

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF A NEW CONCEPTUAL MANUAL WHEELCHAIR USING INTEGRATED APPROACH FOR ELDERLY

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia

Melaka (UTeM) for the Bachelor Degree of Engineering Technology

Product Design (Hons.)

By

MUHAMMAD AZIM BIN ANUAR B071310949 910419-01-5651

FACULTY OF ENGINEERING TECHNOLOGY 2016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Development of a New Conceptual Manual Wheelchair using Integrated Approach for Elderly

SESI PENGAJIAN: 2016/17 Semester 1

Saya MUHAMMAD AZIM BIN ANUAR

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHA	D
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
A-07-01 PANGSAPURI SF	RI MURNI 1
HOSPTAL SULTANAH AN	IINAH
JOHOR BAHRU, JOHOR	
Tarikh:	Tarikh:

^{**} Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI TEKNOLOGI KEJURUTERAAN

Tel: +606 234 6623 | Faks: +606 23406526

Rujukan Kami (Our Ref) : Rujukan Tuan (Your Ref) :

14 DIS 2016

Pustakawan Perpustakaan UTeM Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka.

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA TEKNOLOGI KEJURUTERAAN PEMBUATAN (REKABENTUK PRODUK): MUHAMMAD AZIM BIN ANUAR

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "Development of a New Conceptual Manual Wheelchair using Integrated Approach for Elderly" mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA (5) tahun dari tarikh surat ini.

2. Hal ini adalah kerana <u>IANYA MERUPAKAN PROJEK YANG DITAJA OLEH SYARIKAT LUAR DAN HASIL KAJIANNYA ADALAH SULIT</u>.

Sek	cian c	lımak	lumi	kan. I	Terima	kası	n.

Yang benar,	
Tandatangan	 dan Cop Penyelia

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. <u>JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD</u>, <u>MAKA</u> BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM.

^{*} Potong yang tidak berkenaan

DECLARATION

I hereby, declared this report entitled "Development of a New Conceptual Manual Wheelchair using Integrated Approach for Elderly" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Product Design) with Honours. The member of the supervisory is as follow:

(Project Supervisor)

ABSTRAK

Tujuan projek ini adalah bagi mengenalpasti masalah yang dihadapi oleh warga tua semasa proses pemindahan dari atau ke dalam kerusi roda selain untuk mengubahsuai rekabentuk kerusi roda yang sedia ada yang dapat mengurangkan keletihan dan meningkatkan fizikal atau keupayaan dikalangan warga tua. Projek ini hanya memberi tumpuan untuk mengubahsuai rekabentuk kerusi roda jenis manual. Terdapat beberapa kaedah yang digunakan untuk menangani masalah yang dihadapi oleh pengguna semasa menggunakan kerusi roda terutamanya semasa proses pemindahan. Kajian kes telah dilakukan bertempat di Rumah Seri Kenangan, Cheng, Melaka untuk mengenalpasti masalah-masalah yang berlaku semasa menggunakan kerusi roda manual dikalangan warga tua. Berdasarkan kajian kes yang dianalisa, idea untuk merekabentuk semula kerusi roda itu diterjemahkan melalui proses rekabentuk konsep. Kriteria utama adalah untuk menghasilkan rekabentuk baru kerusi roda yang boleh memudahkan proses pemindahan yang merangkumi ciri-ciri seperti ketinggian tempat duduk boleh laras dan tempat letak tangan mudah alih. Perisian AHP digunakan sebagai satu kaedah untuk memilih rekabentuk konsep yang terbaik untuk kerusi roda baru. Perisian ini akan mengira nilai penilaian berdasarkan skala berpasangan dan memilih rekabentuk konsep dengan nilai yang paling tinggi sebagai rekabentuk pilihan. Rekabentuk terperinci dihasilkan dengan menggunakan perisian SolidWork untuk membina rekabentuk yang lengkap. Projek ini membuktikan bahawa reka bentuk yang dipilih daripada kajian ini dapat memudahkan proses pemindahan dari satu tempat ke tempat lain seperti dari kerusi roda ke katil yang mempunyai aras ketinggian yang berbeza dan juga dapat meningkatkan keupayaan warga tua yang menggunakan kerusi roda tanpa bergantung kepada bantuan daripada seseorang.

