

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF VEHICLE SECURITY DEVICE BY USING BIOMETRIC IDENTIFICATION (FINGERPRINT)

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) (Hons.)

by

NOR AZFAR BIN ABDULLAH SANI B051210195 930528-01-5149

FACULTY OF MANUFACTURING ENGINEERING 2016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN AND DEVELOPMENT OF VEHICLE SECURITY DEVICE BY **USING BIOMETRIC IDENTIFICATION (FINGERPRINT)**

SESI PENGAJIAN: 2015/16 Semester 2

Sava NOR AZFAR BIN ABDULLAH SANI

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHA	AD
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
No 484 Lorong Haji Legee	,
Batu 18 Air Hitam	
84050 Muar, Johor	
Tarikh:	Tarikh:

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Development of Vehicle Security Device by Using Biometric Identification (Fingerprint)" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) (Hons.). The member of the supervisory is as follow:

(Dr. Zulkeflee Bin Abdullah)

ABSTRAK

Projek ini adalah berkaitan tentang merekabentuk dan mencipta sebuah sistem keselamatan kenderaan yang menggunakan pengenalan biometrik iaitu pengesahan cap jari yang diberi nama sebagai VSBIF. VSBIF adalah sebuah perisian yang menggabungkan sistem keselamatan kenderaan dengan sistem biometrik. Antara tujuan perisian ini dicipta adalah untuk menghalang kenderaan digunakan oleh orang yang tidak dikehendaki justeru mengurangkan kadar kecurian kenderaan di Malaysia. Dalam usaha untuk membangunkan sistem keselamatan kenderaan baru dan belum ada di pasaran, kaji selidik perlu dijalankan untuk mengnalpasti kemahuan dan keperluan pelanggan. Selepas itu, data dianalisis dengan menggunakan kaedah yang diberi nama House of Quality untuk mendapatkan keperluan teknikal yang perlu diambil kira dalam merekabentuk produk. Berdasarkan data yang telah dikumpul dan dianalisis, perkakasan, perisian dan bahan yang akan digunakan untuk membangunkan prototaip ini ditentukan. Perisian Computer-aided-design (CAD) yang merupakan perisian SolidWorks juga digunakan untuk merekabentuk bahagian mekanikal bagi prototaip ini. Manakala perisian Proteus 7.1 telah digunakan untuk merangka reka bentuk litar skematik. Selain itu, produk ini telah dicetak dengan menggunakan Up Plus 3D Printer dan Acrylonitrile butadiene styrene (ABS) sebagai bahan mentah untuk mencetak. Di samping itu, semua modul dalam peranti VSBIF ini menggunakan Bahasa C ++ sebagai pengaturcaraan program. Secara keseluruhannya, hasil dan prosedur juga ditunjukkan dalam Bab 4 iaitu hasil dan perbincangan.

ABSTRACT

This project is focusing on designing and developing the vehicle security system that employ biometric identification which is fingerprint verification or named as VSBIF device. VSBIF device is a product build by a combination of vehicle security system and biometric system. The purpose of VSBIF device was developed is to prevent the vehicle from being used by unauthorized people thus to reduce the number of vehicle theft in Malaysia. In order to develop the new vehicle security system that does not have in the market yet, the survey needs to be conducted in order to get a customer requirement and needs. After that, the data were analysed using a house of quality method to get the technical requirements to take into account in designing the product. Based on the data collected and analysed, the hardware, software and material to be used for developing the prototype is determined. Computer-aided-design (CAD) software which is SolidWorks software also use the design the mechanical part for this prototype. While for schematic circuit, the Proteus 7.1 software was used in order to design the schematic design. Besides that, the prototype was produced by using Up Plus 3D printer and Acrylonitrile butadiene styrene (ABS) as a material used. In addition, all the modules in the prototype device used C++ language as a program coding. As overall, the result and work procedure shown in Chapter 4 which is result and discussion.

DEDICATION

I dedicate this hard work of mine to my beloved parents who were always supported me,

Abdullah Sani Bin Legi Asrumi Binti Kosni

*To my supervisor,*Dr. Zulkeflee Bin Abdullah

To my beloved families and friend. Their continuous encouragement, motivation, inspiration, and support had led me towards completion of this project.

