

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EFFECT OF INJECTION MOULDING PARAMETERS ON MATERIAL CHARACTERISTIC OF TWO PLATE MOULD WITH DIFFERENT MATERIAL USING FLOW ANALYSIS

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Process) (Hons.)

by

NADIA ADRIENA BINTI ABD RAHMAN B051210088 930314-01-6680

FACULTY OF MANUFACTURING ENGINEERING 2016

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Effect of Injection Moulding Parameters on Material Characteristic of Two Plate Mould with Different Materials Using Flow Analysis

SESI PENGAJIAN: 2015/2016 Semester 2

Saya NADIA ADRIENA BINTI ABD RAHMAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan

SULIT	(Mengandungi maklumat yang berdarjah keselamatan
	atau kepentingan Malaysia sebagaimana yang termaktub
_	dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan

oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

Kg Pt Raja Ahmad, 83500 Pt sulong, Batu Pahat, Johor

TIDAK TERHAD

** Jika Laporan PSM ini SULIT TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Effect of Injection Moulding Parametes on Material Characteristic of Two Plate Mould with Different Materials Using Flow Analysis" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	NADIA ADRIENA BINTI ABD RAHMAN
Date	:	

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Process) (Hons.). The member of the supervisory is as follow:

.....

(Project Supervisor)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Pada masa kini, bahan-bahan plastik adalah salah satu bahan yang paling penting dimana mempunyai permintaan yang tinggi dalam mewujudkan pelbagai produk. Dalam pengacuan suntikan, proses parameter memainkan elemen penting kerana ia memberi kesan kepada kualiti produk. Projek ini mengkaji tentang kesan parameter pengacuan suntikan pada ciri-ciri bahan dua plat acuan dengan bahan yang berbeza dengan menggunakan analisis aliran. Ia memberi tumpuan kepada kesan parameter pengacuan suntikan pada setiap tindak balas produk iaitu volumetric shrinkage at ejection, fill time, in-cavity residual stress dan deflection dengan menggunakan Moldflow simulation software. Parameter yang telah dipilih dalam kajian ini ialah mould temperature, melt temperature, injection time dan cooling time. Kemudian, parameter di optimumkan bagi setiap tindak balas dengan menggunakan Taguchi method dan Analysis of Variance (ANOVA). Bahagian plastic yang dipanggil dumbbell juga telah direka oleh perisian CATIA. Bahan yang digunakan dalam projek ini adalah Polypropylene (PP) dan Polypropylene yang dipenuhi Talc. Ia didapati bahawa, nilai terendah bagi setiap tindak balas untuk bahan PP menunjukkan *deflection* pada uji kaji ke 9, fill time pada uji kaji pertama, volumetric shrinkage pada uji kaji pertama dan residual stress pada uji kaji ke 3. Manakala bagi PP dipenuhi Talc menunjukkan nilai yang paling rendah bagi *fill time* pada uji kaji pertama, *deflection* pada uji kaji ke 8, volumetric shrinkage pada uji kaji ke 7 dan residual stress pada uji kaji ke 3. Melalui ANOVA, ia menunjukkan bahawa melt temperature adalah parameter yang memainkan peranan penting bagi proses pengacuan suntikan.

ABSTRACT

Nowadays, plastic materials are one of the most important materials having high demand in creating various products. In injection moulding, process parameters play an important element since it give an impact to the quality of the product. This project studies the effect of injection moulding parameters on material characteristic of two plate mould with different material using flow analysis. It focuses on the effect of injection moulding parameters on the each response which are volumetric shrinkage at ejection, fill time, in-cavity residual stress and deflection by using Moldflow simulation software. The parameters that have been selected in this study were melt temperature, mould temperature, injection time and cooling time. Then optimization of parameters for each response was find by using Taguchi method and Analysis of Variance (ANOVA). The dumbbell of plastic part was designed by CATIA software. The material used in this project are Polypropylene (PP) and Polypropylene filled Talc. It is found that, the lowest value of each response for material PP shows deflection at run 9, fill time at run 1, volumetric shrinkage at run 1 and residual stress at run 3. While for PP filled Talc shows the lowest value of fill time at run 1, deflection at run 8, volumetric shrinkage at run 7 and residual stress at run 3. Through ANOVA, it shows that melt temperature is the significant parameter for injection moulding process.