ABSTRACT

The purpose of this project is identify the problems that encountered by elderlies during transferring from or into a wheelchair besides, to improve the design of the existing wheelchair that will reduce physical fatigue and enhance independence or ability among elderly. This project is only focus to improve the design of manual wheelchair. There are several method that use to counter the problem that user faced while using the wheelchair especially during transferring process. Case study had performed at at Rumah Seri Kenangan, Cheng, Melaka to identify the problems that occur while using manual wheelchair among elderly. Based on the case study result that had analyse, the idea on how to redesign the wheelchair is come out through conceptual design process. The main criteria is to develop new design of wheelchair that can ease transferring process which consist of features such as adjustable seat height and fordable armrest. AHP software is used as a method to select the best conceptual design for new wheelchair. This software will calculate the evaluation value based on pairwise scale and select the conceptual design with the highest value as a selected design. Detailed design is develop by using SolidWork software to build the complete design. This project proves that the selected design from this study can facilitate the process of transferring from one place to another such as from wheelchair to bed that consist of different height as well as to increase the ability of the elderly who use it without relying on the help from someone.

DEDICATION

Firstly thank to Allah S. W. T for the opportunity to finish this project. I owe this project and my true happiness to my beloved parent. Since the day I started going to this university until today, they are very caring and supporting for me.

ACKNOWLEDGMENTS

This report teaches and provides me a basic knowledge of engineering and helps me to understanding more about wheelchair design. Then, I know the basic theory of wheelchair. This report inevitably involves many helping hands. First of all, I am extremely grateful and thanks to my supervisor, Mr. Mohd Nazri Bin Ahmad for all the guidance and critics given to me directly or indirectly, and also his friendly in time to teach and explain to me amicably. Once again thanks you for your idea, knowledge and guidance that make me more understand and can develop further thinking for this project.

Finally, I would like to thank to all my family and friends, thank you for all the spirit word, love and helping me during the whole period which gave me the strength I need in order to carry on and finally finish this report.

TABLE OF CONTENT

Decl	aration		i
App	roval		ii
Abst	trak		iii
Abst	tract		iv
Ded	ication		V
Ack	nowledgr	ments	vi
Tabl	e of Con	tent	vii
List	of Tables	s	xii
List	of Figure	es	xiii
List	of Abbre	eviations, Symbol and Nomenclatures	XV
List	of Equati	ion	xvi
CHA	APTER 1	1: INTRODUCTION	1
1.0	Introd	luction	1
1.1	Backs	ground	1
1.2	Objec		2
1.3	Scope		2
1.4	Proble	em Statement	3
CH/	APTER 2	2: LITERATURE REVIEW	4
2.0		luction	4
2.1		ry and Evolution of Wheelchair	4
2.2		rent Types of Wheelchairs	5
	2.2.1	Manual Wheelchair	6
	2.2.2	Electric Powered Wheelchair	8
2.3	Whee	elchair Main Component	9
-	2.3.1	Frame	9
	2.3.2	Wheel	10
	2.3.3	Casters	10

	2.3.4	Pushrims	11
	2.3.5	Armrest	12
	2.3.6	Footrest	13
	2.3.7	Wheel Lock	14
2.4	Wheel	chair Common Material	14
2.5	Produc	ct Survey	15
	2.5.1	Why Used	15
	2.5.2	Where Used	15
	2.5.3	When Used	16
2.6	Wheel	chair User	16
	2.6.1	Elderly	16
	2.6.2	Attendant staff	17
2.7	Self-p	ropelled	17
	2.7.1	Physical Fatigue	18
2.8	Lifting	g Mechanism	18
	2.8.1	Gear Rack and Pinion	19
	2.8.2	Hydraulic Jack	20
	2.8.3	Gas Spring	20
2.9	Proble	ems Identified In The Current Wheelchair	21
	2.9.1	Case Study at Rumah Seri Kenangan Cheng, Melaka	21
	2.9.2	Questionnaire	22
2.10	Produc	ct Design Specification	22
	2.10.1	Quality Function Deployment	22
	2.10.2	House of Quality	23
2.11	Conce	pt Selection	23
	2.11.1	Pugh's Method	23
	2.11.2	AHP Software	24
2.12	Patent	Design	27
	2.12.1	Elevating Manual Wheelchair	27
	2.12.2	Seat Lift Wheelchair	28
	2.12.3	Height Adjusting Wheelchair	29
	2.12 4	Wheelchair with Elevating Seat	30

