

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

AUTOMATION DEFLASHING SYSTEM FOR BLOW MOULDED PRODUCT

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor's Degree in Manufacturing Engineering Technology (Process and Technology) (Hons.)

by

MUHAMAD HAFIZ BIN ABDUL WAHAB B071310801 921130-07-5155

FACULTY OF ENGINEERING TECHNOLOGY 2016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Automation Deflashing System for Blow Moulded Product

SESI PENGAJIAN: 2016/17 Semester 1

Saya MUHAMAD HAFIZ BIN ABDUL WAHAB

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi	maklumat	yang	berdarjah	keselamatan
atau kepenting	an Malaysia	a sebag	gaimana ya	ing termaktub
dalam AKTA R	AHSIA RAS	SMI 197	72)	
/• • · · ·				

TERHAD

SULIT

dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap:

No 41, Kampung Seri Rahmat,

Cop Rasmi:

31500 Lahat,

Perak Darul Ridzuan

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai

DECLARATION

I hereby, declared this report entitled "Automation Deflashing System for Blow Moulded Product" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MUHAMAD HAFIZ BIN ABDUL WAHAB
Date	:	9 DECEMBER 2016

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours. The member of the supervisory is as follow:

> (EN SALLEH BIN ABOO HASSAN) (Project Supervisor)

ABSTRAK

Pada masa ini, sumber-sumber sistem untuk mesin banyak menggunakan komponen elektrik, hidraulik dan pneumatik. Untuk mendapatkan kemahiran dan pengetahuan mengenai bagaimana untuk membangunkan sistem, projek ini adalah dicadangkan dengan gelaran "Sistem Automasi deflashing untuk Blow Moulded Produk", terdapat banyak keperluan diperlukan seperti fungsi komponen pneumatik dan sistem litar Arduino UNO. Mesin pengacuan tamparan di makmal pada masa kini dikendalikan secara manual untuk mengeluarkan berkelip botol. Produk siap akan berkelip di bahagian bawah dan leher. Selepas proses pengacuan tamparan, pisau digunakan untuk memotong berkelip botol. Projek ini adalah untuk membuang berkelip botol dengan operasi sistem automatik sepenuhnya. Projek ini juga akan mengatasi masalah ini dalam proses penyingkiran berkelip botol. Oleh itu, sistem automasi deflashing untuk produk tamparan teracu dicadangkan dalam tesis ini. Silinder pneumatik mempunyai alat elektronik yang menggunakan litar Arduino Uno, halangan inframerah sensor mengelakkan terletak di mesin pengacuan tamparan semasa proses penyejukan. Ini kerana halangan inframerah sensor mengelakkan digunakan dalam litar ini untuk mengesan objek apabila sensor telah disekat oleh objek dan litar Arduino Uno akan mengaktifkan injap solenoid yang dipasang di sebelah mesin pengacuan tamparan. Injap solenoid akan membekalkan tekanan udara untuk memberi kuasa untuk silinder pneumatik memanjangkan. Bagi litar pneumatik, perisian FluidSim telah dikehendaki untuk melihat proses sistem pneumatik sebelum ia dilaksanakan.

ABSTRACT

Currently, the sources of a system for many machines are using the electrical, hydraulic and pneumatic component. To gain skills and knowledge on how to develop the system, this project is recommended with the title of "Automation Deflashing System for Blow Moulded Product", there are many requirements is required such as the pneumatic component and Arduino UNO circuit system. The blow molding machine at the laboratory nowadays is manually operated for removing the bottle flashes. The finished product will have to flash at the bottom and neck. After blow moulding process, the knife is used to cut the bottle flashes. This project is to remove the bottle flashes with fully automated system operation. This project will also overcome the problem in the removal process of bottle flashes. Hence, an automation deflashing system for blow moulded product proposed in this thesis. The pneumatic cylinder has an electronic device that uses the Arduino Uno circuits, infrared obstacle avoidance sensor located on the blow molding machine during the cooling process. This is because infrared obstacle avoidance sensors used in this circuit to detect the object when the sensor have been blocked by the object and the Arduino Uno circuit will activate the solenoid valve that is installed on the side the blow molding machine. The solenoid valve will supply the air pressure to give force for the pneumatic cylinder extends. For the pneumatic circuit, FluidSim software has been required to see the process of the pneumatic system before it implemented.