DEDICATION

All the hard work is only for you : *Abd Rahman bin Omar Pajariah binti Samsi Nurezzatul Hajar Farah Faezah Muhammad Khairul Iman Nur Najiha Azwa Muhammad Fakrul Iqbal*

ACKNOWLEDGEMENT

First and foremost, all praise to The Almighty, who made this accomplishment possible. I seek his mercy, favour and forgiveness. Thousands of thanks to my kindly supervisor, Dr. Mohd Amran bin Md. Ali for the help, guidance, encouragement and opinion from the beginning of the project until the end of this writing project. Greatest thanks to my beloved parents and siblings who always provides me with prayer, love and support all the time in order for me to complete this thesis. For my friends, I appreciate the present of being there with me through thick and thin. Thank you.

TABLE OF CONTENT

Abstra	ak		i
Abstra	act		ii
Dedic	ation		iii
Ackno	owledgm	nent	iv
Table	of Cont	ent	V
List of	f Tables		ix
List of	f Figures	s	xii
List of	f Abbrev	viation, Symbols and Nomenclatures	xiv
CHA	PTER 1	: INTRODUCTION	1
1.1	Backgr	round	1
1.2	Probler	m Statement	3
1.3	Objecti	ive	3
1.4	Scope		4
1.5	Organis	sation of Final Year Project	4
CHA	PTER 2	: LITERATURE REVIEW	5
2.1	Injecti	on Moulding Machine	5
2.2	Injecti	on Moulding Machine Components	6
	2.2.1	Hopper	6
	2.2.2	Barrel	7
	2.2.3	The Screw	7
	2.2.4	Nozzle	8
2.3	Plastic	e Materials	8
	2.3.1	Polypropylene - PP	8
	2.3.2	Polyethylene with Talc	9
	2.3.3	Polyethylene –PE	9
	2.3.4	Polyamides or Nylon –PA	10

2.4	Type of Injection Mould	10
	2.4.1 Two-Plate Mould	11
	2.4.2 Three – Plate Mould	11
2.5	Mould Components	12
	2.5.1 Locating Ring	12
	2.5.2 Guide Pillars and Bushes	13
2.6	Gate	13
2.7	Single and Double Gate	14
2.8	Manually Trimmed Gates	14
2.9	Type of Gate	14
	2.9.1 Sprue Gate	15
	2.9.2 Edge Gate	15
	2.9.3 Fan Gate	16
	2.9.4 Diaphragm Gate	17
	2.9.5 Chisel Gate	18
2.10	Runner	18
	2.10.1 Hot Runner	18
	2.10.2 Cold Runner	19
2.11	Cooling System	20
2.12	Parameter Effect	
2.13	Product Defects	21
	2.13.1 Warpage	21
	2.13.2 Shrinkage	22
	2.13.3 In-Cavity Residual Stress	22
	2.13.4 Fill Time	23
2.14	Design of Experiment (DOE)	23
	2.14.1 Taguchi Method	23
	2.14.2 Analysis of Variance (ANOVA)	24
2.15	Design and Simulation Software	25
	2.15.1 Computer- Aided Design (CAD) - CATIA	25
	2.15.2 Autodesk Mold-Flow Software	25

