

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF CYLINDER LPG TROLLEY FOR DOMESTIC USE

This report submitted in accordance with requirement of the Universiti Teknikal

Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering

(Manufacturing Design) (Hons.)

by

NURUL AKMAR BT MOHD TAJWI

B051210116

930703-03-5068

FACULTY OF MANUFACTURING ENGINEERING

2015

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Dalam tesis ini, pembangunan LPG silinder troli untuk kegunaan domestik dibentangkan. Untuk merangka mekanisme baru yang cekap, kajian telah dijalankan mengenai produk silinder LPG troli sedia ada untuk kegunaan domestik. Pada asasnya, LPG silinder troli yang sedia ada telah menjadi satu produk yang penting di kalangan pengguna-pengguna yang perlu untuk mengangkut LPG silinder ke tempat lain. Walau bagaimanapun, LPG silinder troli yang sedia ada tidak selamat untuk digunakan kerana masalah ergonomik, ketahanan dan kestabilan. Oleh itu, untuk menyelesaikan isu ini, projek ini mencadangkan mekanisme pemegang untuk mengatasi isu ergonomik, manakala menukar bahan dari nilon ke polipropilena untuk meningkatkan ketahanan produk. Selain itu, mekanisme pemegang digunakan pada troli untuk meningkatkan kestabilan LPG silinder semasa pengendalian troli. Analisis struktur kekuatan produk itu telah dilaksanakan dan hasil ujian mengesahkan ketahanan bahan yang disyorkan. Sementara itu, analisis ergonomik produk telah dilakukan dengan menggunakan analisis Rula dan hasil ujian mengesahkan bahawa tidak ada kegagalan ergonomik. Prototaip direka mengesahkan ergonomik dan fungsi mekanisme pemegang dan pemegang.

ABSTRACT

In this thesis, the development of cylinder LPG trolley for domestic use is presented. In order to design an efficient new mechanism, studies were carried out regarding existing product of cylinder LPG trolley for domestic use. Basically, the existing cylinder LPG trolley has become an important product among the users who need to transport the cylinder LPG to other place. However, the existing cylinder LPG trolley is not being safe to use due to the ergonomic, durability and stability problem. Thus, to solve this issue, this project proposes handle mechanism to overcome the ergonomic issue, while change the material from nylon to polypropylene to increase the durability of the product. Besides that, the holder mechanism is applied on the trolley to increase the stability of the cylinder LPG during handling the trolley. The structure strength analysis of the product has been performed and the results confirmed the durability of the suggested material. Meanwhile, the ergonomic analysis of the product has been performed by using the RULA analysis and the results confirmed that there are no ergonomic failure. The fabricated prototype validate the ergonomic and functionality of the handle and holder mechanism.

DEDICATION

To my beloved mother, father, sister and brother.

ACKNOWLEDGEMENT

Firstly, I would like to express my greatest gratitude to Allah S.W.T., for His will, this project has finally completed. Thousands of thanks to my supervisor, Encik Khairul Fadzli Bin Samat for his kind and patience, his valuable advices, concern, guidance and support throughout the process of completing my degree project.

I would also like to express my sincere gratitude to my parents and family, who had continuously giving out their support financially and emotionally for me to complete my project. Also lots of thanks to my beloved friends and lecturers for all the knowledge, helps and guidance to complete this project.

Last but not least, I have the greatest hope that my degree project, 'Design and Development of Cylinder LPG Trolley for Domestic Use' will give its benefit in making more discovery of new technology in future.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Content	V
List of Tables	viii
List of Figures	Х
List of Abbreviations, Symbols and Nomenclatures	xiv
CHAPTER 1: INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Objective	3
1.4 Scope	3
1.5 Project Schedule	4
CHAPTER 2: LITERATURE REVIEWS 6	
2.1 Introduction	6
2.2 Engineering Design Process of the Cylinder LPG Trolley	7
2.3 The Selected Design Process	10
2.3.1 Quality Function Deployment (QFD)	10
2.3.2 Pugh Concept Selection Method	12
2.4 Design Analysis	13
2.4.1Solidworks	13