CHA	PTER :	3: METHODOLOG	SY	32	
3.0	Introduction			32	
3.1	Proje	ct Flow Chart		33	
3.2	PSM	1		34	
	3.2.1	Literature Review		35	
	3.2.2	Market Survey		35	
		3.2.2.1 Questionna	ire	35	
		3.2.2.2 Observation	1	36	
	3.2.3	Product Design Spo	ecification	37	
		3.2.3.1 House of Q	uality (HOQ)	37	
	3.2.4	Conceptual Design		40	
		3.2.4.1 Design 1		40	
		3.2.4.2 Design 2		41	
		3.2.4.3 Design 3		42	
		3.2.4.4 Design 4		43	
		3.2.4.5 Design 5		44	
3.3	PSM 2				
	3.3.1	Concept Selection		45	
		3.3.1.1 AHP softwa	are	46	
		3.3.1.1.1	Step 1: Define a problem	47	
		3.3.1.1.2	Step 2: Develop the hierarchy model	48	
		3.3.1.1.3	Step 3: Construct a Pair-wise		
			Comparison Matrix	49	
		3.3.1.1.4	Step 4: Perform Judgment of Pairwise		
			Comparison	50	
		3.3.1.1.5	Step 5: Synthesizing the Pairwise		
			Comparison	50	
		3.3.1.1.6	Step 6: Perform the Consistency	51	
		3.3.1.1.7	Step 7: Step 3-6 are Performed for All		
			Levels in the Hierarchy Model	51	
		3.3.1.1.8	Step 8: Develop Overall Priority		
			Ranking	51	

		3.3.1.1.9 Step 9: Selection of the Best Design	
		Concept	51
	3.3.2	Detail Design	52
		3.3.2.1 3D Modeling	52
		3.3.2.2 3D Drawing	53
		3.3.2.3 3D Assembly	54
СНА	PTER	4: RESULT AND DISCUSSION	55
4.0	Introd	luction	55
4.1	Quest	tionnaire	55
4.2	Obser	rvation	57
4.3	House	e of Quality	59
4.4	Analy	rtical Hierarchy Process (AHP)	61
	4.4.1	Step 1: Define the Problem	61
	4.4.2	Step 2: Develop the hierarchy model	61
	4.4.3	Step 3: Construct a Pair-wise Comparison Matrix	61
	4.4.4	Step 4: Perform Judgment of Pairwise Comparison	62
	4.4.5	Step 5: Synthesizing the Pairwise Comparison	62
	4.4.6	Step 6: Perform the Consistency	63
	4.4.7	Step 7: Step 3-6 are Performed for All Levels in the	
		Hierarchy Model	65
		4.4.7.1 Performance	66
		4.4.7.2 Safety	67
		4.4.7.3 Cost	69
		4.4.7.4 Maintenance	70
	4.4.8	Step 8: Develop Overall Priority Ranking	72
	4.4.9	Step 9: Selection of the Best Design Concept	74
4.5	Detail	l Design	75
	4.5.1	Product Description	75
	4.5.2	3D Assembly	76
	4.5.3	3D Exploded View	80
	4.5.4	Bill of Materials	80

CHAPTER 5: CONCLUSION	82
REFFERENCES	85
APPENDICES	

LIST OF TABLE

3.1	Scale pairwise comparison	47
4.1	House of Quality	60
4.2	Pairwise comparison of criteria with respect to overall goal	62
4.3	Synthesized matrix for the criteria	63
4.4	Calculation to get a new vector	64
4.5	Random index of analytic hierarchy process	65
4.6	The consistency test for the criteria	65
4.7	Pairwise comparison of sub-criteria (Performance)	66
4.8	Synthesized matrix for the sub-criteria (Performance)	66
4.9	Calculation to get a new vector (Performance)	67
4.10	The consistency test for the sub-criteria (Performance)	67
4.11	Pairwise comparison of sub-criteria (Safety)	68
4.12	Synthesized matrix for the sub-criteria (Safety)	68
4.13	Calculation to get a new vector (Safety)	68
4.14	The consistency test for the sub-criteria (Safety)	68
4.15	Pairwise comparison of sub-criteria (Cost)	69
4.16	Synthesized matrix for the sub-criteria (Cost)	69
4.17	Calculation to get a new vector (Cost)	69
4.18	The consistency test for the sub-criteria (Cost)	70
4.19	Pairwise comparison of sub-criteria (Maintenance)	70
4.20	Synthesized matrix for the sub-criteria (Maintenance)	70
4.21	Calculation to get a new vector (Maintenance)	71
4.22	The consistency test for the sub-criteria (Maintenance)	71
4.23	The consistency test for the alternatives	71
4.24	All priority vectors for criteria, sub-criteria and alternative	72
4.25	Overall priority vectors for sub-criteria with respect to the criteria	73
4.26	Overall priority vector for the alternatives with respect to the criteria	73
4.27	Result of selection	74
4.28	Number of part and component	75