CHAPTER 3: METHODOLOGY

28

3.1	Introd	uction	28
3.2	Flowe	hart	28
3.3	Step Involved in Research		30
3.4	Design of Product		30
3.5	Simula	ation of Plastic Part	31
3.6	Plastic Materials		32
	3.6.1	Description	32
	3.6.2	Rheological Properties	32
	3.6.3	Mechanical Properties	33
3.7	Experi	mental Parameter	33
3.8	Experi	mental Matrix	35
3.9	Analys	sis Result by Taguchi Method and ANOVA	36
CHAI	PTER 4	: RESULT AND DISCUSSION	38
4.1	Simula	ation Data	38
4.2	Result of Simulation		39
4.3	Analysis of the Result		43
4.4	Analys	sis Results of Fill Time	43
	4.4.1	S/N Response of Fill Time	43
	4.4.2	S/N Response Plot of Fill Time	45
	4.4.3	Analysis of Variance (ANOVA) of Fill Time	48
	4.4.4	Validation of Parameter for Fill Time	50
4.5	Analys	sis Result of Volumetric Shrinkage at Ejection	51
	4.5.1	S/N Response of Volumetric Shrinkage at Ejection	51
	4.5.2	S/N Response Plot of Volumetric Shrinkage at Ejection	53
	4.5.3	Analysis of Variance (ANOVA) of Volumetric Shrinkage	
		at Ejection	56
	4.5.4	Validation of Parameter for Volumetric Shrinkage at Ejection	57
4.6	Analys	sis Results of In-Cavity Residual Stress in First	
	Princip	pal Direction	59
	4.6.1	S/N Response of In-Cavity Residual Stress in First Principal	59
		Direction	

	4.6.2	S/N Response Plot of In-Cavity Residual Stress in First	61
		Principal Direction	
	4.6.3	Analysis of Variance (ANOVA) of In-Cavity Residual Stress in	64
		First Principal Direction	
	4.6.4	Validation of Parameter for In-Cavity Residual	65
		Stress in First Principal Direction	
2	4.7 Analy	vsis Result of Deflection	66
	4.7.1	S/N Response of Deflection	66
	4.7.2	S/N Response Plot of Deflection	68
	4.7.3	Analysis of Variance (ANOVA) of Deflection	71
	4.7.4	Validation of Parameter for Deflection	72
C	HAPTER	5 : CONCLUSION AND FUTURE WORK	74
5.	1 Conc	usion	74
5.	2 Reco	mmendation	76
5.	3 Susta	inable Development	76
R	EFERENC	CES	78
A	PPENDIC	ES	
А	Simu	lation result for PP	
В	Simu	lation result for PP filled Talc	
C	Table	Gantt Chart for PSM 1	
D	Table	Gantt Chart for PSM 2	

1.7

LIST OF TABLES

2.1	Parameter Change Vs Property Effect	21
3.1	Dimension of Drawing	31
3.2	Basic Details of Polypropylene	32
3.3	MFR of Polypropylene	33
3.4	Mechanical Properties of Polypropylene	33
3.5	Recommended Processing Parameter	34
3.6	Simulation Parameter	35
3.7	Processing Parameter in Taguchi Method for PP	35
3.8	Processing Parameter in Taguchi Method for PP filled Talc	36
3.9	Analysis Response for PP	37
3.10	Analysis Response for PP filled Talc	37
4.1	Three level of each parameter for Polypropylene	39
4.2	L9 Orthogonal array of Taguchi method for Polypropylene	39
4.3	Three level of each parameter for Polypropylene with Talc	39
4.4	L9 orthogonal array of Taguchi method for Polypropylene with	40
	Talc	
4.5	Summarize of the simulation result for Polypropylene	41
4.6	Summarize of the simulation report for Polypropylene with Talc	42
4.7	DOE with simulation result of PP with S/N ratio	44
4.8	DOE with simulation result with S/N ratio of PP with Talc	45
4.9	Response table for S/N ratio of fill time for PP	46
4.10	Response table for S/N ratio of fill time for PP with Talc	46
4.11	Optimum parameter combination of fill time for PP	48
4.12	optimum parameter combination of fill time for PP with Talc	48
4.13	ANOVA value of fill time for PP	49
4.14	ANOVA result of fill time for PP with Talc	49