2.4.2 Solidworks Simulation Analysis	14
2.4.3 Theories of strength analysis	16
2.5 Ergonomic	19
2.5.1 Ergonomic Analysis	
19	
2.5.1.1 RULA Assessment Worksheet	19
2.6 Rapid Prototyping	22
2.7 Fused Deposition Modelling (FDM)22	
2.7.1 Process of FDM Technology	24
CHAPTER 3: METHODOLOGY	25
3.1 Introduction	25
3.2 Methodology	25
3.3 Problem Identification	27
3.4 Survey Analysis: Customer Requirement	27
3.4.1 Basket to Counter the Ergonomic Problem	28
3.5 Establishment of Product Specification	32
3.5.1 House of Quality (HOQ)	35
3.6 Development of Conceptual Design	37
3.6.1 Morphological Chart	37
3.6.2 Concept Generation	38
3.7 Selection Process of Conceptual Design	44
3.7.1 PUGH Method	44
3.7.1.1 Concept screening	45
3.7.2 Concept Scoring	46
3.8 Development of Detail Design47	
3.8.1 Component Part in Cylinder LPG Trolley	47

3.8.2 Exploded View of Cylinder LPG Trolley	49
3.8.3 Assembly of Cylinder LPG Trolley	
513.8.4 Dimension of Cylinder LPG Trolley	53
CHAPTER 4: RESULTS AND DISCUSSION	54
4.1 Overview of Final Design Model	55
4.2 Boundary & Properties of Structure Strength Analysis	56
4.2.1 Body Base	56
4.2.2 Connector of Body Base	59
4.2.3 Handle	63
4.2.4 Summary of Structure Strength Analysis	67
4.3 Ergonomic Analysis	68
4.3.1 RULA Assessment for Existing Product	68
4.3.2 RULA Assessment for New Design Product	71
4.3.2.1 RULA Assessment in Worksheet	71
4.4 Validation Result	74
4.4.1 Validation of Proposed Mechanism	74
4.4.1 Validation of Ergonomic Issue	75
4.5 Summary of Ergonomic Analysis	76
CHAPTER 5: CONCLUSION	79
5.1 Conclusion	79
5.2 Sustainability	81
5.3 Recommendation in Future	82
REFERENCES	83
APPENDICES	88

LIST OF TABLES

1.1 Project schedule for Degree Project I	4
1.2 Project schedule for Degree Project II	5
2.1 Existing LPG Gas Trolley for Domestic Use	7
2.2 Existing LPG Gas Trolley for Commercial Use	8
2.3 The Score of Respective Level of MSD Risk	21
3.1 Customer needs for the suspension LPG gas trolley and their relative	
Importance	32
3.2 List metrics for the suspension	33
1.3 The Target Specification	33
3.4 The final specifications	34
3.5 Morphological chart of Cylinder LPG Trolley	37
3.6 Concept Screening of Cylinder LPG Trolley	45
3.7 Concept Scoring of Cylinder LPG Trolley	46
3.8 Parts of Cylinder LPG Trolley	47
3.9 Component of Cylinder LPG Trolley	50
4.1 Force Value at Different Angle	60
4.2 Summary of Structure Strength Analysis	67

4.3 The comparison of previous and improved design in handling trolley

based on RULA score.

77

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

2.1 Technique of House of Quality	10
2.2 Example of House of Quality	11
2.3 Example of Pugh Selection Matrix	12
2.4 Example of Stress Distribution (Von Mises)	15
2.5 Example of Displacement Distribution	15
2.6 RULA Employee Assessment Worksheet	21
2.7 Example of Product Produced using FDM	23
3.1 The flow of the development of Cylinder LPG Trolley	26
3.2 Survey Question 1	28
3.3 Survey Question 2	28
3.4 Survey Question 3	29
3.5 Survey Question 4	30
3.6 Survey Question 5	31
3.7 Basket Trolley Concept	31
3.8 HOQ of Cylinder LPG Trolley	35
3.9 Concept A	38
3.10 Concept B	39
3.11 Concept C	40

3.12 Concept D	41
3.13 Concept E	42
3.14 Concept F	43
3.15 Exploded View of Cylinder LPG Trolley	49
3.16(a) Cylinder LPG Trolley with Cy;inder LPG	51
3.16(b) Cylinder LPG Trolley	52
3.16(c) Folder Handle of Cylinder LPG Trolley	52
3.17 Dimension of Cylinder LPG Trolley	53
4.1 Perspective View of Cylinder LPG Trolley	55
4.2 Location of Load/Force	56
4.3 Location of Fixture	56
4.4 Von Mises Stress of Body Base	57
4.5 Displacement of Body Base Structure	58
4.6 Location of force at connector	59
4.7 Location of fixture at connector	59
4.8 Maximum stress of connector structure strength analysis	61
4.9 Max displacement of connector structure strength analysis	61
4.10 Location of fixture at handle condition I	63
4.11 Location of force at handle condition II	63
4.12 Location of force at handle condition II	64
4.13 Location of fixture at handle condition II	64