LIST OF FIGURES

2.1	Wheelchair owned by King Philip II and self-propelled wheelchair	5
2.2	Bath chair by John Dawson and wheel chair designed in 15th	
	century	6
2.3	Wheelchair by an Indian and first foldable wheelchair	7
2.4	Different types of wheelchairs	7
2.5	Standard manual wheelchair	8
2.6	Electric powered wheelchair prototype	9
2.7	Types of rear wheel tyre	10
2.8	Wheelchair casters variety of styles and sizes	11
2.9	Pushrims of manual wheelchair	12
2.10	Footrest	13
2.11	Gear rack and pinion for lifting	19
2.12	Hydraulic jack diagram	20
2.13	Gas spring	21
2.14	A hierarchy model for the selection of design concept	25
2.15	The steps of the analytical hierarchy process (AHP)	26
2.16	Elevating Manual Wheelchair	27
2.17	Seat Lift Wheelchair	28
2.18	Height Adjusting Wheelchair	29
2.19	Wheelchair with Elevating Seat	30
3.1	Project flow chart	33
3.2	PSM 1 flow chart	34
3.3	The observation on the problem that the elderly faced during	
	transferring process from wheelchair to bed	36
3.4	Criteria relationship symbol	38
3.5	Criteria correlation symbol	38
3.6	Competitive comparison	39
3.7	Conceptual design 1	40

3.8	Conceptual design 2	41
3.9	Conceptual design 3	42
3.10	Conceptual design 4	43
3.11	Conceptual design 5	44
3.12	PSM 2 flow chart	45
3.13	Level hierarchy decision process	48
3.14	Level 1 and level 2 criteria	49
3.15	Level 3 sub-criteria	49
3.16	Evaluation each criteria	50
3.17	Pairwise comparison data	50
3.18	3D part modeling	52
3.19	3D drawing	53
3.20	3D assembly	54
4.1	Wheelchair user among elderly	55
4.2	Total time using wheelchair in daily	56
4.3	Problem while using current wheelchair	56
4.4	Wheelchair comfortibility	56
4.5	Part of wheelchair need to be adjustable	57
4.6	Staff helped the elderly during transferring	58
4.7	Armrest stuck with table during eating	58
4.8	Complete assembly design	76
4.9	Adjustable armrest	77
4.10	Origin seat level	78
4.11	Maximum seat level	78
4.12	Front view	79
4.13	Top view	79
4.14	Exploded view	80
4.15	Bill of Material	81
5.1	Criteria of current manual wheelchair	83

LIST OF ABBREVIATIONS, SYMBOL AND NOMENCLATURES

HOQ - House of Quality

QFD - Quality Function Deployment

AHP - Analytical Hierarchy Process

BOM - Bill of Materials

3D - Three-dimensional

CAD - Computer Aided Design

ANC - Average of Normalized Column

CR - Consistency Ratio

RI - Random Index

CI - Consistency Index

NV - New Vector

PV - Priority Vector

P - Performance

S - Safety

C - Cost

M - Maintenance

AA - Adjustable Armrest

AF - Adjustable Footrest

ASH - Adjustable Seat Height

ETP - Easy Transferring Process

SP - Self-propelled

STA - Stability

NSE - No Sharp Edge

COM - Cost of Material

CMP - Cost of Manufacturing Process

ETR - Easy to Repair

ETD - Easy to Dismantle

LIST OF EQUATION

- 4.1 Vector of Priorities
- Consistency Index 4.2
- 4.3 Consistency Ratio

CHAPTER 1

INTRODUCTION

1.0 Introduction

Wheelchair is a mobility device designed for shifting patients, moving physically challenged people from one place to another with the help of attendee or by means of self-propelling. Many type of wheelchair has been creating such as spot wheelchair, work wheelchair, shower wheelchair and others. The wheelchair can be classified into two different types which is Manual powered wheelchair and the other one is Electric powered wheelchair. The redesign of manual wheelchair was considered for this project.