4.15	Simulation result for volumetric shrinkage of PP at ejection and	52
	calculated S/N ratio	
4.16	Simulation result for volumetric shrinkage at ejection for PP	53
	with Talc and calculated S/N ratio	
4.17	Response table for S/N ratio of volumetric shrinkage at ejection	54
	for PP	
4.18	Response table of S/N ratio of volumetric shrinkage at ejection	54
	for PP with Talc	
4.19	Optimum combination parameter of shrinkage at ejection for PP	55
4.20	Optimum combination parameter of shrinkage at ejection for PP	56
	with Talc	
4.21	ANOVA for volumetric shrinkage at ejection for PP	57
4.22	ANOVA for volumetric shrinkage at ejection for PP with Talc	57
4.23	Design of experiment for residual stress and calculated S/N ratio	60
	for PP	
4.24	Design of experiment for in-cavity of residual stress and	61
	calculated S/N ratio for PP with Talc	
4.25	Response table for S/N of in-cavity residual stress for PP	62
4.26	Response table for S/N ratio of in-cavity residual stress for PP	62
	with Talc	
4.27	Optimum parameter combination of in-cavity residual stress for	63
	PP	
4.28	Optimum parameter combination of in-cavity residual stress of	63
	PP with Talc	
4.29	ANOVA for in-cavity residual stress for PP	64
4.30	ANOVA for in-cavity residual stress for PP with Talc	65
4.31	DOE with simulation result for deflection and calculated S/N	67
	ratio for PP	
4.32	DOE with the simulation result for deflection and calculated S/N	
	ratio for PP with Talc	68
4.33	Response table for S/N ratio of deflection for PP	69
4.34	Response table for S/N ratio of deflection for PP with Talc	69
4.35	Combination optimum parameter for deflection of PP	70

4.36	Combination optimum parameter for deflection of PP with Talc	71
4.37	ANOVA for deflection of PP	72
4.38	ANOVA for deflection of PP with Talc	72

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

2.1	Injection Molding Machine	6
2.2	Reciprocating Screw	7
2.3	Two Plate Mould ; (a) closed (b) open	11
2.4	Three Plate Mould	12
2.5	Locating Ring Mounted at Top Clamping Plate	13
2.6	Common Edge Gate	15
2.7	Edge Gate	16
2.8	Fan Gate	17
2.9	Diaphragm Gate	17
2.10	Chisel gate	18
2.11	Hot runner	19
2.12	Cold runner	20
2.13	Warpage due to different mould temperature	
3.1	Methodology of Project	29
3.2	Step Involved in Methodology	30
3.3	3D Drawing of Tensile Test Specimen, ASTM D638	31
3.4	3D Drawing with Dimension	31
3.5	Product Design Is Meshed	32
4.1	Simulation result of fill time from run 1 for PP	44

4.2	Simulation result of fill time for PP filled Talc in run 1	45
4.3	S/N graph of fill time for PP	47
4.4	S/N graph of fill time for PP with Talc	47
4.5	Simulation result of volumetric shrinkage on run 1 for PP	51
4.6	Simulation result of volumetric shrinkage for PP with Talc	53
4.7	S/N ratio graph of shrinkage at ejection for PP	55
4.8	S/N graph of shrinkage at ejection for PP with Talc	55
4.9	Simulation result of in-cavity residual stress for PP at run 3	59
4.10	Simulation result for in-cavity of residual stress for PP with Talc	60
4.11	S/N graph of in-cavity residual stress for PP	62
4.12	S/N graph of in-cavity residual stress for PP with Talc	62
4.13	Simulation result of deflection from run 9 for PP	66
4.14	Simulation result of deflection from run 8 for PP with Talc	67
4.15	S/N ratio for deflection of PP	70
4.16	S/N ratio for deflection of PP with Talc	70

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

AMI	-	Autodesk Moldflow Insight
ANOVA	-	Analysis of Variance
CAD	-	Computer Aided Design
DOE	-	Design of experiment
HDPE	-	High Density Polyethylene
LDPE	-	Low Density Polyethylene
MFR	-	Mass flow rate
PA	-	Polyamides
PE	-	Polyethylene
PP	-	Polypropylene
S/N Ratio	-	Signal to noise ratio

CHAPTER 1 INTRODUCTION

This section explains about background, objective, problem statement and the scope of the final year project. Then, ends up with the organisation of this final year report. Background discusses about the injection moulding machine, plastic material and the software used. While the objective mentions about the mission that needed to be achieved for this project and the scope covers everything what is supposed to perform in this project.