ACKNOWLEDGEMENT

All praise to Allah for giving me healthy mind and body which led to the accomplishment of this Final Year Project entitled Design and Development of Vehicle Security Device by Using Biometric Identification (Fingerprint) -VSBIF. I would like to express my special gratitude to my supervisor Dr Zulkeflee bin Abdullah and acknowledge the advices an guidance he gave to me. I could not have survived this one year period without the support and direction.

Special thanks to my course mate for their opinion and support during the hard times.

TABLE OF CONTENTS

Abs	trak	i
Abs	tracti	i
Ded	icationii	i
Ack	nowledgementiv	7
Tab	le of Contentx	ζ.
List	of Tablesx	i
List	of Figures xii-xiv	I
List	Abbreviations, Symbols, Nomenclaturesxv	7
CH	APTER 1: INTRODUCTION	
1.0	Introduction	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.4	Objective	3
1.5	Scope of Project	4
1.6	Expected Result	4
1.7	Importance of Project	5
1.8	Structure of Project	5
1.9	Conclusion	6
СН	APTER 2: LITERATURE REVIEW	
2.0	Background	7
2.1	Introduction of Biometric	8
2.2	Biometrics Advantages	8
2.	2.1 Accuracy and Security	8

2.2.2 On	e ID, Multiple Individuals	9
2.2.3 On	e Individual, Multiple IDs	9
2.3 Biomet	rics Categories	9
2.3.1 Ph	ysical Biometrics	9
2.3.1.1	Fingerprint Verification	10
2.3.1.2	Face Recognition	10
2.3.1.3	Iris Scanning	11
2.3.1.4	Hand Geometry	11
2.3.2 Bel	havioural Biometrics	12
2.3.2.1	Voice Recognition	12
2.4 Compa	rative of Different Biometric	12
2.4.1 Ad	vantage and Disadvantage	13
2.4.2 Bio	ometric Reliability	14
2.4.2.1	False Acceptance Rate	14
2.4.2.2	False Rejection Rate	14
2.4.2.3	FAR and FRR relationship	15
2.4.2.4	Implication of Error rate	16
2.5 Fingerp	orint Verification	17
2.5.1 Ma	iin modules of Fingerprint	17
2.5.2 Cla	asses of Fingerprint	17
2.6 Statisti	c of Vehicle Theft	19
2.6.1 Ex	isting security system	20
2.6.1.1	Audible Car Alarms	20
2.6.1.2	Brake pedal, steering wheel lock	21
2.6.1.3	Personal Alarm Pagers	22
2.6.1.4	Passive immobilizer	22
2.6.1.5	GPS Vehicle Tracking	23
	mparative of Different Existing System	
2.7 VSBIF	F Model Device	25
28 Conclu	sion	26

CHAPTER 3: METHODOLOGY

3.0 Introd	uction	27
3.1 Flowe	hart	27
3.1.1 PS	SM 1 Flow Chart	28
3.1.2 PS	SM 2 Flow Chart	29
3.2 Model	Prototyping	30
3.2.1 Pl	anning Phase	31
3.2.1.1	Interview	31
3.2.1.2	Survey	31
3.2.1.3	House of Quality	32
3.2.2 Da	ata Analysis Phase	33
3.2.2.1	Hardware and Material used	33
3.2.2.2	Software used	34
3.2.3 De	esign Phase	34
3.2.3.1	Mechanical Part Design	35
3.2.3.2	Circuit Design	36
3.2.4 Pr	ototype Development Phase	38
3.2.5 Pr	ototype Testing Phase	38
3.2.5.1	Alfa Testing Stage	38
3.2.5.2	Beta Testing Stage	39
3.2.5.3	VSBIF Flowchart System	39
3.3 Conclu	usion	40
СНАРТЕ	R 4: RESULTS AND DISCUSSIONS	
4.0 Introd	uction	41
	onnaire Survey Analysis	
	eneral question	
	Gender	
	Age	