DEDICATION

I want to thanks to my family, lecturer and friends that give me extra spirit to continue develop this project.

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most gracious and merciful, praise to Allah the lord of universe and may blessing and peace of Allah be upon his messenger Muhammad S.A.W. First, and foremost thank to Allah for giving me wellness and ideas to do this project. Without any of it, I surely cannot complete this project in the time given.

I would like to express my deepest gratitude towards to my project supervisor Mr. Salleh Bin Aboo Hassan and every lecturer who has help and guide me by giving advices encouragement and patience during the time period to completing this project.

Last but not least, I like to express my very thankful and send our grateful to my entire friends and my family for the moral and financial support. Their views and this are useful definitely. Without all these people encouragement, support and advices this thesis project might not be successfully carried out. To those that I forget to mention, please forgive me. I do appreciate all the things you have done for me.

TABLE OF CONTENT

Abst	rak		i
Abst	ract		ii
Dedi	cation		iii
Ackn	owledge	ement	iv
Table	e of Con	tent	v
List o	of Tables	5	viii
List o	of Figure	es	ix
List A	Abbrevia	ations, Symbols and Nomenclatures	xi
СНА	PTER 1	1: INTRODUCTION	1
1.0	Projec	et Background	1
1.1	Proble	em Statement	3
1.2	Objec	tive	3
1.3	Scope	of Project	4
	1.3.1	Circuit Design for Sensor and Pneumatic System	4
СНА	PTER	2: LITERATURE REVIEW	5
2.0	Introd	uction of Automation Deflashing System	5
2.1	Pneun	natic System	5
	2.1.1	Principle and Maintenance	6
	2.1.2	Application of Pneumatic	7
	2.1.3	Basic System	9
	2.1.4	Pneumatic Actuator	10
		2.1.4.1 Pneumatic Cylinder	10
	2.1.5	Compressor	13
	2.1.6	Valve	15
		2.1.6.1 Functional Type of Valve	15
	2.1.7	Pneumatic Fittings	18

		2.1.7.1 One-Touch Fitting	19
	2.1.8 \$	Speed Controller	19
	2.1.9 I	Pressure Regulator	20
2.2	Hardw	vare Development	22
	2.2.1	Arduino	22
	2.2.2	Arduino Module	24
	2.2.3 1	Relay	26
	2.2.4]	Infrared Obstacle Avoidance Sensor	29
	2.2.5 \$	Solenoid Valve	29
CHA	PTER 3	3: METHODOLOGY	31
3.0	Introd	luction	31
3.1	Imple	mentation	31
3.2	Finali	zed	33
3.3	Analy	sis Data and Improvement	33
3.4	Testin	ng	33
3.5	Flowc	chart of Automation Deflashing System	34
3.6	Part C	Components	35
	3.6.1	Electrical	35
		3.6.1.1 Arduino UNO	35
		3.6.1.2 Wires	36
		3.6.1.3 Transfomers	37
	3.6.2	Pneumatic Component	38
3.7	Softw	are Requirement	38
	3.7.1	Arduino IDE	38
	3.7.2	Pneumatic System	40
		3.7.2.1 Open-Loop Operation	43
		3.7.2.2 Close-Loop Operation	44
	3.7.3	Pneumatic Selection	45
		3.7.3.1 Solenoid Valves	45
3.8	Install	lation Automation Deflashing System	46

CHA	CHAPTER 4: RESULT & DISCUSSION 49		
4.0	Projec	ct Hardware Layout	49
	4.0.1	Schematic Layout	50
	4.0.2	Component Layout	51
4.1	Block	Diagram of Automation Deflashing System	52
4.2	Placer	ment of Electronic Device and Pneumatic Cylinder	52
	4.2.1	Infrared Obstacle Avoidance Sensor Placement	54
	4.2.2	Pneumatic cylinder	54
	4.2.3	Arduino UNO Circuits and Solenoid Valves	54
4.3	Projec	ct Software Layout	54
	4.3.1	Arduino uno Code Development	55
	4.3.2	Infrared Obstacle Sensor	57
4.4	Projec	ct Process Flow	59
4.5 Analysis		60	
	4.5.1	Infrared Obstacle Avoidance Sensor Connection	60
	4.5.2	Power limitation Of Arduino Uno	61
4.6	Discu	ssion	62
СНА	PTER 5	5: CONCLUSION & FUTURE WORK	64
5.0	Concl	usion & Future Work	64
REFI	ERENC	CES	65