1.1 Background

Nowadays, plastic materials are one of the important materials having high demand in creating various products. To produce a product by using plastic material, it can be formed by using various processes such as moulding, shaping and forming process. But in moulding process, the demand for using injection moulding process is higher since the cost is low (Tábi et al., 2015). Besides of the cost, injection moulding is widely used due to its productivity in producing product and it also has ability to making a complex shapes (Ciofu & Mindru, 2013). For examples, many internal and external components parts of car nowadays produce from plastic materials (Ciofu & Mindru, 2013). Not only that, plastic industry can be used in clothing, packaging, electronics and any others.

Injection moulding is a process to make a parts or product from thermoplastic and thermosetting plastic where the shape of product is followed the mould (Kamaruddin, Khan, & Foong, 2010). Thermoplastic is widely used due to price is cheap. This material is easily soften when heated and back to the original condition when it cooled. Thermoplastic can give similar property as a metal when it heated repeatedly and cooled. While for the mould, usually, the toolmakers will make the mould that design by industrial engineer. The mould is usually made from aluminium or steel. To design the mould, the designer is usually used various Computer Aided Design (CAD) software such as AutoCAD, Solidworks, CATIA and Unigraphic software (Amran Ali, 2006).

In designing a mould, gate design is very important. In other word, in order to get a good injection moulding, the gate positioning must be good location. The location of gate is importance because between the runner and the cavity is a transition zone. The position of gate gives a result to the appearance and the properties of finished part (John P.Beaumont, 2007). To have a successful injection moulding is not based on the gate design only, but part design, mould design and the processing parameter also play an important role (John P.Beaumont, 2007).

In an injection moulding process, the parameter plays an important role in production of plastic, thus the control of process parameter is essential (Singh, Pradhan, & Verma, 2015). The process parameter such as melt temperature, mould temperature, injection time, cooling time and so on need to be optimized in order to have a lower value on response such as deflection, residual stress, fill time and shrinkage.

Autodesk Moldflow software is one of the flow analysis simulation software that can help to reduce the number of plastic defects (Lau & Azuddin, 2013). By using this software, plastic part and injection moulding process can be optimized by showing the changes on wall thickness, gate location and type of plastic materials that affect manufacturability. Further, nowadays, design of experiment (DOE) is used as method to achieve good quality of plastic product by minimizing the plastic defect. One of the DOE method is using Taguchi Method and help by Analysis of Variance (ANOVA), where it will give an output that can solve the problem.

This project uses flow analysis simulation software to simulate the mould having single gate and twin gate. The injection moulding parameters such as melt temperature, mould temperature, cooling time and also injection time are optimized on the reducing the output of the responses such as shrinkage, deflection, residual stress and filling time. The DOE method using Taguchi and ANOVA are implemented to design the experimental matrix and to optimize the level of input parameter. Meanwhile, ANOVA is needed to find the most significant parameter affected the responses.

1.2 Problem Statement

In injection moulding process, process parameter plays an important element since it give an impact to the quality of the product and the productivity of injection moulding. This research investigates and analyses the effect of mould temperature, melt temperature, injection time and cooling time on the response of deflection, shrinkage, fill time and residual stress of two plate mould. To overcome this problem, moldflow simulation software is used to optimize the process parameter in order to reduce the response in an injection moulding process. Design of Experiment is used to find the optimum parameter.

1.3 Objective

The main objective for this study is to reduce the effect of processing parameters on volume matrix shrinkage, warpage deflection, residual stress and filling time in two plate injection mould that having single and twin gate by using flow analysis simulation software.