4.1.1.3	Status	43
4.1.1.4	Occupation	44
4.1.1.5	Type of Vehicle used	44
4.1.2 Res	spondents' problem	45
4.1.2.1	Type of existing Vehicle Security Used	45
4.1.2.2	Vehicle Stolen	46
4.1.2.3	Vehicle Used by Unauthorised People	47
4.1.2.4	Accidentally leave keys in a locked car	47
4.1.2.5	Lose a key or remote control	48
4.1.2.6	Lifetime of existing security system	49
4.1.2.7	The Reliability of existing Security System	49
4.1.3 Pro	duct requirement	50
4.1.1.3	Important specifications of VSBIF device	50
4.1.2.2	Reasonable price for VSBIF device	52
4.1.4 Sur	nmary of the survey	52
4.1.5 Ho	use of Quality Matrix	53
4.1.5.1	Determine Demanded Quality (WHATs) or 'Voice of the Customer'	54
4.1.5.2	Determine Customer importance Ratings	54
4.1.5.3	Determine Customer Competitive Analysis	54
4.1.5.4	Determine Quality Characteristics (HOWs) or "Voice of the Engineer"	55
4.1.5.5	Determine Direction of Improvement	55
4.1.5.6	Construct Relationship Matrix	55
4.1.5.7	Determine the Satisfaction	56
4.1.5.8	Set Target Values for Quality Characteristics (HOW MUCH)	56
4.1.5.9	Construct Correlation Matrix	56
4.1.5.10	Determine Absolute Importance	57
4.2 Data A	nalysis Phase	57
4.2.1 Ha	rdware and Material used	58
4.2.2 Sof	tware used	59
4.3 Design	Phase	59

4.3.1	Schematic Circuit Design (electronic part)	60
4.3.1	.1 Fingerprints Sensor	60
4.3.1	.2 Servo Motor	61
4.3.1	.3 Buzzer	61
4.3.1	.4 Light Emitting Diode (LED)	62
4.3.2	CAD Drawing (mechanical part)	63
4.3.2	.1 Fingerprint sensor cover	63
4.3.2	.2 Electronic box	66
4.4 Proto	otype Development phase	69
4.4.1 l	Electronic parts and modules development	69
4.4.1	.1 Electronic parts assembling	69
4.4.1	.2 Module development	70
4.4.2	Mechanical development	79
4.4.2	.1 Product printing	79
4.4.2	.2 Prototype Product	81
4.4.3	Parts Assembled	83
4.4.3	.1 Final Product	85
4.5 Proto	otype Testing Phase	86
4.5.1	Alfa testing	86
4.5.2	Beta testing	89
4.5.2	.1 Usefulness of VSBIF device	90
4.5.2	.2 Smoothness of VSBIF device working	91
4.5.2	3 User friendly and easy to operate	92
СНАРТІ	ER 5: CONCLUSION AND RECOMMENDATION	
5.0 Int	roduction	93
	onclusion	
	commendation for future work	95
5.2.1	Alternative Method	
5.2.2	Adjustable Switch	

5.3	Sustainabl	le Element	96
REF	FERENCES		97
APP	PENDICES		
A	Project G	antt Chart	
	A (i)	Entire PSM	
	A (ii)	PSM 1	
	A (iii)	PSM 2	
В	Questiona	aire Survey	
C	C++ Prog	gramming Coding	
	C (i)	Fingerprint Enrolment Module	
	C (ii)	Servo Motor Module	
	C (iii)	Buzzer Module	
	C (iv)	LED Module	
	C (v)	Fingerprint Identification Module	

LIST OF TABLES

2.1	Advantage and disadvantage of various biometric techniques	13
2.2	Implication of Error rate	16
2.3	Vehicle theft statistic of various manufacturer companies	19
2.4	Comparative of Different Existing System	24
3.1	Hardware used for Model Device	33
3.2	Software used for Model Device	34
4.1	Importance rating	54
4.2	Direction of improvement symbols' descriptions	55
4.3	Symbols used in relationship matrix	56
4.4	Symbols used in correlation matrix	57
4.5	Hardware ad material used for VSBIF device	58
4.6	Software used for Model Device	59
4.7	Assembled step	83
4.8	Alfa testing step process	86