4.14	Maximum stress of Handle	65
4.15	Maximum Displacement of Handle	65
4.16	Side view of the model that is handling the cylinder LPG trolley	68
4.17	Front view of the model that is handling the cylinder LPG trolley	68
4.18	The RULA analysis of the handling posture without load for existing	
	product	69
4.19	The RULA analysis of the handling posture with load for existing product	70
4.20	Side View of the Model Handling the Cylinder LPG Trolley	72
4.21	Front View of the Model Handling the Cylinder LPG Trolley	72
4.22	Result of RULA analysis of handling without load for new design	72
4.23	Result of RULA analysis of model handling with load for new design	73
4.24	Fabricated Product	74
4.25	Mechanism of Product	74
4.26	Posture When Handling the Prototype	75
4.27	RULA employee assessment worksheet	75
4.28	Analysis of existing trolley	76
4.29	Analysis of new trolley	76

LIST OF ABBREVIATIONS, SYMBOLS AND

NOMENCLATURE

LPG	- Liquefied Petroleum Gas
MSD	- Musculoskeletal Disorders
FDM	- Fused Deposition Modelling
QFD	- Quality Function Deployment
HOQ	- House of Quality
VOC	- Voice of Customer
CAD	- Computer Aided Design
Ра	- Pascal
Μ	- MEGA
FEM	- Finite Element Method
FEA	- Finite Element Analysis
RULA	- Rapid Upper Limb Analysis
ABS	- Acrylonitrile Butadiene Strene
PPS	- Polyphenylsulfone

CHAPTER 1 INTRODUCTION

1.1 Background

Liquefied Petroleum Gas (LPG) trolley is widely used in industry and society for ease of transportation to any location. There are two types of cylinder LPG trolleys which are used for commercial and domestic. The commercial used is defined as the use of the cylinder LPG trolley by the delivery men who delivered the LPG to the house, while the domestic use is defined as the use of the cylinder LPG trolley at home. The cylinder LPG trolley for domestic use is faced a lot of problems such as ergonomic, stability and durability problem. Ergonomics is a science focused on the study of human fit, and decreased fatigue and discomfort through product design. When products fit the user, the result can be more comfort, higher productivity, and less stress (Jorge Oishi, 2008). Based on the observation, the ergonomic problem faced by existing trolley is the trolley does not have handle which cause people to bend the body to push it. Bad posture put excessive force on the joints and muscles and tendons load around joints implemented. Body joints is most memorable when they operate closest to the mid-range of movement of joints. Musculoskeletal disorders (MSD) risk increases when the joint work beyond the middle of this range repeatedly or for the entire period that quest period without sufficient recovery time (Jorge Oishi, 2008). The other problem faced by the cylinder LPG trolley is the stability of the cylinder gas during handling it. Stability is the ability of a product to remain unchanged over time under stated or reasonably expected conditions of storage and use. Based on the observation, the problem occurs when a force is apply on the top of the cylinder gas. The cylinder gas will fall down if a horizontal force is applied on it. Due to the force applied on the cylinder gas, the trolley would not be able to maintain stability, thus make the cylinder gas falling down. Furthermore, the other problem is durability of the trolley's material. The durability of the product depends on type of material to build up the product. Based on the observation, most of the existing trolley is made up by plastic which could not withstand excessive load. This situation will make the trolley only can be used for a short time. By understanding of the characteristic's problem, the effect of using LPG gas trolley is predicted.

In this report, the design and development of LPG gas trolley for domestic use to encounter the ergonomic, stability and durability problems is presented.

1.2 Problem Statement

In transferring cylinder LPG gas to desired place, it is essential to use a trolley because the LPG gas trolley is too heavy to lift. As already know, there are plenty types of trolley available in this industry but it does not fulfill the customer requirement such as durability, stability and ergonomic characteristics. Some people might be noticed about the ergonomic problems, stability and durability of the products. This situation had been proved by the survey among the customers. The users argue about need to bend their body during handling the trolley due to the height. Moreover, most of the existing trolley have low center of gravity which can cause the cylinder LPG gas trolley to fall down. If the LPG gas trolley is redesign and improve ease of use, people will not face the back pain during handling the trolley and use the trolley without any problems. Due to this reason, this study aims to design an LPG gas trolley for domestic use. The Pugh's method was integrated to design the LPG cylinder trolley, so that it can fulfill the customer's requirements, thus, an effective device to assist the delivery task is produced.