- i. To design plastic part having single and twin gate for dumbbell plastic injection mould.
- ii. To investigate the input parameters in an injection moulding such as melt temperature, mould temperature, cooling time and injection time on the output

responses such as volume matrix shrinkage, warpage deflection, residual stress and filling time.

iii. To optimize the processing parameters by using Taguchi Method and Analysis of Variance (ANOVA).

1.4 Scope

This project uses two plate injection mould. The plastic product has different number of gate which one of the part plastic part used one gate system and the other part used two gate. The experimental matrix and optimization input level of this experiment used Taguchi Method and Analysis of Variance (ANOVA). For the design of mould, Computer Aided Design (CAD) software is used. Plastic materials used was Polypropylene and Polypropylene added with talc that available in Moldflow software. From the simulation result, data are analysed using Taguchi design in order to determine the significant parameter to the output responses such as volume matrix shrinkage, warpage deflection, residual stress and filling time.

1.5 Organisation of Final Year Project

- i. Chapter 1 is an Introduction chapter that explains about the background of this project, the problem and objective that must be achieved by follow the scope that has been identify.
- ii. Chapter 2 is a Literature Review that explains on related to this project that has been done by various previous researcher.
- iii. Chapter 3 is a Methodology is an overview of study which explain on how the project is done by discussing the process and method that to be used.
- iv. Chapter 4 is a Result and Discussion that explains on the result of data that has been get from the software.
- v. Chapter 5 is a Conclusion and Recommendation is an overview of the overall of project that has been done.

CHAPTER 2 LITERATURE REVIEW

This chapter basically reviews about the theory of plastic injection moulding process. It discusses about type of plastic material used, type of gate and flow analysis simulation software.

2.1 Injection Moulding Machine

The idea of plastic injection moulding was initially created by John Wesley Hyatt in 1868, in light of test from an organization looking for an option material for ivory. The main material accessible for preparing were thermosets. Polystyrene was initially grown financially by BASF in 1930 and later in the United States by Dow Chemical in 1937. These days, present day injection moulding was conceived. Numerous consider the reciprocating screw the absolute most critical commitment that changed the plastics business in the twentieth century (Cybulski, 2009).

Injection moulding as shown in Figure 2.1 is a process to make a parts or product from thermoplastic and thermosetting plastic where the shape of product is followed the mould. It is done by the polymer that inserted to heated chamber by hopper. Later, the material will be heated since the screw at the barrel produce shear to heat the material. As the polymer melt with the constant pressure, the polymer then pumped out to the mould by the reciprocating screw (Andrisano,2011). Polymer will be inserted to mould through the sprue bushing then polymer flow to the gate by runner system. The

pressure must be constant to ensure the polymer did not flowing back out the cavity until the gate is solidify.

During the cooling part of the cycle after the gate has solidified, plastication happens. Plastication is the procedure of melting material and setting up the following shot. The material starts in the hopper and enters the barrel through the feed throat. The food throat must be cooled to keep plastic pellets from melting from the barrel heat. At the front of the screw is the non-return valve which permits the screw to go about as both an extruder and a plunger (Rutkauskas & Bargelis, 2007). At the point when the screw is moving in reverse to manufacture a shot, the non-return assembly permits material to flow in front of the screw making a melt pool or shot. During injection, the non-return get together keeps the shot from flowing once more into the screw areas. When the shot has been assembled and the cooling time has timed out, the mould opens.

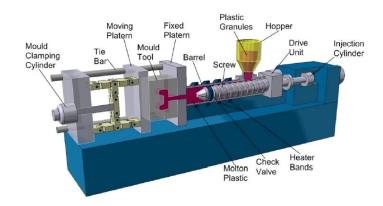


Figure 2. 1 : Injection Moulding Machine (Groover, 2010)

2.2 Injection Moulding Machine Component

Injection moulding component machine consist of hopper, barrel, screw and the nozzle.