LIST OF FIGURES

2.1	Basic and composite ridge characteristic	10
2.2	Relationship between FAR and FRR	15
2.3	Fingerprint classes	18
2.4	Total number of vehicle theft in three years	19
2.5	Viper- Audible Car Alarm	21
2.6	Steering Wheel and Brake Pedal lock	21
2.7	Personal Alarm Pagers	22
2.8	Vehicle Immobilizer	23
2.9	GPS Vehicle Tracking system	23
3.1	Model Prototyping	30
3.2	HOQ structure	32
3.3	VSBI Schematic Circuit	37
3.4	VSBI system flowchart	39
4.1	Gender of the respondents	42
4.2	Age of the respondents	43
4.3	Status of the respondents	43
4.4	Occupation of the respondents	44
4.5	Type of Vehicle of the respondents	44
4.6	Type of Security System Used	45
4.7	Respondents involved in vehicle loss or stolen	46
4.8	Vehicle Used by Unauthorised People	47
4.9	Respondent accidentally leave the key in a locked car	47
4.10	Respondent lose a key or remote control	48
4.11	Lifetime of existing security system	49
4.12	The reliability of existing security system	49

4.13	Important specifications of VBIF device	51
4.14	Reasonable price for VSBIF device	52
4.15	House of Quality (HOQ)	53
4.16	Fingerprint schematic design	60
4.17	Servo motor schematic design	61
4.18	Buzzer schematic design	61
4.19	LED schematic design	62
4.20	Fingerprint sensor cover sketching	63
4.21	Fingerprint sensor cover font view	64
4.22	Fingerprint sensor cover top view	65
4.23	Fingerprint sensor cover side view	65
4.24	Fingerprint sensor cover isometric view	66
4.25	Electronic box sketching	66
4.26	Electronic box front view	67
4.27	Electronic box side view	67
4.28	Electronic box disassemble 3D view	68
4.29	Electronic box 3D view	68
4.30	Electronic parts were assembled	70
4.31	Sketch column of IDE software	71
4.32	Adafruit fingerprint sensor	72
4.33	Sample of programming C++ coding of fingerprint enrolment module	73
4.34	Fingerprint enrolment display	74
4.35	1.8 kg servo motor	75
4.36	Buzzer	76
4.37	Light Emitting Diode (LED)	77
4.38	Fingerprint identification display	78
4.39	Construction of product support	79
4.40	50 percent product printed	80
4.41	Complete printed	80
4.42	Fingerprint sensor cover	81

4.43	Electronic box	81
4.44	Top cover for electronic box	82
4.45	Electronic box	82
4.46	VSBIF final product	85
4.47	VSBIF final product	85
4.48	Useful of VSBIF device graph	90
4.49	Smoothness of VSBIF device working graph	91
4.50	Friendly user and easy to operate graph	92

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

ABS - Acrylonitrile Butadiene Styrene

ASR - Automatic Speech Recognition

CAD - Computer Aided Drawing

FR - Fingerprint

FAR - False Acceptance Rate

FRR - False Rejectence Rate

GPS - Global Positioning System

HOQ - House of quality

ID - Identity Document

IDE - Integrated Environment Development

LED - Light Emitting Diode

QFD - Quality Function Deployment

VSBIF - Vehicle Security Device by Using Biometric Identification

(Fingerprint)

3D - Three Dimensional

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter will discuss about the background of study, problem statement, objective of the study, scope of the project, and expected result of the project in order to complete this study. Based on the background of the study, the problem statement will be determined and objective of the project constructed. This chapter is important to explain overall of the project is about.

1.1 Background of Study

Biometric identification is an effective way to identify individual on the basis of uniqueness of physical characteristics owned by an individual. Although each type of biometric system has their different methods of application, all the biometric techniques are based on the human physical or behavioral, such as fingerprint, iris, voice patterns, and also facial patterns.

Nowadays, the fingerprint scanner device is the most popularly used in the field of information security compared to other biometric systems. This is because the

fingerprint scanner device is easier to use compared to other biometric system according to a small size and convenient to implement in a laptop, cell phone and also can be installed for door security.

Recently, biometric technology is used because it fulfils two functions; identification process, and verification process. Besides that, biometric technology has their unique characteristics which is cannot be lose, cannot be forgotten compared to ID password used. It is also not easy to counterfeited as well as it is attached to a human body. By using biometric technology, the security system will be more secure and strong because each individual has a different biometric characteristic. Therefore, biometric techniques make the security more guaranteed.