APPENDICES

- A Gantt chart
- B Arduino Uno

LIST OF TABLES

3.1	Specification for Arduino Uno R3	36
3.2	Pneumatic Component with the Symbol	38

LIST OF FIGURES

1.1	Bottle with flash down the entire handle	2
1.2	With the flash ending far too high on the handle,	
	a blowout and a useless bottle result	2
2.1	Comparison features of electrical, hydraulic and pneumatic	8
2.2	Diagram of Single Acting Cylinder	11
2.3	Diagram of Double Acting Cylinder	12
2.4	Air Pressure Graph	13
2.5	Compressor	14
2.6	Two-way Directional Valve	17
2.7	Three-way Directional Valve	18
2.8	Variety of Fitting Type	18
2.9	Speed Controller	20
2.10	Symbol Pressure Regulator	21
2.11	Pressure Regulator	21
2.12	The overview of Arduino Board	23
2.12 (a)	The Front of Arduino UnoR3	25
2.12 (b)	The Front of Arduino Leonardo	25
2.12 (c)	The Front of Arduino Due	26
2.13(a)	Relay	27
2.13(b)	Relay Circuit Diagram	28
2.13(c)	RelayStructure	28
2.14	Infrared Obstacle Avoidance Sensor	29
2.15(a)	5/2 way Solenoid Valve	29
2.15(b)	Solenoid Valve Diagram	30
3.1	Flowchart	32
3.2	Flowchart of Automation Deflashing System	34
3.3	Arduino Uno Overall View	35
3.4	Connecting Wires	36
3.5	Transfomers	37

3.6	Arduino Logo	40
3.7	Complete Circuit for Pneumatic Diagram	41
3.8	Normal Position of Operation	42
3.9	Open-Loop Operation	43
3.10	Close-Loop Operation	44
3.11	5/2 way Solenoid Valve	45
3.12	Front View	46
3.12 (a)	Side View	46
3.12 (b)	Top View	47
3.12 (c)	Position of Component	47
3.12 (d)	Circuit Board Placement	48
4.1	Schematic Layout for Automation Deflashing System	50
4.2	Component Layout	51
4.3	Block Diagram	52
4.4	Placement of Electronic Devices	53
4.5	Placement Solenoid Valve and Circuit	53
4.6 (a)	Arduino Uno Code Development	55
4.6 (b)	Arduino Uno Code Development	56
4.6 (c)	Arduino Uno Code Development	56
4.6 (d)	Arduino Uno Code Development	57
4.7 (a)	Cording For Infrared Obstacle Avoidance Sensor	58
4.7 (b)	Before Detect Object	59
4.7 (c)	After Detect Object	59
4.8	Voltage Regulator for Arduino Uno	62

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AC	-	Alternating Current	
USB	-	Universal Serial Bus	
MHz	-	Mega Hertz	
ICSP	-	In Circuit Serial Programming	
DC	-	Direct Current	
Cm	-	Centimeter	
LDPE	-	Low-Density Polyethylene	
HDPE	-	High-Density Polyethylene	
PP	-	Polypropylene	
PVC	-	Polyvinyl Chloride	
PET	-	Polyethylene Terephthalate	
I/O	-	Input/Output	

CHAPTER 1 INTRODUCTION

1.0 Background

Blow moulding is a producing manner extensively used to create hollow thinwall plastic items including bottles, cases, bins, and bellows. A regular blow moulding procedure starts off evolved with a heated hollow thermoplastic tube, additionally called preform or parison. The plastic tube has a hollow in a single quit, allowing compressed air to enter. It's far then inflated into the closed chamber of a divided mould to comply with the form of the mold cavity. The molded plastic may be left to cool and harden. As soon as launched from the mould, the plastic part can be put up-processed to have the holes rimmed or residues rimmed. Not all plastics are suitable for blow moulding. The most frequently used materials in blow moulding are Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), Polypropylene (PP), Polyvinyl Chloride (PVC), and Polyethylene Terephthalate (PET). The products manufactured by blow moulding, although limited to hollow shaped plastics, are widely used in many industrial fields and everyday lives. The following are the products that see a lot of blow moulded parts: Automobile, consumer, electronics, fuel oil tanks, furniture, and packaging. According to LyondellBasell Technical Tip, Common Blow Molding Problems and Their Solutions showed that the during a normal blow molding operation a number of blow molding problems commonly occur, including parison curl, uneven pinch-offs, excessive flash and incomplete handle. Have three factors excessive flashes can be due to any of the following. The Factor is a resin displaying excessive swell,

