min, (b) 120 min at 400°	67
4.7	XRD patterns for Fe substrate formed by thermal oxidation	

	process with pattern focused region of graph $2\theta = 20 - 50^{\circ}$	67
4.8	XRD patterns for Fe substrate formed by thermal oxidation	
	process with temperature (a) 200°C, (b) 400°C (c) 600°C at	
	90 minute	69
4.9	XRD patterns for Fe substrate formed by thermal oxidation	
	process with pattern focused region of graph $2\theta = 20 - 50^{\circ}$	70
4.10	Raman spectrum for iron oxide formed by thermal oxidation	
	process with time at 400°C in air	72
4.11	Raman spectrum for iron oxide nanowires formed by thermal	
	oxidation process with temperature at 90 minute in air	74
4.12	Cyclic voltammetry for iron oxide nanostructure electrode,	
	scanned at different scan rate at $10 mV/s,50 mV/s,and100 mV/$	
	in 1M KOH	77
4.13	Methyl orange solution degrade as time exposed to UV light	78
4.14	UV visible analysis for change in the absorption	
	spectrum on irradiation of methyl orange (30ppm)	79

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

SEM -	Scanning electron	microscopy
-------	-------------------	------------

XRD - X-Ray Diffraction Microscopy

FESEM - Field Emission Scanning electron Microscopy

- 0D Zero Dimension
- 1D One Dimension
- 2D Two Dimension
- 3D Three Dimension
- CVD Chemical Vapor Deposition
- CV Cyclic Voltammetry

CHAPTER 1 INTRODUCTION

This chapter describes the introduction of the project. In this project, thermal oxidation process was used to form nanostructures of iron oxide. This chapter also includes the background, problem statement, objectives, scope and project outline of this study.

1.1 Background

In the last decade, nanoscience and nanotechnology have much interest in fundamental research and industrial applications. As the foundation of nanoscience and nanotechnology, nanostructured materials used on multiple research fields. Normally, nanostructures are defined as those structures with at least one dimension less than 100 nm (Xia et al., 2003). In this dimension, the number of atoms is countable, making the properties of nanostructures different from those of their bulk counterparts or single atoms, despite the fact that they share the same chemical compositions. Within the structure of countable atoms, the combination of quantum effects and multi-body interaction may contribute to several properties. Based on these properties, various future applications of nanostructures can be applied, such as in chemical and biological sensors, optical devices and so on. Since the revolutionary discovery of carbon nanotubes in 1991, one-dimensional (1D) nanostructures such as nanowires, nanobelts, and nanotubes become interesting due to the confinement of the other two dimension perpendicular to longitudinal direction (Xia et al., 2003). Due to the combination of quantum confinement in the nanoscale dimensions and the bulk properties in another dimension, a host of interesting properties and applications can

be expected based on a wide variety of 1D nanostructures. Since the nanostructures is studied, some important which are to control of morphology, size and growth direction. In addition, the different morphologies obtained will affect the resulted properties with unique application.

Recently, nanostructure have been synthesized by various methods which from three phases. From the liquid phase (hydrothermal, electrodeposition), from the gas phase (Chemical vapor deposition) and from the solid phase (thermal oxidation). Nevertheless, thermal oxidation in various oxidizing atmosphere is a most simple, cheap, and direct procedure to form hematite (α -Fe₂O₃) (Grigorescu *et al.*, 2012). In thermal oxidation, the oxide layer will be formed. Under typical conditions, layer of oxide will be formed, as hematite, magnetite, and wustite. Hematite (Fe₂O₃) is formed at the outer layer while magnetite (Fe₃O₄) at intermediate layer and wustite (FeO) layer form on an iron substrate (Marciu *et al.*, 2012). The growth of iron oxide by thermal oxidation technique can be varied by different condition such as temperature, oxidation time and additive.

Furthermore, the characteristics of these oxide compounds include mostly the trivalent state of the iron, low solubility and brilliant colors (Cornell & Schwertmann, 1996). All the iron oxides are crystalline, except Schwertmannite and ferrihydrite which are poorly crystalline sixteen pure phases of iron oxides, i.e., oxides, hydroxides or oxy-hydroxides are known to date. These are Fe (OH)₃, Fe(OH)₂, Fe₅HO₈,4H₂O, Fe₃O₄, FeO, five polymorphs of FeOOH and four of Fe₂O₃ (Mohapatra and Anand, 2010). In Fe₂O₃, most frequent polymorphs alpha and gamma have been found in nature as minerals hematite and maghemite. Furthermore, hematite (α -Fe₂O₃) is one of the most stable iron oxide under ambient conditions and exhibits various interesting application. The application of iron oxide can be seen in many areas such as photoanode, pigments, catalyst and so on (Wen *et al.*, 2005). However, the research focusing on the photocatayst application. Figure 1.1 shows the application of iron oxide in nano-scale (Liu *et al.*, 2008).

Figure 1.1: Application of iron oxide in nano-scale (Liu et al., 2008).

Photocatalytic reaction promoted by structured metal oxide have become interested in subject of recent research. The use of iron oxide in the solar photoelectrolysis cell was reported by Bakardijeva et al (2007), which indicate that iron oxide is a promising photocatayst. While, in photoelectrochemical, α -Fe₂O₃ has been used as photoanode since it has good electrochemical stability for water splitting. The details on this iron oxide application will be reviewed in chapter 2, section 2.6.

1.2 Problem Statement

Nowadays, due to population growth, rapid development of industrialization and long term droughts are contributed to a lot of contamination include inorganic compounds, organic pollutants, and many other complex compounds especially in a river. All contaminants release to the environment through wastewater which are harmful to humans and the environment. Therefore, removing contaminants is uncertain. Furthermore, existing method to eradicate the problem are filter and particle photocatalyst, but both method are less efficient and non-recyclable. To combat water pollution problem, a new treatment can be done by photocatalytic oxidation using the nanostructure iron oxide by thermal oxidation method. Thermal oxidation method is a most simple, direct produce hematite phase and low cost.

Recently, nanostructure metal oxide have been suggested as cost-effective and environment friendly alternative to existing treatment material in photocatalytic application. Besides that, the iron oxide nanostructure properties such as excellent magnetic properties, high stability against corrosion, large surface area and high surface modification flexibility which are not found in bulk-sized material. In water treatment technologies, four conditions must be considered: (1) treatment flexibility and final efficiency, (2) reuse of treatment agents, (3) environment security and (4) low cost (Xu *et al.*, 2012).

Until now, ZnO and TiO₂ are used as photocatalyst for degradation of organic pollutants. Nevertheless, iron oxide is promising for wastewater treatment due to low cost, strong adsorption capacity, easy separation and enhanced stability (Xu *et al.*, 2012). According to Abe (2010), iron oxide with which are easy to prepare, can absorp at longer wavelengths and the high stability during irradiation are very attractive for photocatalytic application. Most important, iron oxide are abundantly available as waste metal in many industry. But, ZnO has a drawback related to unsatisfactory photostability in wide pH range of solution. Mostly, many semiconductor materials for photocatalysts are relatively wide band gap energy, such as for anatase and rutile TiO₂ contains 3.2eV and 3.02eV bandgap and 3.2eV for ZnO (Tyagil and Rajl, 2006). These semiconductors can only be excited by photons which are close to the UV region and utilize only 4-6% of solar light, which limits their practical applications. Furthermore,