1.1 Background

Manual wheelchair type is commonly use and have developed rapidly in recent years. Manual wheelchair are driven by man power as source of energy for moving the wheelchair which is called self-propelled or it also can be propelled with the help of attendee. According to the international journal of social science and humanity on February 2015, there are about 359203 individual with disability in Malaysia are registered at the Department of Social Welfare in December 2012.

The basic designs for a wheelchair consists of two large rear wheels and two front caster wheels. Caster wheels are wheels that pivot freely about a point so that the wheelchair will able to move in any direction. There would be two movable leg rests, designed such that they can be easily turned away for the occupant to get out from the chair. There will be two handle bars above the backrest for helpers to assist in propelling the wheelchair.

The investigation of the manual wheelchair particularly transferring problems has become increasingly important because the population of individuals using wheelchair is growing and requires efficient transferring and mobility to maintain a quality of life equivalent to the general population. The disadvantages of the current designs of manual wheelchair are difficult for a user to easily transfer in or out of the wheelchair, discomfort, expensive, heavy, using spaces, unfolding and difficult of storage. Thus, this research focuses on the transferring problem and come out with specific feature to improve the existing standard manual wheelchair design for the elderly.

1.2 Objective

The objectives of this project are:

- i. To identify the problems that encountered by elderlies during transferring from or into a wheelchair.
- ii. To improve the design of the existing wheelchair that will reduce physical fatigue and enhance independence or ability among elderly.

1.3 Scope

The scopes of this project are listed below:

- i. Improve the design of manual wheelchair.
- ii. The usage of manual wheelchair among elderly at Rumah Seri Kenangan, Cheng, Melaka.
- iii. Transferring problem from or into a wheelchair.
- iv. Product Design Specification by using PRIEST Decision Making Tool / AHP software.

1.4 **Problem Statement**

Existing manual wheelchairs are complex systems and improper designs that can limit independence and accessibility. Transferring problem is the most common problem for user to getting out of a chair, getting in and out of bed, or moving from one surface to another. Besides that, transferring from two surfaces that are different height also the factor of transferring problem. The user of wheelchair among elderly always need assistant to help them during transferring process because of the limited movement. Therefore, this research focuses on the transferring problems among the elderly and come out with specific feature to improve the existing wheelchair design.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

Wheelchairs are the most efficient devices dedicated to these patients, offering them the ability to lead a normal life by allowing them to perform most of their daily activities (Sarraj A.R and Massarelli .R, 2011). A wheelchair is a device used for the mobility of people who walks with difficulty or is impossible to walk, due to aging, illness or disability. However, wheelchair is always view as a symbol of illness and loss of ability. After traumatic event such as spinal cord or brain injury, people will be resist purchasing a wheelchair on the early stage. Because they insist they will walk again. They refused to be wheelchair bounded, as it is a symbol of disability. This belief is totally not true. The wheelchair is a tool. It makes life possible for those who might need it. Even for the people with life threatening illness, the "right" wheelchair facilitate their ability to be out of sick bed, continuing their life, partaking of human experience. In other words, a wheelchair is a chair with wheels that is used to move a person who is unable to walk. The wheelchair may come in different shapes and sizes to enhance the comfort and convenience for users.

2.1 History and Evolution of Wheelchair

The first wheelchair was invented in the 1595 called as invalids chair was made for the king of Spain called Phillip. Later in the year 1655 Stephen Farfler built a self-propelling chair on a three wheel chassis. In the year 1783 John Dawson of Bath Town England invented a wheelchair named as bath wheelchair. The chair was with two large wheels and one small one. In the year 1869 patent for a wheelchair with rear push wheels and small front casters were invented, in the year 1881 the

push rims for self-propulsion wheelchair was invented (Ahmad Rifai Sarraj, 2011). In 1900 the first spoked wheelchair was invented and in the year 1916 first motorized wheelchair was invented by British Engineers. In the year 1932, Harry Jennings built the first foldable wheelchair.

Spain

Self propelled chair

King Philip II (1595)
Of Spain had his own
Rolling chair with footrest

Paraplegia watchmaker, Stephen Farfler (1655) Built own chair at 22 years old

Figure 2.1: Wheelchair owned by King Philip II and self-propelled wheelchair (Ahmad Rifai Sarraj, 2011)

2.2 Different Types of Wheelchairs

There are various types of wheelchairs, differentiating the wheelchair is based on the mode of power used for drive. These wheelchairs are differentiated in to two types as below:

- i. Manual wheelchair
- ii. Electric powered wheelchair