excessive pre-blow air pressure and a misaligned mold assembly. A typical example of a bottle with excessive flash can be seen in Figure 1.1. Reduce pre-blow air pressure slightly to determine if problem diminishes. If not, loosen the platen adjusting bolts and nudge the mold assembly a few hundredths of an inch towards the handle. Re-tighten the bolts and restart the machine. Usually, the problem disappears. If not, call your resin supplier for further assistance. For factor the incomplete handles is a typical example of a bottle with an incomplete handle is shown in Figure 1.2. When the flash ends high on the handle, the likelihood of a blowhole occurring at the base of the handle is very high

Figure 1.1: Bottle with flash down the entire handle.

Figure 1.2: with the flash ending far too high on the handle, a blowout and a useless bottle result.

Automation deflashing system for blow moulded product is one unit of automation deflashing system which automatically operated using the pneumatic system to remove the bottle flashes. This system is a safety device in a blow molding machine. The system used a pneumatic system such as the electrical circuit, sensor, solenoid valve and pneumatic cylinder. The automation deflashing system used one sensor, Arduino infrared obstacle avoidance sensor to detect the object. After the blow moulding process finished, eventually the sensor will detect the object when the sensor have been blocked by the object and the solenoid valve will automatically open the air. This caused the pneumatic cylinder moves forward to push the cutter mold and the bottle flashes can be completely removed from the bottle. By using this system, it is expected that the bottle flashing is must easier to remove and very safe than the manually operated.

1.1 Problem Statement

Currently, the blow molding machine at the laboratory is manually removed the bottle flashes. This manually process of flashes trimming consumes an operator to perform this task which is costly for production. In order to improve the process efficiency, the development of deflashing machine should be considered for a feasibility study.

1.2 Objective

The Objective of this project is to develop commissioning and testing one unit of the pneumatic system for automation deflashing system.

1.3 Scope

To achieve the project objectives, there is one area of scope that being considered:

1.3.1 Circuit Design for Sensor and Pneumatic System.

Automation deflashing system is used for removing the bottle flashes. It used electrical circuits, An Arduino Uno circuit is developed which will compare the voltage input from a sensor. After the blow moulding process finished, eventually the sensor will detect it when the sensor have been blocked by the object and the solenoid valve will automatically open the air. This caused the pneumatic cylinder extend and the bottle flashes can be completely removed from the bottle.

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction of Automation Deflashing System.

This chapter covered all the information related to this project, such as pneumatic function and electrical component. The pneumatic function and electrical component used in the automation deflashing system are double acting pneumatic cylinder, Arduino board and circuit, infrared obstacle avoidance sensor, timer relay and the 5/2-way solenoid valve.

Using this information, the element in the project will be presented to give more clarification about the title, objective, problem statement and the scope of a project. All the sources are either from book, journal, research paper and website.

2.1 Pneumatic System

The pneumatic system uses pressurized gasses to transmit and control power. As the name implies, the pneumatic system typically uses air (rather than some other gas) as the fluid medium because air is safe, low cost and readily available fluid. It is particularly safe in environments where an electrical spark could ignite leaks from system components (Majumdar, 1995). There are several reasons for considering the use of pneumatic system instead of hydraulic systems. Liquids exhibit greater inertia than do gasses. Therefore, in a hydraulic system, the oil is a potential problem when accelerating and decelerating actuators and when suddenly opening and closing valves. Liquid also exhibits greater viscosity than do gasses. This results in large frictional pressure and power losses. Also, since the hydraulic system uses a fluid foreign to the atmosphere, they require special reservoirs and no leak-system design. Pneumatic systems use air that is exhausted directly buck into the surrounding environment. Generally speaking, pneumatic systems are less expensive than hydraulic systems (Majumdar, 1995).