1.3 Objective

The aim of this project is to design and develop the cylinder LPG trolley for domestic uses. This can be accomplishing by following the objectives:

- 1. To design cylinder LPG trolley based on ergonomic, stability and durability perspective through an engineering design.
- 2. To perform ergonomic and structure strength analysis for the final design.
- 3. To produce the product through rapid prototyping machine for the functionality of handle and holder mechanism and ergonomic evaluation.

1.4 Scope

This project comprises the design of LPG gas trolley for the domestic uses. In order to design the LPG gas trolley, many important designing factors must be taken into consideration which are ergonomic, stability and durability. The best proposal design of the cylinder LPG gas trolley was selected by using Pugh's method. In the Pugh's method a decision matrix is prepared with column to identify design concepts and the rows to represent criteria. The project must perform the modeling and design analysis by using Solidworks software. Then produce the prototype by Fused Deposition Modeling (FDM) machine. FDM machine is an additive manufacturing technology commonly used for modeling, prototyping and production applications. FDM works on the prototype to ensure the functionality and ergonomic of the product.

1.5 Project Schedule

Table 1.1 shows the project schedule for project 1 which is start from problem identification and literature review. The survey analysis is conducted after the problem identification, then proceed with development of conceptual design, selection process of conceptual design, development of detail design, design analysis and optimization and poster preparation. Each column of the table represent for two weeks.

Activities/ Time scale*	1*	2*	3*	4*	5*	6*	7*
Problem identification & literature review							
Survey analysis							
Development of conceptual design							
Selection process of conceptual design							
Development of detail design							
Design analysis and optimization							
Poster preparation							
Report writing							

Table 1.1: Project schedule for Degree Project I

1 unit *= 2 weeks

Table 1.2 shows the project schedule for degree project II which are prototype development using FDM machine, functionality and ergonomic analysis for the prototype and report writing.

Activities/ Time scale*	1*	2*	3*	4*	5*	6*	7*
Prototype development using FDM machine							
Functionality and ergonomic analysis for the prototype							
Report writing							

 Table 1.2: Project schedule for Degree Project II

1 unit *= 2 weeks

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Cylinder LPG gas trolley is used for ease of transportation of LPG gas to any location. Mostly the person who used the LPG gas trolley are the delivery men who incharge of delivering the LPG cylinders to the customers and for the domestic use. There are two types of LPG gas trolley use which are LPG gas trolley for domestic use and for commercial use.

2.2 Engineering Design Process of the LPG Gas Trolley

Table 2.1 and table 2.2 show the ergonomic of the LPG trolleys which describe the types, materials and list of problems faced by the existing trolley.

Туре	Material	List of problems
(Indiamart, 2014)	Plastic	Easily break Cannot stand with heavy load Not ergonomic
(Indiamart, 2014)	Stainless steel	Not ergonomic Can be used in short period
(Indiamart, 2014)	Stainless steel	Not stable Not ergonomic- have a bad posture during handling

 Table 2.1: Existing LPG Gas Trolley for Domestic Use

	Steel	Not ergonomic Easy to corrode
(Indiamart, 2014)		

Table 2.2: Existing LPG Gas Trolley for Commercial Use

Туре	Material	List of problems
(Indiamart, 2014)	Steel	Do not ergonomic Have a bad posture during handling the trolley
(Indiamait, 2014)		
(Indiamart, 2014)	Steel	Not stable Not ergonomic- have a static pressure during handling

(Indiamart, 2014)	Steel	Need a lot of energy to push the trolley Easy to corrode
(Indiamart, 2014)	Steel	Not stable Not ergonomic- face a static pressure during handling

2.3 The Selected Design Process

2.3.1 Quality Function Deployment (QFD)

The Quality function deployment (QFD) or named as matrix product planning. It is a method which is widely used to transform the qualitative user demands into quantitative parameters. Then used to deploy methods for achieving the design quality into subsystem and component, and to specify elements of the manufacturing process. The QFD is a measure of customer satisfaction with a product. A seven management and planning tools is used in methodology of a product (Carlo, 2012).

The technique is characterized by a matrix called the House of Quality (HOQ) which is represented in Figure 2.1. The matrix contains information about what to do (what customer want), how to do (how technically customer requirements can be achieved), and the relationships between each of these aspects; prioritization of customer requirements and technical requirement and what the company's target levels (Gulcin, 2012).

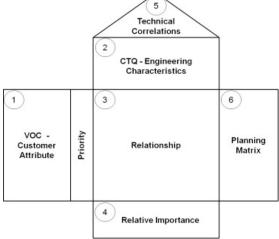


Figure 2.1: Technique of House of Quality (HOQ) (Gulcin,2012)

(C) Universiti Teknikal Malaysia Melaka