The impact of modern world technology that rapidly, it was causing the huge number of vehicle theft over a few years ago. Vehicle thieves can easily annihilate the existing vehicle security system through the advance technique and tool such as cut the steering wheel lock. Since the biometric technology shows a good percentage of accuracy and security, it is chosen to be implemented in vehicle security system to avoid vehicle theft. Basically, the biometric technique will connect with a vehicle's central lock system which is allowed user to lock and unlock the vehicle's door by using the biometric identification technique. Therefore, it is able to protect the vehicle being stolen or use by unauthorised persons.

1.2 Problem Statement

Nowadays, vehicle theft becomes rising due increasing the technology (N. Kiruthiga1 and L. Latha2 2014). Motorists are starting to feel worried about the theft of vehicles by the day. Security systems for vehicles, either by using the key or remote control, are no longer effective to prevent stolen personal vehicles. By using the keys as security measure vehicles, professional vehicle thieves can easily open the door vehicles with the key by breaking the key hole for example. In addition, thieves can also use the Master

Key that is easy to find in the market such as key shop or online. For motorists who have used the remote control as a vehicle security system for lock and unlock the vehicle's door, it is also pose a risk of vehicle theft. Thieves can easily copy a frequency of remote control to unlock the vehicle security system.

Therefore, to prevent theft of vehicles, a range of additional tools have been designed either inside or outside of the vehicle which is provided by the car manufacturer itself or manufacturer of auxiliary car safety device. Additional security devices included such as a steering wheel lock, brake pedal lock, gear lock, and all the security system that is built into the vehicle itself is still not guaranteed the safety of the vehicle. For example, using a steering wheel lock, brake lock, or gear lock, the vehicle still can be stolen by using bolt cutters, a hacksaw or a picklock the lock.

1.4 Objective

The objectives for this project that need to be achieved are:

- 1. To design and develop a model device that protects a vehicle from being used by unauthorized individuals using biometric identification methods.
- 2. To implement a registration system for biometric identification using vehicle owner's fingerprint and other registered user.
- 3. To enable vehicle owners to lock and unlock the vehicle door by using a fingerprint sensor.
- 4. To connect the biometric identification system to the existing alarm system if the fingerprints of an individual are unregistered in the database.

1.5 Scope of Project

The target of this project is to develop a model device in which it allows the user to install a more effective security feature on their vehicles. Generally, this device is a combination between vehicle security controls with a biometric fingerprint scanner.

This device contains a few modules that will be built by using a coding programming and database such as biometric identification, registration, by using the fingerprint of vehicle owners. Vehicle owners have to register their fingerprints first in order to store it into a database. In addition, motorists are allowed to register up to five fingerprints of different individuals to be classed as a visitor. Besides that, this device has a module where it enables vehicle owners to lock and unlock the vehicle's door by using a fingerprint that has been certified by the fingerprint database. The fingerprints will be matched with the fingerprints that are stored in the database in order to allow or disallow the access.

Finally, this device also connected to an existing automatic alarm system as additional security element of the device and vehicle. The automatic alarm will act as sounders agent which give a signal through releasing a sound in case the individual's fingerprint scanned are not matched with the fingerprints are stored in the database before.

1.6 Expected Result

Able to produce a vehicle security model device for personal vehicles where is the device allowed vehicle owners to improve the security of their vehicles. In addition, to avoid personal vehicles stolen or used by unauthorized individuals. Besides that, it can reduce the wide number of vehicle theft (Kiruthiga & Thangasamy 2015).

1.7 Importance of Project

- i. This device can give an additional guarantee to the owners of vehicles over the security of their vehicles.
- ii. Give a confidence to users that the device is a necessity and not just an extra accessory.

1.8 Structure of Project

This project consists of five chapters overall. Chapter one will be discussed about an overview of the project included background of the project, problem statement, objective of the project, scope of project, expected results and importance of the project. All the information taken from the literature view that has been done in chapter two.

Chapter two begins by discussing the previous researches regarding the project to find out all the information and theoretical info needed related to this project such as the introduction of biometrics, types of biometrics, statistic of vehicle theft, the method and hardware to be used and so on.

Meanwhile, chapter three discusses about the overall methodology employed in order to completing the project.

Chapter four is a result and discussion chapter, which is compiled and analyses the outcomes that acquired from the method constructed. Besides that, in this chapter will be discussed about the result achieved at the end of the project.

Chapter five will be the last chapter, which is stating the findings of the study and discusses about the suggestion and recommendation to make an improvement in the next study later on.