However, because of the compressibility of air, it is impossible to obtain precise, controlled actuator velocities with pneumatic systems. Also, precise positioning control is not obtainable. In an application where actuator travel is to be smooth and steady against a variable load, the air exhaust from the actuator is normally metered. Whereas pneumatic pressures are quite low to explosion dangers involved if components such as air tanks should rupture (less than 250psi), hydraulic pressure can be as high as 12000psi. Thus hydraulic pressure can be high-power systems whereas pneumatic is confined to low power application (Majumbar, 1995).

2.1.1 Principle and Maintenance

The technology of pneumatic has gained tremendous importance in the field of workplace rationalization and automation from old-fashioned timber works and coal mines modern machine shops and space robots. Certain characteristic of compressed air has made this medium quite suitable for use in modern manufacturing and production plants.

It is, therefore, important that technicians and engineers should have a good working knowledge of the pneumatic system, air operated tools and other accessories, and including a through and clear concept of the physical principles that governs the behavior of compressor air (Majumbar, 1995).

2.1.2 Application of Pneumatic

With the introduction of pneumatic in the manufacturing process, the industry is benefited with a cheaper medium of industrial automation which judiciously used, may bring down the cost of production to a much lower level. A few decades ago, maximum application of pneumatic was probably in the field of construction where the main source of power for tools like power hammer drills and etc. was compressed air only. Now, compressed air is used in every walk of industrial life starting with pneumatic cranes to the use of air in the brake systems and so on.

The advantage of pneumatic:

- 1. Wide available of air.
- 2. Compressibility of air.
- 3. Easy transportability of compressed air in pressure vessels, containers and in long pipes.
- 4. Fireproof characteristic of the medium.
- 5. Simple construction of pneumatic elements and easy handling.
- 6. High degree of controllability of pressure, speed and force.
- 7. Possibility of easy but reasonable reliable remote controlling.
- 8. Easier maintenance.
- 9. Explosion-proof characteristic of the medium.
- 10. Comparatively cheaper in cost than other systems.

Compared to the hydraulic system, the pneumatic system has better operational advantages but it cannot replace hydraulic system so far as power requirement and accuracy of operations are concerned. In areas of hazards, probably air will be a better medium of power than the electrical system, hydraulic system, and steam power system. It may not be necessary at this stage to dwell further on the multitude of advantages that may be derived from applying pneumatic energy on production plants and systems except what has been already mentioned earlier (Majumdar, 1995). Figure 2.1 shows the differential features of electrical, hydraulic and pneumatic power.

	Electrical	Hydraulic	Pneumatic
Energy source	Usually from outside supplier	Electric motor or diesel driven	Electric motor or diesel driven
Energy storage	Limited (batteries)	Limited (accumulator)	Good (reservoir)
Distribution system	Excellent, with minimal loss	Limited, basically a local facility	Good, can be treated as a plant wide service
Rotary actuators	AC and DC motors, Good control on DC motors. Ac motors cheap	Low speed. Good control. Can be stalled.	Wide speed range. Accurate speed control difficult
Linear actuators	Short motion via solenoid. Otherwise via mechanical conversion	Cylinders. Very high force	Cylinders. Medium force
Points to note	Danger from electric shock	Leakage dangerous and unsightly. Fire hazard	Noise
Energy cost	Lowest	Medium	Highest

Figure 2.1: Comparison features of electrical, hydraulic and pneumatic (Majumdar, 1995)

2.1.3 Basic System

In modern industries, the pneumatic system is used as a means of workplace mechanization and automation where a major part of manual and tedious work may be supplemented controls for quick and economic production. The average investment in this field may not be too high as the system components are not very costly and automation could be affected in stages too. The basic system requirements for the introducing pneumatic are one plants are listed below (Parr, 1991).

- Compressor plants the production plant using pneumatic tools; etc. should be equipped with the compressed air plant of appropriate capacity to meet the compressed air need of the systems.
- 2. Pipeline a well-laid compressed air pipeline should be drawn from the compressor plant to the consumption point of pneumatic energy in various sections of the plant where pneumatic gadgets and systems are to be introduced.
- Control valves various types of control valves are used to regulate, control and monitor the air energy, for control of direction, pressure, flow, etc.
- 4. Air actuator various types of a cylinder or air motor are used to perform the useful work for which the pneumatic system is designed like using cylinders for linear movement of the jig, fixtures, raw materials feeding, etc.
- 5. Auxiliary appliances various types of auxiliary equipment may have to be used in a pneumatic system for effecting better performance, easy controllability, and highest reliability.

